1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_da_format.h" 14 #include "xfs_da_btree.h" 15 #include "xfs_inode.h" 16 #include "xfs_trans.h" 17 #include "xfs_inode_item.h" 18 #include "xfs_bmap.h" 19 #include "xfs_bmap_util.h" 20 #include "xfs_error.h" 21 #include "xfs_dir2.h" 22 #include "xfs_dir2_priv.h" 23 #include "xfs_ioctl.h" 24 #include "xfs_trace.h" 25 #include "xfs_log.h" 26 #include "xfs_icache.h" 27 #include "xfs_pnfs.h" 28 #include "xfs_iomap.h" 29 #include "xfs_reflink.h" 30 31 #include <linux/dcache.h> 32 #include <linux/falloc.h> 33 #include <linux/pagevec.h> 34 #include <linux/backing-dev.h> 35 #include <linux/mman.h> 36 37 static const struct vm_operations_struct xfs_file_vm_ops; 38 39 int 40 xfs_update_prealloc_flags( 41 struct xfs_inode *ip, 42 enum xfs_prealloc_flags flags) 43 { 44 struct xfs_trans *tp; 45 int error; 46 47 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid, 48 0, 0, 0, &tp); 49 if (error) 50 return error; 51 52 xfs_ilock(ip, XFS_ILOCK_EXCL); 53 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 54 55 if (!(flags & XFS_PREALLOC_INVISIBLE)) { 56 VFS_I(ip)->i_mode &= ~S_ISUID; 57 if (VFS_I(ip)->i_mode & S_IXGRP) 58 VFS_I(ip)->i_mode &= ~S_ISGID; 59 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 60 } 61 62 if (flags & XFS_PREALLOC_SET) 63 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 64 if (flags & XFS_PREALLOC_CLEAR) 65 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; 66 67 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 68 if (flags & XFS_PREALLOC_SYNC) 69 xfs_trans_set_sync(tp); 70 return xfs_trans_commit(tp); 71 } 72 73 /* 74 * Fsync operations on directories are much simpler than on regular files, 75 * as there is no file data to flush, and thus also no need for explicit 76 * cache flush operations, and there are no non-transaction metadata updates 77 * on directories either. 78 */ 79 STATIC int 80 xfs_dir_fsync( 81 struct file *file, 82 loff_t start, 83 loff_t end, 84 int datasync) 85 { 86 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 87 struct xfs_mount *mp = ip->i_mount; 88 xfs_lsn_t lsn = 0; 89 90 trace_xfs_dir_fsync(ip); 91 92 xfs_ilock(ip, XFS_ILOCK_SHARED); 93 if (xfs_ipincount(ip)) 94 lsn = ip->i_itemp->ili_last_lsn; 95 xfs_iunlock(ip, XFS_ILOCK_SHARED); 96 97 if (!lsn) 98 return 0; 99 return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 100 } 101 102 STATIC int 103 xfs_file_fsync( 104 struct file *file, 105 loff_t start, 106 loff_t end, 107 int datasync) 108 { 109 struct inode *inode = file->f_mapping->host; 110 struct xfs_inode *ip = XFS_I(inode); 111 struct xfs_mount *mp = ip->i_mount; 112 int error = 0; 113 int log_flushed = 0; 114 xfs_lsn_t lsn = 0; 115 116 trace_xfs_file_fsync(ip); 117 118 error = file_write_and_wait_range(file, start, end); 119 if (error) 120 return error; 121 122 if (XFS_FORCED_SHUTDOWN(mp)) 123 return -EIO; 124 125 xfs_iflags_clear(ip, XFS_ITRUNCATED); 126 127 /* 128 * If we have an RT and/or log subvolume we need to make sure to flush 129 * the write cache the device used for file data first. This is to 130 * ensure newly written file data make it to disk before logging the new 131 * inode size in case of an extending write. 132 */ 133 if (XFS_IS_REALTIME_INODE(ip)) 134 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 135 else if (mp->m_logdev_targp != mp->m_ddev_targp) 136 xfs_blkdev_issue_flush(mp->m_ddev_targp); 137 138 /* 139 * All metadata updates are logged, which means that we just have to 140 * flush the log up to the latest LSN that touched the inode. If we have 141 * concurrent fsync/fdatasync() calls, we need them to all block on the 142 * log force before we clear the ili_fsync_fields field. This ensures 143 * that we don't get a racing sync operation that does not wait for the 144 * metadata to hit the journal before returning. If we race with 145 * clearing the ili_fsync_fields, then all that will happen is the log 146 * force will do nothing as the lsn will already be on disk. We can't 147 * race with setting ili_fsync_fields because that is done under 148 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared 149 * until after the ili_fsync_fields is cleared. 150 */ 151 xfs_ilock(ip, XFS_ILOCK_SHARED); 152 if (xfs_ipincount(ip)) { 153 if (!datasync || 154 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 155 lsn = ip->i_itemp->ili_last_lsn; 156 } 157 158 if (lsn) { 159 error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 160 ip->i_itemp->ili_fsync_fields = 0; 161 } 162 xfs_iunlock(ip, XFS_ILOCK_SHARED); 163 164 /* 165 * If we only have a single device, and the log force about was 166 * a no-op we might have to flush the data device cache here. 167 * This can only happen for fdatasync/O_DSYNC if we were overwriting 168 * an already allocated file and thus do not have any metadata to 169 * commit. 170 */ 171 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && 172 mp->m_logdev_targp == mp->m_ddev_targp) 173 xfs_blkdev_issue_flush(mp->m_ddev_targp); 174 175 return error; 176 } 177 178 STATIC ssize_t 179 xfs_file_dio_aio_read( 180 struct kiocb *iocb, 181 struct iov_iter *to) 182 { 183 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 184 size_t count = iov_iter_count(to); 185 ssize_t ret; 186 187 trace_xfs_file_direct_read(ip, count, iocb->ki_pos); 188 189 if (!count) 190 return 0; /* skip atime */ 191 192 file_accessed(iocb->ki_filp); 193 194 xfs_ilock(ip, XFS_IOLOCK_SHARED); 195 ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL); 196 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 197 198 return ret; 199 } 200 201 static noinline ssize_t 202 xfs_file_dax_read( 203 struct kiocb *iocb, 204 struct iov_iter *to) 205 { 206 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); 207 size_t count = iov_iter_count(to); 208 ssize_t ret = 0; 209 210 trace_xfs_file_dax_read(ip, count, iocb->ki_pos); 211 212 if (!count) 213 return 0; /* skip atime */ 214 215 if (iocb->ki_flags & IOCB_NOWAIT) { 216 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) 217 return -EAGAIN; 218 } else { 219 xfs_ilock(ip, XFS_IOLOCK_SHARED); 220 } 221 222 ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops); 223 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 224 225 file_accessed(iocb->ki_filp); 226 return ret; 227 } 228 229 STATIC ssize_t 230 xfs_file_buffered_aio_read( 231 struct kiocb *iocb, 232 struct iov_iter *to) 233 { 234 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 235 ssize_t ret; 236 237 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos); 238 239 if (iocb->ki_flags & IOCB_NOWAIT) { 240 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) 241 return -EAGAIN; 242 } else { 243 xfs_ilock(ip, XFS_IOLOCK_SHARED); 244 } 245 ret = generic_file_read_iter(iocb, to); 246 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 247 248 return ret; 249 } 250 251 STATIC ssize_t 252 xfs_file_read_iter( 253 struct kiocb *iocb, 254 struct iov_iter *to) 255 { 256 struct inode *inode = file_inode(iocb->ki_filp); 257 struct xfs_mount *mp = XFS_I(inode)->i_mount; 258 ssize_t ret = 0; 259 260 XFS_STATS_INC(mp, xs_read_calls); 261 262 if (XFS_FORCED_SHUTDOWN(mp)) 263 return -EIO; 264 265 if (IS_DAX(inode)) 266 ret = xfs_file_dax_read(iocb, to); 267 else if (iocb->ki_flags & IOCB_DIRECT) 268 ret = xfs_file_dio_aio_read(iocb, to); 269 else 270 ret = xfs_file_buffered_aio_read(iocb, to); 271 272 if (ret > 0) 273 XFS_STATS_ADD(mp, xs_read_bytes, ret); 274 return ret; 275 } 276 277 /* 278 * Common pre-write limit and setup checks. 279 * 280 * Called with the iolocked held either shared and exclusive according to 281 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 282 * if called for a direct write beyond i_size. 283 */ 284 STATIC ssize_t 285 xfs_file_aio_write_checks( 286 struct kiocb *iocb, 287 struct iov_iter *from, 288 int *iolock) 289 { 290 struct file *file = iocb->ki_filp; 291 struct inode *inode = file->f_mapping->host; 292 struct xfs_inode *ip = XFS_I(inode); 293 ssize_t error = 0; 294 size_t count = iov_iter_count(from); 295 bool drained_dio = false; 296 loff_t isize; 297 298 restart: 299 error = generic_write_checks(iocb, from); 300 if (error <= 0) 301 return error; 302 303 error = xfs_break_layouts(inode, iolock, BREAK_WRITE); 304 if (error) 305 return error; 306 307 /* 308 * For changing security info in file_remove_privs() we need i_rwsem 309 * exclusively. 310 */ 311 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 312 xfs_iunlock(ip, *iolock); 313 *iolock = XFS_IOLOCK_EXCL; 314 xfs_ilock(ip, *iolock); 315 goto restart; 316 } 317 /* 318 * If the offset is beyond the size of the file, we need to zero any 319 * blocks that fall between the existing EOF and the start of this 320 * write. If zeroing is needed and we are currently holding the 321 * iolock shared, we need to update it to exclusive which implies 322 * having to redo all checks before. 323 * 324 * We need to serialise against EOF updates that occur in IO 325 * completions here. We want to make sure that nobody is changing the 326 * size while we do this check until we have placed an IO barrier (i.e. 327 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. 328 * The spinlock effectively forms a memory barrier once we have the 329 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value 330 * and hence be able to correctly determine if we need to run zeroing. 331 */ 332 spin_lock(&ip->i_flags_lock); 333 isize = i_size_read(inode); 334 if (iocb->ki_pos > isize) { 335 spin_unlock(&ip->i_flags_lock); 336 if (!drained_dio) { 337 if (*iolock == XFS_IOLOCK_SHARED) { 338 xfs_iunlock(ip, *iolock); 339 *iolock = XFS_IOLOCK_EXCL; 340 xfs_ilock(ip, *iolock); 341 iov_iter_reexpand(from, count); 342 } 343 /* 344 * We now have an IO submission barrier in place, but 345 * AIO can do EOF updates during IO completion and hence 346 * we now need to wait for all of them to drain. Non-AIO 347 * DIO will have drained before we are given the 348 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 349 * no-op. 350 */ 351 inode_dio_wait(inode); 352 drained_dio = true; 353 goto restart; 354 } 355 356 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize); 357 error = iomap_zero_range(inode, isize, iocb->ki_pos - isize, 358 NULL, &xfs_iomap_ops); 359 if (error) 360 return error; 361 } else 362 spin_unlock(&ip->i_flags_lock); 363 364 /* 365 * Updating the timestamps will grab the ilock again from 366 * xfs_fs_dirty_inode, so we have to call it after dropping the 367 * lock above. Eventually we should look into a way to avoid 368 * the pointless lock roundtrip. 369 */ 370 if (likely(!(file->f_mode & FMODE_NOCMTIME))) { 371 error = file_update_time(file); 372 if (error) 373 return error; 374 } 375 376 /* 377 * If we're writing the file then make sure to clear the setuid and 378 * setgid bits if the process is not being run by root. This keeps 379 * people from modifying setuid and setgid binaries. 380 */ 381 if (!IS_NOSEC(inode)) 382 return file_remove_privs(file); 383 return 0; 384 } 385 386 static int 387 xfs_dio_write_end_io( 388 struct kiocb *iocb, 389 ssize_t size, 390 unsigned flags) 391 { 392 struct inode *inode = file_inode(iocb->ki_filp); 393 struct xfs_inode *ip = XFS_I(inode); 394 loff_t offset = iocb->ki_pos; 395 int error = 0; 396 397 trace_xfs_end_io_direct_write(ip, offset, size); 398 399 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 400 return -EIO; 401 402 if (size <= 0) 403 return size; 404 405 /* 406 * Capture amount written on completion as we can't reliably account 407 * for it on submission. 408 */ 409 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size); 410 411 if (flags & IOMAP_DIO_COW) { 412 error = xfs_reflink_end_cow(ip, offset, size); 413 if (error) 414 return error; 415 } 416 417 /* 418 * Unwritten conversion updates the in-core isize after extent 419 * conversion but before updating the on-disk size. Updating isize any 420 * earlier allows a racing dio read to find unwritten extents before 421 * they are converted. 422 */ 423 if (flags & IOMAP_DIO_UNWRITTEN) 424 return xfs_iomap_write_unwritten(ip, offset, size, true); 425 426 /* 427 * We need to update the in-core inode size here so that we don't end up 428 * with the on-disk inode size being outside the in-core inode size. We 429 * have no other method of updating EOF for AIO, so always do it here 430 * if necessary. 431 * 432 * We need to lock the test/set EOF update as we can be racing with 433 * other IO completions here to update the EOF. Failing to serialise 434 * here can result in EOF moving backwards and Bad Things Happen when 435 * that occurs. 436 */ 437 spin_lock(&ip->i_flags_lock); 438 if (offset + size > i_size_read(inode)) { 439 i_size_write(inode, offset + size); 440 spin_unlock(&ip->i_flags_lock); 441 error = xfs_setfilesize(ip, offset, size); 442 } else { 443 spin_unlock(&ip->i_flags_lock); 444 } 445 446 return error; 447 } 448 449 /* 450 * xfs_file_dio_aio_write - handle direct IO writes 451 * 452 * Lock the inode appropriately to prepare for and issue a direct IO write. 453 * By separating it from the buffered write path we remove all the tricky to 454 * follow locking changes and looping. 455 * 456 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 457 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 458 * pages are flushed out. 459 * 460 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 461 * allowing them to be done in parallel with reads and other direct IO writes. 462 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 463 * needs to do sub-block zeroing and that requires serialisation against other 464 * direct IOs to the same block. In this case we need to serialise the 465 * submission of the unaligned IOs so that we don't get racing block zeroing in 466 * the dio layer. To avoid the problem with aio, we also need to wait for 467 * outstanding IOs to complete so that unwritten extent conversion is completed 468 * before we try to map the overlapping block. This is currently implemented by 469 * hitting it with a big hammer (i.e. inode_dio_wait()). 470 * 471 * Returns with locks held indicated by @iolock and errors indicated by 472 * negative return values. 473 */ 474 STATIC ssize_t 475 xfs_file_dio_aio_write( 476 struct kiocb *iocb, 477 struct iov_iter *from) 478 { 479 struct file *file = iocb->ki_filp; 480 struct address_space *mapping = file->f_mapping; 481 struct inode *inode = mapping->host; 482 struct xfs_inode *ip = XFS_I(inode); 483 struct xfs_mount *mp = ip->i_mount; 484 ssize_t ret = 0; 485 int unaligned_io = 0; 486 int iolock; 487 size_t count = iov_iter_count(from); 488 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 489 mp->m_rtdev_targp : mp->m_ddev_targp; 490 491 /* DIO must be aligned to device logical sector size */ 492 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) 493 return -EINVAL; 494 495 /* 496 * Don't take the exclusive iolock here unless the I/O is unaligned to 497 * the file system block size. We don't need to consider the EOF 498 * extension case here because xfs_file_aio_write_checks() will relock 499 * the inode as necessary for EOF zeroing cases and fill out the new 500 * inode size as appropriate. 501 */ 502 if ((iocb->ki_pos & mp->m_blockmask) || 503 ((iocb->ki_pos + count) & mp->m_blockmask)) { 504 unaligned_io = 1; 505 506 /* 507 * We can't properly handle unaligned direct I/O to reflink 508 * files yet, as we can't unshare a partial block. 509 */ 510 if (xfs_is_cow_inode(ip)) { 511 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count); 512 return -EREMCHG; 513 } 514 iolock = XFS_IOLOCK_EXCL; 515 } else { 516 iolock = XFS_IOLOCK_SHARED; 517 } 518 519 if (iocb->ki_flags & IOCB_NOWAIT) { 520 if (!xfs_ilock_nowait(ip, iolock)) 521 return -EAGAIN; 522 } else { 523 xfs_ilock(ip, iolock); 524 } 525 526 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 527 if (ret) 528 goto out; 529 count = iov_iter_count(from); 530 531 /* 532 * If we are doing unaligned IO, we can't allow any other overlapping IO 533 * in-flight at the same time or we risk data corruption. Wait for all 534 * other IO to drain before we submit. If the IO is aligned, demote the 535 * iolock if we had to take the exclusive lock in 536 * xfs_file_aio_write_checks() for other reasons. 537 */ 538 if (unaligned_io) { 539 /* unaligned dio always waits, bail */ 540 if (iocb->ki_flags & IOCB_NOWAIT) 541 return -EAGAIN; 542 inode_dio_wait(inode); 543 } else if (iolock == XFS_IOLOCK_EXCL) { 544 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); 545 iolock = XFS_IOLOCK_SHARED; 546 } 547 548 trace_xfs_file_direct_write(ip, count, iocb->ki_pos); 549 ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io); 550 551 /* 552 * If unaligned, this is the only IO in-flight. If it has not yet 553 * completed, wait on it before we release the iolock to prevent 554 * subsequent overlapping IO. 555 */ 556 if (ret == -EIOCBQUEUED && unaligned_io) 557 inode_dio_wait(inode); 558 out: 559 xfs_iunlock(ip, iolock); 560 561 /* 562 * No fallback to buffered IO on errors for XFS, direct IO will either 563 * complete fully or fail. 564 */ 565 ASSERT(ret < 0 || ret == count); 566 return ret; 567 } 568 569 static noinline ssize_t 570 xfs_file_dax_write( 571 struct kiocb *iocb, 572 struct iov_iter *from) 573 { 574 struct inode *inode = iocb->ki_filp->f_mapping->host; 575 struct xfs_inode *ip = XFS_I(inode); 576 int iolock = XFS_IOLOCK_EXCL; 577 ssize_t ret, error = 0; 578 size_t count; 579 loff_t pos; 580 581 if (iocb->ki_flags & IOCB_NOWAIT) { 582 if (!xfs_ilock_nowait(ip, iolock)) 583 return -EAGAIN; 584 } else { 585 xfs_ilock(ip, iolock); 586 } 587 588 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 589 if (ret) 590 goto out; 591 592 pos = iocb->ki_pos; 593 count = iov_iter_count(from); 594 595 trace_xfs_file_dax_write(ip, count, pos); 596 ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops); 597 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { 598 i_size_write(inode, iocb->ki_pos); 599 error = xfs_setfilesize(ip, pos, ret); 600 } 601 out: 602 xfs_iunlock(ip, iolock); 603 if (error) 604 return error; 605 606 if (ret > 0) { 607 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 608 609 /* Handle various SYNC-type writes */ 610 ret = generic_write_sync(iocb, ret); 611 } 612 return ret; 613 } 614 615 STATIC ssize_t 616 xfs_file_buffered_aio_write( 617 struct kiocb *iocb, 618 struct iov_iter *from) 619 { 620 struct file *file = iocb->ki_filp; 621 struct address_space *mapping = file->f_mapping; 622 struct inode *inode = mapping->host; 623 struct xfs_inode *ip = XFS_I(inode); 624 ssize_t ret; 625 int enospc = 0; 626 int iolock; 627 628 if (iocb->ki_flags & IOCB_NOWAIT) 629 return -EOPNOTSUPP; 630 631 write_retry: 632 iolock = XFS_IOLOCK_EXCL; 633 xfs_ilock(ip, iolock); 634 635 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 636 if (ret) 637 goto out; 638 639 /* We can write back this queue in page reclaim */ 640 current->backing_dev_info = inode_to_bdi(inode); 641 642 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos); 643 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops); 644 if (likely(ret >= 0)) 645 iocb->ki_pos += ret; 646 647 /* 648 * If we hit a space limit, try to free up some lingering preallocated 649 * space before returning an error. In the case of ENOSPC, first try to 650 * write back all dirty inodes to free up some of the excess reserved 651 * metadata space. This reduces the chances that the eofblocks scan 652 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 653 * also behaves as a filter to prevent too many eofblocks scans from 654 * running at the same time. 655 */ 656 if (ret == -EDQUOT && !enospc) { 657 xfs_iunlock(ip, iolock); 658 enospc = xfs_inode_free_quota_eofblocks(ip); 659 if (enospc) 660 goto write_retry; 661 enospc = xfs_inode_free_quota_cowblocks(ip); 662 if (enospc) 663 goto write_retry; 664 iolock = 0; 665 } else if (ret == -ENOSPC && !enospc) { 666 struct xfs_eofblocks eofb = {0}; 667 668 enospc = 1; 669 xfs_flush_inodes(ip->i_mount); 670 671 xfs_iunlock(ip, iolock); 672 eofb.eof_flags = XFS_EOF_FLAGS_SYNC; 673 xfs_icache_free_eofblocks(ip->i_mount, &eofb); 674 xfs_icache_free_cowblocks(ip->i_mount, &eofb); 675 goto write_retry; 676 } 677 678 current->backing_dev_info = NULL; 679 out: 680 if (iolock) 681 xfs_iunlock(ip, iolock); 682 683 if (ret > 0) { 684 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 685 /* Handle various SYNC-type writes */ 686 ret = generic_write_sync(iocb, ret); 687 } 688 return ret; 689 } 690 691 STATIC ssize_t 692 xfs_file_write_iter( 693 struct kiocb *iocb, 694 struct iov_iter *from) 695 { 696 struct file *file = iocb->ki_filp; 697 struct address_space *mapping = file->f_mapping; 698 struct inode *inode = mapping->host; 699 struct xfs_inode *ip = XFS_I(inode); 700 ssize_t ret; 701 size_t ocount = iov_iter_count(from); 702 703 XFS_STATS_INC(ip->i_mount, xs_write_calls); 704 705 if (ocount == 0) 706 return 0; 707 708 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 709 return -EIO; 710 711 if (IS_DAX(inode)) 712 return xfs_file_dax_write(iocb, from); 713 714 if (iocb->ki_flags & IOCB_DIRECT) { 715 /* 716 * Allow a directio write to fall back to a buffered 717 * write *only* in the case that we're doing a reflink 718 * CoW. In all other directio scenarios we do not 719 * allow an operation to fall back to buffered mode. 720 */ 721 ret = xfs_file_dio_aio_write(iocb, from); 722 if (ret != -EREMCHG) 723 return ret; 724 } 725 726 return xfs_file_buffered_aio_write(iocb, from); 727 } 728 729 static void 730 xfs_wait_dax_page( 731 struct inode *inode) 732 { 733 struct xfs_inode *ip = XFS_I(inode); 734 735 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 736 schedule(); 737 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 738 } 739 740 static int 741 xfs_break_dax_layouts( 742 struct inode *inode, 743 bool *retry) 744 { 745 struct page *page; 746 747 ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL)); 748 749 page = dax_layout_busy_page(inode->i_mapping); 750 if (!page) 751 return 0; 752 753 *retry = true; 754 return ___wait_var_event(&page->_refcount, 755 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE, 756 0, 0, xfs_wait_dax_page(inode)); 757 } 758 759 int 760 xfs_break_layouts( 761 struct inode *inode, 762 uint *iolock, 763 enum layout_break_reason reason) 764 { 765 bool retry; 766 int error; 767 768 ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)); 769 770 do { 771 retry = false; 772 switch (reason) { 773 case BREAK_UNMAP: 774 error = xfs_break_dax_layouts(inode, &retry); 775 if (error || retry) 776 break; 777 /* fall through */ 778 case BREAK_WRITE: 779 error = xfs_break_leased_layouts(inode, iolock, &retry); 780 break; 781 default: 782 WARN_ON_ONCE(1); 783 error = -EINVAL; 784 } 785 } while (error == 0 && retry); 786 787 return error; 788 } 789 790 #define XFS_FALLOC_FL_SUPPORTED \ 791 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 792 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 793 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) 794 795 STATIC long 796 xfs_file_fallocate( 797 struct file *file, 798 int mode, 799 loff_t offset, 800 loff_t len) 801 { 802 struct inode *inode = file_inode(file); 803 struct xfs_inode *ip = XFS_I(inode); 804 long error; 805 enum xfs_prealloc_flags flags = 0; 806 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; 807 loff_t new_size = 0; 808 bool do_file_insert = false; 809 810 if (!S_ISREG(inode->i_mode)) 811 return -EINVAL; 812 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 813 return -EOPNOTSUPP; 814 815 xfs_ilock(ip, iolock); 816 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP); 817 if (error) 818 goto out_unlock; 819 820 if (mode & FALLOC_FL_PUNCH_HOLE) { 821 error = xfs_free_file_space(ip, offset, len); 822 if (error) 823 goto out_unlock; 824 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 825 unsigned int blksize_mask = i_blocksize(inode) - 1; 826 827 if (offset & blksize_mask || len & blksize_mask) { 828 error = -EINVAL; 829 goto out_unlock; 830 } 831 832 /* 833 * There is no need to overlap collapse range with EOF, 834 * in which case it is effectively a truncate operation 835 */ 836 if (offset + len >= i_size_read(inode)) { 837 error = -EINVAL; 838 goto out_unlock; 839 } 840 841 new_size = i_size_read(inode) - len; 842 843 error = xfs_collapse_file_space(ip, offset, len); 844 if (error) 845 goto out_unlock; 846 } else if (mode & FALLOC_FL_INSERT_RANGE) { 847 unsigned int blksize_mask = i_blocksize(inode) - 1; 848 loff_t isize = i_size_read(inode); 849 850 if (offset & blksize_mask || len & blksize_mask) { 851 error = -EINVAL; 852 goto out_unlock; 853 } 854 855 /* 856 * New inode size must not exceed ->s_maxbytes, accounting for 857 * possible signed overflow. 858 */ 859 if (inode->i_sb->s_maxbytes - isize < len) { 860 error = -EFBIG; 861 goto out_unlock; 862 } 863 new_size = isize + len; 864 865 /* Offset should be less than i_size */ 866 if (offset >= isize) { 867 error = -EINVAL; 868 goto out_unlock; 869 } 870 do_file_insert = true; 871 } else { 872 flags |= XFS_PREALLOC_SET; 873 874 if (!(mode & FALLOC_FL_KEEP_SIZE) && 875 offset + len > i_size_read(inode)) { 876 new_size = offset + len; 877 error = inode_newsize_ok(inode, new_size); 878 if (error) 879 goto out_unlock; 880 } 881 882 if (mode & FALLOC_FL_ZERO_RANGE) { 883 error = xfs_zero_file_space(ip, offset, len); 884 } else if (mode & FALLOC_FL_UNSHARE_RANGE) { 885 error = xfs_reflink_unshare(ip, offset, len); 886 if (error) 887 goto out_unlock; 888 889 if (!xfs_is_always_cow_inode(ip)) { 890 error = xfs_alloc_file_space(ip, offset, len, 891 XFS_BMAPI_PREALLOC); 892 } 893 } else { 894 /* 895 * If always_cow mode we can't use preallocations and 896 * thus should not create them. 897 */ 898 if (xfs_is_always_cow_inode(ip)) { 899 error = -EOPNOTSUPP; 900 goto out_unlock; 901 } 902 903 error = xfs_alloc_file_space(ip, offset, len, 904 XFS_BMAPI_PREALLOC); 905 } 906 if (error) 907 goto out_unlock; 908 } 909 910 if (file->f_flags & O_DSYNC) 911 flags |= XFS_PREALLOC_SYNC; 912 913 error = xfs_update_prealloc_flags(ip, flags); 914 if (error) 915 goto out_unlock; 916 917 /* Change file size if needed */ 918 if (new_size) { 919 struct iattr iattr; 920 921 iattr.ia_valid = ATTR_SIZE; 922 iattr.ia_size = new_size; 923 error = xfs_vn_setattr_size(file_dentry(file), &iattr); 924 if (error) 925 goto out_unlock; 926 } 927 928 /* 929 * Perform hole insertion now that the file size has been 930 * updated so that if we crash during the operation we don't 931 * leave shifted extents past EOF and hence losing access to 932 * the data that is contained within them. 933 */ 934 if (do_file_insert) 935 error = xfs_insert_file_space(ip, offset, len); 936 937 out_unlock: 938 xfs_iunlock(ip, iolock); 939 return error; 940 } 941 942 943 STATIC loff_t 944 xfs_file_remap_range( 945 struct file *file_in, 946 loff_t pos_in, 947 struct file *file_out, 948 loff_t pos_out, 949 loff_t len, 950 unsigned int remap_flags) 951 { 952 struct inode *inode_in = file_inode(file_in); 953 struct xfs_inode *src = XFS_I(inode_in); 954 struct inode *inode_out = file_inode(file_out); 955 struct xfs_inode *dest = XFS_I(inode_out); 956 struct xfs_mount *mp = src->i_mount; 957 loff_t remapped = 0; 958 xfs_extlen_t cowextsize; 959 int ret; 960 961 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 962 return -EINVAL; 963 964 if (!xfs_sb_version_hasreflink(&mp->m_sb)) 965 return -EOPNOTSUPP; 966 967 if (XFS_FORCED_SHUTDOWN(mp)) 968 return -EIO; 969 970 /* Prepare and then clone file data. */ 971 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out, 972 &len, remap_flags); 973 if (ret < 0 || len == 0) 974 return ret; 975 976 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out); 977 978 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len, 979 &remapped); 980 if (ret) 981 goto out_unlock; 982 983 /* 984 * Carry the cowextsize hint from src to dest if we're sharing the 985 * entire source file to the entire destination file, the source file 986 * has a cowextsize hint, and the destination file does not. 987 */ 988 cowextsize = 0; 989 if (pos_in == 0 && len == i_size_read(inode_in) && 990 (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) && 991 pos_out == 0 && len >= i_size_read(inode_out) && 992 !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)) 993 cowextsize = src->i_d.di_cowextsize; 994 995 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize, 996 remap_flags); 997 998 out_unlock: 999 xfs_reflink_remap_unlock(file_in, file_out); 1000 if (ret) 1001 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_); 1002 return remapped > 0 ? remapped : ret; 1003 } 1004 1005 STATIC int 1006 xfs_file_open( 1007 struct inode *inode, 1008 struct file *file) 1009 { 1010 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 1011 return -EFBIG; 1012 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 1013 return -EIO; 1014 file->f_mode |= FMODE_NOWAIT; 1015 return 0; 1016 } 1017 1018 STATIC int 1019 xfs_dir_open( 1020 struct inode *inode, 1021 struct file *file) 1022 { 1023 struct xfs_inode *ip = XFS_I(inode); 1024 int mode; 1025 int error; 1026 1027 error = xfs_file_open(inode, file); 1028 if (error) 1029 return error; 1030 1031 /* 1032 * If there are any blocks, read-ahead block 0 as we're almost 1033 * certain to have the next operation be a read there. 1034 */ 1035 mode = xfs_ilock_data_map_shared(ip); 1036 if (ip->i_d.di_nextents > 0) 1037 error = xfs_dir3_data_readahead(ip, 0, -1); 1038 xfs_iunlock(ip, mode); 1039 return error; 1040 } 1041 1042 STATIC int 1043 xfs_file_release( 1044 struct inode *inode, 1045 struct file *filp) 1046 { 1047 return xfs_release(XFS_I(inode)); 1048 } 1049 1050 STATIC int 1051 xfs_file_readdir( 1052 struct file *file, 1053 struct dir_context *ctx) 1054 { 1055 struct inode *inode = file_inode(file); 1056 xfs_inode_t *ip = XFS_I(inode); 1057 size_t bufsize; 1058 1059 /* 1060 * The Linux API doesn't pass down the total size of the buffer 1061 * we read into down to the filesystem. With the filldir concept 1062 * it's not needed for correct information, but the XFS dir2 leaf 1063 * code wants an estimate of the buffer size to calculate it's 1064 * readahead window and size the buffers used for mapping to 1065 * physical blocks. 1066 * 1067 * Try to give it an estimate that's good enough, maybe at some 1068 * point we can change the ->readdir prototype to include the 1069 * buffer size. For now we use the current glibc buffer size. 1070 */ 1071 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size); 1072 1073 return xfs_readdir(NULL, ip, ctx, bufsize); 1074 } 1075 1076 STATIC loff_t 1077 xfs_file_llseek( 1078 struct file *file, 1079 loff_t offset, 1080 int whence) 1081 { 1082 struct inode *inode = file->f_mapping->host; 1083 1084 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount)) 1085 return -EIO; 1086 1087 switch (whence) { 1088 default: 1089 return generic_file_llseek(file, offset, whence); 1090 case SEEK_HOLE: 1091 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops); 1092 break; 1093 case SEEK_DATA: 1094 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops); 1095 break; 1096 } 1097 1098 if (offset < 0) 1099 return offset; 1100 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1101 } 1102 1103 /* 1104 * Locking for serialisation of IO during page faults. This results in a lock 1105 * ordering of: 1106 * 1107 * mmap_sem (MM) 1108 * sb_start_pagefault(vfs, freeze) 1109 * i_mmaplock (XFS - truncate serialisation) 1110 * page_lock (MM) 1111 * i_lock (XFS - extent map serialisation) 1112 */ 1113 static vm_fault_t 1114 __xfs_filemap_fault( 1115 struct vm_fault *vmf, 1116 enum page_entry_size pe_size, 1117 bool write_fault) 1118 { 1119 struct inode *inode = file_inode(vmf->vma->vm_file); 1120 struct xfs_inode *ip = XFS_I(inode); 1121 vm_fault_t ret; 1122 1123 trace_xfs_filemap_fault(ip, pe_size, write_fault); 1124 1125 if (write_fault) { 1126 sb_start_pagefault(inode->i_sb); 1127 file_update_time(vmf->vma->vm_file); 1128 } 1129 1130 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1131 if (IS_DAX(inode)) { 1132 pfn_t pfn; 1133 1134 ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops); 1135 if (ret & VM_FAULT_NEEDDSYNC) 1136 ret = dax_finish_sync_fault(vmf, pe_size, pfn); 1137 } else { 1138 if (write_fault) 1139 ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops); 1140 else 1141 ret = filemap_fault(vmf); 1142 } 1143 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1144 1145 if (write_fault) 1146 sb_end_pagefault(inode->i_sb); 1147 return ret; 1148 } 1149 1150 static vm_fault_t 1151 xfs_filemap_fault( 1152 struct vm_fault *vmf) 1153 { 1154 /* DAX can shortcut the normal fault path on write faults! */ 1155 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, 1156 IS_DAX(file_inode(vmf->vma->vm_file)) && 1157 (vmf->flags & FAULT_FLAG_WRITE)); 1158 } 1159 1160 static vm_fault_t 1161 xfs_filemap_huge_fault( 1162 struct vm_fault *vmf, 1163 enum page_entry_size pe_size) 1164 { 1165 if (!IS_DAX(file_inode(vmf->vma->vm_file))) 1166 return VM_FAULT_FALLBACK; 1167 1168 /* DAX can shortcut the normal fault path on write faults! */ 1169 return __xfs_filemap_fault(vmf, pe_size, 1170 (vmf->flags & FAULT_FLAG_WRITE)); 1171 } 1172 1173 static vm_fault_t 1174 xfs_filemap_page_mkwrite( 1175 struct vm_fault *vmf) 1176 { 1177 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1178 } 1179 1180 /* 1181 * pfn_mkwrite was originally intended to ensure we capture time stamp updates 1182 * on write faults. In reality, it needs to serialise against truncate and 1183 * prepare memory for writing so handle is as standard write fault. 1184 */ 1185 static vm_fault_t 1186 xfs_filemap_pfn_mkwrite( 1187 struct vm_fault *vmf) 1188 { 1189 1190 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1191 } 1192 1193 static const struct vm_operations_struct xfs_file_vm_ops = { 1194 .fault = xfs_filemap_fault, 1195 .huge_fault = xfs_filemap_huge_fault, 1196 .map_pages = filemap_map_pages, 1197 .page_mkwrite = xfs_filemap_page_mkwrite, 1198 .pfn_mkwrite = xfs_filemap_pfn_mkwrite, 1199 }; 1200 1201 STATIC int 1202 xfs_file_mmap( 1203 struct file *filp, 1204 struct vm_area_struct *vma) 1205 { 1206 /* 1207 * We don't support synchronous mappings for non-DAX files. At least 1208 * until someone comes with a sensible use case. 1209 */ 1210 if (!IS_DAX(file_inode(filp)) && (vma->vm_flags & VM_SYNC)) 1211 return -EOPNOTSUPP; 1212 1213 file_accessed(filp); 1214 vma->vm_ops = &xfs_file_vm_ops; 1215 if (IS_DAX(file_inode(filp))) 1216 vma->vm_flags |= VM_HUGEPAGE; 1217 return 0; 1218 } 1219 1220 const struct file_operations xfs_file_operations = { 1221 .llseek = xfs_file_llseek, 1222 .read_iter = xfs_file_read_iter, 1223 .write_iter = xfs_file_write_iter, 1224 .splice_read = generic_file_splice_read, 1225 .splice_write = iter_file_splice_write, 1226 .iopoll = iomap_dio_iopoll, 1227 .unlocked_ioctl = xfs_file_ioctl, 1228 #ifdef CONFIG_COMPAT 1229 .compat_ioctl = xfs_file_compat_ioctl, 1230 #endif 1231 .mmap = xfs_file_mmap, 1232 .mmap_supported_flags = MAP_SYNC, 1233 .open = xfs_file_open, 1234 .release = xfs_file_release, 1235 .fsync = xfs_file_fsync, 1236 .get_unmapped_area = thp_get_unmapped_area, 1237 .fallocate = xfs_file_fallocate, 1238 .remap_file_range = xfs_file_remap_range, 1239 }; 1240 1241 const struct file_operations xfs_dir_file_operations = { 1242 .open = xfs_dir_open, 1243 .read = generic_read_dir, 1244 .iterate_shared = xfs_file_readdir, 1245 .llseek = generic_file_llseek, 1246 .unlocked_ioctl = xfs_file_ioctl, 1247 #ifdef CONFIG_COMPAT 1248 .compat_ioctl = xfs_file_compat_ioctl, 1249 #endif 1250 .fsync = xfs_dir_fsync, 1251 }; 1252