1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_da_format.h" 14 #include "xfs_da_btree.h" 15 #include "xfs_inode.h" 16 #include "xfs_trans.h" 17 #include "xfs_inode_item.h" 18 #include "xfs_bmap.h" 19 #include "xfs_bmap_util.h" 20 #include "xfs_error.h" 21 #include "xfs_dir2.h" 22 #include "xfs_dir2_priv.h" 23 #include "xfs_ioctl.h" 24 #include "xfs_trace.h" 25 #include "xfs_log.h" 26 #include "xfs_icache.h" 27 #include "xfs_pnfs.h" 28 #include "xfs_iomap.h" 29 #include "xfs_reflink.h" 30 31 #include <linux/dcache.h> 32 #include <linux/falloc.h> 33 #include <linux/pagevec.h> 34 #include <linux/backing-dev.h> 35 #include <linux/mman.h> 36 37 static const struct vm_operations_struct xfs_file_vm_ops; 38 39 int 40 xfs_update_prealloc_flags( 41 struct xfs_inode *ip, 42 enum xfs_prealloc_flags flags) 43 { 44 struct xfs_trans *tp; 45 int error; 46 47 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid, 48 0, 0, 0, &tp); 49 if (error) 50 return error; 51 52 xfs_ilock(ip, XFS_ILOCK_EXCL); 53 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 54 55 if (!(flags & XFS_PREALLOC_INVISIBLE)) { 56 VFS_I(ip)->i_mode &= ~S_ISUID; 57 if (VFS_I(ip)->i_mode & S_IXGRP) 58 VFS_I(ip)->i_mode &= ~S_ISGID; 59 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 60 } 61 62 if (flags & XFS_PREALLOC_SET) 63 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 64 if (flags & XFS_PREALLOC_CLEAR) 65 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; 66 67 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 68 if (flags & XFS_PREALLOC_SYNC) 69 xfs_trans_set_sync(tp); 70 return xfs_trans_commit(tp); 71 } 72 73 /* 74 * Fsync operations on directories are much simpler than on regular files, 75 * as there is no file data to flush, and thus also no need for explicit 76 * cache flush operations, and there are no non-transaction metadata updates 77 * on directories either. 78 */ 79 STATIC int 80 xfs_dir_fsync( 81 struct file *file, 82 loff_t start, 83 loff_t end, 84 int datasync) 85 { 86 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 87 struct xfs_mount *mp = ip->i_mount; 88 xfs_lsn_t lsn = 0; 89 90 trace_xfs_dir_fsync(ip); 91 92 xfs_ilock(ip, XFS_ILOCK_SHARED); 93 if (xfs_ipincount(ip)) 94 lsn = ip->i_itemp->ili_last_lsn; 95 xfs_iunlock(ip, XFS_ILOCK_SHARED); 96 97 if (!lsn) 98 return 0; 99 return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 100 } 101 102 STATIC int 103 xfs_file_fsync( 104 struct file *file, 105 loff_t start, 106 loff_t end, 107 int datasync) 108 { 109 struct inode *inode = file->f_mapping->host; 110 struct xfs_inode *ip = XFS_I(inode); 111 struct xfs_mount *mp = ip->i_mount; 112 int error = 0; 113 int log_flushed = 0; 114 xfs_lsn_t lsn = 0; 115 116 trace_xfs_file_fsync(ip); 117 118 error = file_write_and_wait_range(file, start, end); 119 if (error) 120 return error; 121 122 if (XFS_FORCED_SHUTDOWN(mp)) 123 return -EIO; 124 125 xfs_iflags_clear(ip, XFS_ITRUNCATED); 126 127 /* 128 * If we have an RT and/or log subvolume we need to make sure to flush 129 * the write cache the device used for file data first. This is to 130 * ensure newly written file data make it to disk before logging the new 131 * inode size in case of an extending write. 132 */ 133 if (XFS_IS_REALTIME_INODE(ip)) 134 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 135 else if (mp->m_logdev_targp != mp->m_ddev_targp) 136 xfs_blkdev_issue_flush(mp->m_ddev_targp); 137 138 /* 139 * All metadata updates are logged, which means that we just have to 140 * flush the log up to the latest LSN that touched the inode. If we have 141 * concurrent fsync/fdatasync() calls, we need them to all block on the 142 * log force before we clear the ili_fsync_fields field. This ensures 143 * that we don't get a racing sync operation that does not wait for the 144 * metadata to hit the journal before returning. If we race with 145 * clearing the ili_fsync_fields, then all that will happen is the log 146 * force will do nothing as the lsn will already be on disk. We can't 147 * race with setting ili_fsync_fields because that is done under 148 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared 149 * until after the ili_fsync_fields is cleared. 150 */ 151 xfs_ilock(ip, XFS_ILOCK_SHARED); 152 if (xfs_ipincount(ip)) { 153 if (!datasync || 154 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 155 lsn = ip->i_itemp->ili_last_lsn; 156 } 157 158 if (lsn) { 159 error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 160 ip->i_itemp->ili_fsync_fields = 0; 161 } 162 xfs_iunlock(ip, XFS_ILOCK_SHARED); 163 164 /* 165 * If we only have a single device, and the log force about was 166 * a no-op we might have to flush the data device cache here. 167 * This can only happen for fdatasync/O_DSYNC if we were overwriting 168 * an already allocated file and thus do not have any metadata to 169 * commit. 170 */ 171 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && 172 mp->m_logdev_targp == mp->m_ddev_targp) 173 xfs_blkdev_issue_flush(mp->m_ddev_targp); 174 175 return error; 176 } 177 178 STATIC ssize_t 179 xfs_file_dio_aio_read( 180 struct kiocb *iocb, 181 struct iov_iter *to) 182 { 183 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 184 size_t count = iov_iter_count(to); 185 ssize_t ret; 186 187 trace_xfs_file_direct_read(ip, count, iocb->ki_pos); 188 189 if (!count) 190 return 0; /* skip atime */ 191 192 file_accessed(iocb->ki_filp); 193 194 xfs_ilock(ip, XFS_IOLOCK_SHARED); 195 ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL); 196 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 197 198 return ret; 199 } 200 201 static noinline ssize_t 202 xfs_file_dax_read( 203 struct kiocb *iocb, 204 struct iov_iter *to) 205 { 206 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); 207 size_t count = iov_iter_count(to); 208 ssize_t ret = 0; 209 210 trace_xfs_file_dax_read(ip, count, iocb->ki_pos); 211 212 if (!count) 213 return 0; /* skip atime */ 214 215 if (iocb->ki_flags & IOCB_NOWAIT) { 216 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) 217 return -EAGAIN; 218 } else { 219 xfs_ilock(ip, XFS_IOLOCK_SHARED); 220 } 221 222 ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops); 223 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 224 225 file_accessed(iocb->ki_filp); 226 return ret; 227 } 228 229 STATIC ssize_t 230 xfs_file_buffered_aio_read( 231 struct kiocb *iocb, 232 struct iov_iter *to) 233 { 234 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); 235 ssize_t ret; 236 237 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos); 238 239 if (iocb->ki_flags & IOCB_NOWAIT) { 240 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) 241 return -EAGAIN; 242 } else { 243 xfs_ilock(ip, XFS_IOLOCK_SHARED); 244 } 245 ret = generic_file_read_iter(iocb, to); 246 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 247 248 return ret; 249 } 250 251 STATIC ssize_t 252 xfs_file_read_iter( 253 struct kiocb *iocb, 254 struct iov_iter *to) 255 { 256 struct inode *inode = file_inode(iocb->ki_filp); 257 struct xfs_mount *mp = XFS_I(inode)->i_mount; 258 ssize_t ret = 0; 259 260 XFS_STATS_INC(mp, xs_read_calls); 261 262 if (XFS_FORCED_SHUTDOWN(mp)) 263 return -EIO; 264 265 if (IS_DAX(inode)) 266 ret = xfs_file_dax_read(iocb, to); 267 else if (iocb->ki_flags & IOCB_DIRECT) 268 ret = xfs_file_dio_aio_read(iocb, to); 269 else 270 ret = xfs_file_buffered_aio_read(iocb, to); 271 272 if (ret > 0) 273 XFS_STATS_ADD(mp, xs_read_bytes, ret); 274 return ret; 275 } 276 277 /* 278 * Common pre-write limit and setup checks. 279 * 280 * Called with the iolocked held either shared and exclusive according to 281 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 282 * if called for a direct write beyond i_size. 283 */ 284 STATIC ssize_t 285 xfs_file_aio_write_checks( 286 struct kiocb *iocb, 287 struct iov_iter *from, 288 int *iolock) 289 { 290 struct file *file = iocb->ki_filp; 291 struct inode *inode = file->f_mapping->host; 292 struct xfs_inode *ip = XFS_I(inode); 293 ssize_t error = 0; 294 size_t count = iov_iter_count(from); 295 bool drained_dio = false; 296 loff_t isize; 297 298 restart: 299 error = generic_write_checks(iocb, from); 300 if (error <= 0) 301 return error; 302 303 error = xfs_break_layouts(inode, iolock, BREAK_WRITE); 304 if (error) 305 return error; 306 307 /* 308 * For changing security info in file_remove_privs() we need i_rwsem 309 * exclusively. 310 */ 311 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 312 xfs_iunlock(ip, *iolock); 313 *iolock = XFS_IOLOCK_EXCL; 314 xfs_ilock(ip, *iolock); 315 goto restart; 316 } 317 /* 318 * If the offset is beyond the size of the file, we need to zero any 319 * blocks that fall between the existing EOF and the start of this 320 * write. If zeroing is needed and we are currently holding the 321 * iolock shared, we need to update it to exclusive which implies 322 * having to redo all checks before. 323 * 324 * We need to serialise against EOF updates that occur in IO 325 * completions here. We want to make sure that nobody is changing the 326 * size while we do this check until we have placed an IO barrier (i.e. 327 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. 328 * The spinlock effectively forms a memory barrier once we have the 329 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value 330 * and hence be able to correctly determine if we need to run zeroing. 331 */ 332 spin_lock(&ip->i_flags_lock); 333 isize = i_size_read(inode); 334 if (iocb->ki_pos > isize) { 335 spin_unlock(&ip->i_flags_lock); 336 if (!drained_dio) { 337 if (*iolock == XFS_IOLOCK_SHARED) { 338 xfs_iunlock(ip, *iolock); 339 *iolock = XFS_IOLOCK_EXCL; 340 xfs_ilock(ip, *iolock); 341 iov_iter_reexpand(from, count); 342 } 343 /* 344 * We now have an IO submission barrier in place, but 345 * AIO can do EOF updates during IO completion and hence 346 * we now need to wait for all of them to drain. Non-AIO 347 * DIO will have drained before we are given the 348 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 349 * no-op. 350 */ 351 inode_dio_wait(inode); 352 drained_dio = true; 353 goto restart; 354 } 355 356 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize); 357 error = iomap_zero_range(inode, isize, iocb->ki_pos - isize, 358 NULL, &xfs_iomap_ops); 359 if (error) 360 return error; 361 } else 362 spin_unlock(&ip->i_flags_lock); 363 364 /* 365 * Updating the timestamps will grab the ilock again from 366 * xfs_fs_dirty_inode, so we have to call it after dropping the 367 * lock above. Eventually we should look into a way to avoid 368 * the pointless lock roundtrip. 369 */ 370 if (likely(!(file->f_mode & FMODE_NOCMTIME))) { 371 error = file_update_time(file); 372 if (error) 373 return error; 374 } 375 376 /* 377 * If we're writing the file then make sure to clear the setuid and 378 * setgid bits if the process is not being run by root. This keeps 379 * people from modifying setuid and setgid binaries. 380 */ 381 if (!IS_NOSEC(inode)) 382 return file_remove_privs(file); 383 return 0; 384 } 385 386 static int 387 xfs_dio_write_end_io( 388 struct kiocb *iocb, 389 ssize_t size, 390 unsigned flags) 391 { 392 struct inode *inode = file_inode(iocb->ki_filp); 393 struct xfs_inode *ip = XFS_I(inode); 394 loff_t offset = iocb->ki_pos; 395 int error = 0; 396 397 trace_xfs_end_io_direct_write(ip, offset, size); 398 399 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 400 return -EIO; 401 402 if (size <= 0) 403 return size; 404 405 /* 406 * Capture amount written on completion as we can't reliably account 407 * for it on submission. 408 */ 409 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size); 410 411 if (flags & IOMAP_DIO_COW) { 412 error = xfs_reflink_end_cow(ip, offset, size); 413 if (error) 414 return error; 415 } 416 417 /* 418 * Unwritten conversion updates the in-core isize after extent 419 * conversion but before updating the on-disk size. Updating isize any 420 * earlier allows a racing dio read to find unwritten extents before 421 * they are converted. 422 */ 423 if (flags & IOMAP_DIO_UNWRITTEN) 424 return xfs_iomap_write_unwritten(ip, offset, size, true); 425 426 /* 427 * We need to update the in-core inode size here so that we don't end up 428 * with the on-disk inode size being outside the in-core inode size. We 429 * have no other method of updating EOF for AIO, so always do it here 430 * if necessary. 431 * 432 * We need to lock the test/set EOF update as we can be racing with 433 * other IO completions here to update the EOF. Failing to serialise 434 * here can result in EOF moving backwards and Bad Things Happen when 435 * that occurs. 436 */ 437 spin_lock(&ip->i_flags_lock); 438 if (offset + size > i_size_read(inode)) { 439 i_size_write(inode, offset + size); 440 spin_unlock(&ip->i_flags_lock); 441 error = xfs_setfilesize(ip, offset, size); 442 } else { 443 spin_unlock(&ip->i_flags_lock); 444 } 445 446 return error; 447 } 448 449 /* 450 * xfs_file_dio_aio_write - handle direct IO writes 451 * 452 * Lock the inode appropriately to prepare for and issue a direct IO write. 453 * By separating it from the buffered write path we remove all the tricky to 454 * follow locking changes and looping. 455 * 456 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 457 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 458 * pages are flushed out. 459 * 460 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 461 * allowing them to be done in parallel with reads and other direct IO writes. 462 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 463 * needs to do sub-block zeroing and that requires serialisation against other 464 * direct IOs to the same block. In this case we need to serialise the 465 * submission of the unaligned IOs so that we don't get racing block zeroing in 466 * the dio layer. To avoid the problem with aio, we also need to wait for 467 * outstanding IOs to complete so that unwritten extent conversion is completed 468 * before we try to map the overlapping block. This is currently implemented by 469 * hitting it with a big hammer (i.e. inode_dio_wait()). 470 * 471 * Returns with locks held indicated by @iolock and errors indicated by 472 * negative return values. 473 */ 474 STATIC ssize_t 475 xfs_file_dio_aio_write( 476 struct kiocb *iocb, 477 struct iov_iter *from) 478 { 479 struct file *file = iocb->ki_filp; 480 struct address_space *mapping = file->f_mapping; 481 struct inode *inode = mapping->host; 482 struct xfs_inode *ip = XFS_I(inode); 483 struct xfs_mount *mp = ip->i_mount; 484 ssize_t ret = 0; 485 int unaligned_io = 0; 486 int iolock; 487 size_t count = iov_iter_count(from); 488 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 489 mp->m_rtdev_targp : mp->m_ddev_targp; 490 491 /* DIO must be aligned to device logical sector size */ 492 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) 493 return -EINVAL; 494 495 /* 496 * Don't take the exclusive iolock here unless the I/O is unaligned to 497 * the file system block size. We don't need to consider the EOF 498 * extension case here because xfs_file_aio_write_checks() will relock 499 * the inode as necessary for EOF zeroing cases and fill out the new 500 * inode size as appropriate. 501 */ 502 if ((iocb->ki_pos & mp->m_blockmask) || 503 ((iocb->ki_pos + count) & mp->m_blockmask)) { 504 unaligned_io = 1; 505 506 /* 507 * We can't properly handle unaligned direct I/O to reflink 508 * files yet, as we can't unshare a partial block. 509 */ 510 if (xfs_is_reflink_inode(ip)) { 511 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count); 512 return -EREMCHG; 513 } 514 iolock = XFS_IOLOCK_EXCL; 515 } else { 516 iolock = XFS_IOLOCK_SHARED; 517 } 518 519 if (iocb->ki_flags & IOCB_NOWAIT) { 520 if (!xfs_ilock_nowait(ip, iolock)) 521 return -EAGAIN; 522 } else { 523 xfs_ilock(ip, iolock); 524 } 525 526 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 527 if (ret) 528 goto out; 529 count = iov_iter_count(from); 530 531 /* 532 * If we are doing unaligned IO, wait for all other IO to drain, 533 * otherwise demote the lock if we had to take the exclusive lock 534 * for other reasons in xfs_file_aio_write_checks. 535 */ 536 if (unaligned_io) { 537 /* If we are going to wait for other DIO to finish, bail */ 538 if (iocb->ki_flags & IOCB_NOWAIT) { 539 if (atomic_read(&inode->i_dio_count)) 540 return -EAGAIN; 541 } else { 542 inode_dio_wait(inode); 543 } 544 } else if (iolock == XFS_IOLOCK_EXCL) { 545 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); 546 iolock = XFS_IOLOCK_SHARED; 547 } 548 549 trace_xfs_file_direct_write(ip, count, iocb->ki_pos); 550 ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io); 551 out: 552 xfs_iunlock(ip, iolock); 553 554 /* 555 * No fallback to buffered IO on errors for XFS, direct IO will either 556 * complete fully or fail. 557 */ 558 ASSERT(ret < 0 || ret == count); 559 return ret; 560 } 561 562 static noinline ssize_t 563 xfs_file_dax_write( 564 struct kiocb *iocb, 565 struct iov_iter *from) 566 { 567 struct inode *inode = iocb->ki_filp->f_mapping->host; 568 struct xfs_inode *ip = XFS_I(inode); 569 int iolock = XFS_IOLOCK_EXCL; 570 ssize_t ret, error = 0; 571 size_t count; 572 loff_t pos; 573 574 if (iocb->ki_flags & IOCB_NOWAIT) { 575 if (!xfs_ilock_nowait(ip, iolock)) 576 return -EAGAIN; 577 } else { 578 xfs_ilock(ip, iolock); 579 } 580 581 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 582 if (ret) 583 goto out; 584 585 pos = iocb->ki_pos; 586 count = iov_iter_count(from); 587 588 trace_xfs_file_dax_write(ip, count, pos); 589 ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops); 590 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { 591 i_size_write(inode, iocb->ki_pos); 592 error = xfs_setfilesize(ip, pos, ret); 593 } 594 out: 595 xfs_iunlock(ip, iolock); 596 if (error) 597 return error; 598 599 if (ret > 0) { 600 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 601 602 /* Handle various SYNC-type writes */ 603 ret = generic_write_sync(iocb, ret); 604 } 605 return ret; 606 } 607 608 STATIC ssize_t 609 xfs_file_buffered_aio_write( 610 struct kiocb *iocb, 611 struct iov_iter *from) 612 { 613 struct file *file = iocb->ki_filp; 614 struct address_space *mapping = file->f_mapping; 615 struct inode *inode = mapping->host; 616 struct xfs_inode *ip = XFS_I(inode); 617 ssize_t ret; 618 int enospc = 0; 619 int iolock; 620 621 if (iocb->ki_flags & IOCB_NOWAIT) 622 return -EOPNOTSUPP; 623 624 write_retry: 625 iolock = XFS_IOLOCK_EXCL; 626 xfs_ilock(ip, iolock); 627 628 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 629 if (ret) 630 goto out; 631 632 /* We can write back this queue in page reclaim */ 633 current->backing_dev_info = inode_to_bdi(inode); 634 635 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos); 636 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops); 637 if (likely(ret >= 0)) 638 iocb->ki_pos += ret; 639 640 /* 641 * If we hit a space limit, try to free up some lingering preallocated 642 * space before returning an error. In the case of ENOSPC, first try to 643 * write back all dirty inodes to free up some of the excess reserved 644 * metadata space. This reduces the chances that the eofblocks scan 645 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 646 * also behaves as a filter to prevent too many eofblocks scans from 647 * running at the same time. 648 */ 649 if (ret == -EDQUOT && !enospc) { 650 xfs_iunlock(ip, iolock); 651 enospc = xfs_inode_free_quota_eofblocks(ip); 652 if (enospc) 653 goto write_retry; 654 enospc = xfs_inode_free_quota_cowblocks(ip); 655 if (enospc) 656 goto write_retry; 657 iolock = 0; 658 } else if (ret == -ENOSPC && !enospc) { 659 struct xfs_eofblocks eofb = {0}; 660 661 enospc = 1; 662 xfs_flush_inodes(ip->i_mount); 663 664 xfs_iunlock(ip, iolock); 665 eofb.eof_flags = XFS_EOF_FLAGS_SYNC; 666 xfs_icache_free_eofblocks(ip->i_mount, &eofb); 667 xfs_icache_free_cowblocks(ip->i_mount, &eofb); 668 goto write_retry; 669 } 670 671 current->backing_dev_info = NULL; 672 out: 673 if (iolock) 674 xfs_iunlock(ip, iolock); 675 676 if (ret > 0) { 677 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 678 /* Handle various SYNC-type writes */ 679 ret = generic_write_sync(iocb, ret); 680 } 681 return ret; 682 } 683 684 STATIC ssize_t 685 xfs_file_write_iter( 686 struct kiocb *iocb, 687 struct iov_iter *from) 688 { 689 struct file *file = iocb->ki_filp; 690 struct address_space *mapping = file->f_mapping; 691 struct inode *inode = mapping->host; 692 struct xfs_inode *ip = XFS_I(inode); 693 ssize_t ret; 694 size_t ocount = iov_iter_count(from); 695 696 XFS_STATS_INC(ip->i_mount, xs_write_calls); 697 698 if (ocount == 0) 699 return 0; 700 701 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 702 return -EIO; 703 704 if (IS_DAX(inode)) 705 return xfs_file_dax_write(iocb, from); 706 707 if (iocb->ki_flags & IOCB_DIRECT) { 708 /* 709 * Allow a directio write to fall back to a buffered 710 * write *only* in the case that we're doing a reflink 711 * CoW. In all other directio scenarios we do not 712 * allow an operation to fall back to buffered mode. 713 */ 714 ret = xfs_file_dio_aio_write(iocb, from); 715 if (ret != -EREMCHG) 716 return ret; 717 } 718 719 return xfs_file_buffered_aio_write(iocb, from); 720 } 721 722 static void 723 xfs_wait_dax_page( 724 struct inode *inode) 725 { 726 struct xfs_inode *ip = XFS_I(inode); 727 728 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); 729 schedule(); 730 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 731 } 732 733 static int 734 xfs_break_dax_layouts( 735 struct inode *inode, 736 bool *retry) 737 { 738 struct page *page; 739 740 ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL)); 741 742 page = dax_layout_busy_page(inode->i_mapping); 743 if (!page) 744 return 0; 745 746 *retry = true; 747 return ___wait_var_event(&page->_refcount, 748 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE, 749 0, 0, xfs_wait_dax_page(inode)); 750 } 751 752 int 753 xfs_break_layouts( 754 struct inode *inode, 755 uint *iolock, 756 enum layout_break_reason reason) 757 { 758 bool retry; 759 int error; 760 761 ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)); 762 763 do { 764 retry = false; 765 switch (reason) { 766 case BREAK_UNMAP: 767 error = xfs_break_dax_layouts(inode, &retry); 768 if (error || retry) 769 break; 770 /* fall through */ 771 case BREAK_WRITE: 772 error = xfs_break_leased_layouts(inode, iolock, &retry); 773 break; 774 default: 775 WARN_ON_ONCE(1); 776 error = -EINVAL; 777 } 778 } while (error == 0 && retry); 779 780 return error; 781 } 782 783 #define XFS_FALLOC_FL_SUPPORTED \ 784 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 785 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 786 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) 787 788 STATIC long 789 xfs_file_fallocate( 790 struct file *file, 791 int mode, 792 loff_t offset, 793 loff_t len) 794 { 795 struct inode *inode = file_inode(file); 796 struct xfs_inode *ip = XFS_I(inode); 797 long error; 798 enum xfs_prealloc_flags flags = 0; 799 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; 800 loff_t new_size = 0; 801 bool do_file_insert = false; 802 803 if (!S_ISREG(inode->i_mode)) 804 return -EINVAL; 805 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 806 return -EOPNOTSUPP; 807 808 xfs_ilock(ip, iolock); 809 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP); 810 if (error) 811 goto out_unlock; 812 813 if (mode & FALLOC_FL_PUNCH_HOLE) { 814 error = xfs_free_file_space(ip, offset, len); 815 if (error) 816 goto out_unlock; 817 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 818 unsigned int blksize_mask = i_blocksize(inode) - 1; 819 820 if (offset & blksize_mask || len & blksize_mask) { 821 error = -EINVAL; 822 goto out_unlock; 823 } 824 825 /* 826 * There is no need to overlap collapse range with EOF, 827 * in which case it is effectively a truncate operation 828 */ 829 if (offset + len >= i_size_read(inode)) { 830 error = -EINVAL; 831 goto out_unlock; 832 } 833 834 new_size = i_size_read(inode) - len; 835 836 error = xfs_collapse_file_space(ip, offset, len); 837 if (error) 838 goto out_unlock; 839 } else if (mode & FALLOC_FL_INSERT_RANGE) { 840 unsigned int blksize_mask = i_blocksize(inode) - 1; 841 loff_t isize = i_size_read(inode); 842 843 if (offset & blksize_mask || len & blksize_mask) { 844 error = -EINVAL; 845 goto out_unlock; 846 } 847 848 /* 849 * New inode size must not exceed ->s_maxbytes, accounting for 850 * possible signed overflow. 851 */ 852 if (inode->i_sb->s_maxbytes - isize < len) { 853 error = -EFBIG; 854 goto out_unlock; 855 } 856 new_size = isize + len; 857 858 /* Offset should be less than i_size */ 859 if (offset >= isize) { 860 error = -EINVAL; 861 goto out_unlock; 862 } 863 do_file_insert = true; 864 } else { 865 flags |= XFS_PREALLOC_SET; 866 867 if (!(mode & FALLOC_FL_KEEP_SIZE) && 868 offset + len > i_size_read(inode)) { 869 new_size = offset + len; 870 error = inode_newsize_ok(inode, new_size); 871 if (error) 872 goto out_unlock; 873 } 874 875 if (mode & FALLOC_FL_ZERO_RANGE) 876 error = xfs_zero_file_space(ip, offset, len); 877 else { 878 if (mode & FALLOC_FL_UNSHARE_RANGE) { 879 error = xfs_reflink_unshare(ip, offset, len); 880 if (error) 881 goto out_unlock; 882 } 883 error = xfs_alloc_file_space(ip, offset, len, 884 XFS_BMAPI_PREALLOC); 885 } 886 if (error) 887 goto out_unlock; 888 } 889 890 if (file->f_flags & O_DSYNC) 891 flags |= XFS_PREALLOC_SYNC; 892 893 error = xfs_update_prealloc_flags(ip, flags); 894 if (error) 895 goto out_unlock; 896 897 /* Change file size if needed */ 898 if (new_size) { 899 struct iattr iattr; 900 901 iattr.ia_valid = ATTR_SIZE; 902 iattr.ia_size = new_size; 903 error = xfs_vn_setattr_size(file_dentry(file), &iattr); 904 if (error) 905 goto out_unlock; 906 } 907 908 /* 909 * Perform hole insertion now that the file size has been 910 * updated so that if we crash during the operation we don't 911 * leave shifted extents past EOF and hence losing access to 912 * the data that is contained within them. 913 */ 914 if (do_file_insert) 915 error = xfs_insert_file_space(ip, offset, len); 916 917 out_unlock: 918 xfs_iunlock(ip, iolock); 919 return error; 920 } 921 922 STATIC int 923 xfs_file_clone_range( 924 struct file *file_in, 925 loff_t pos_in, 926 struct file *file_out, 927 loff_t pos_out, 928 u64 len) 929 { 930 return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out, 931 len, false); 932 } 933 934 STATIC int 935 xfs_file_dedupe_range( 936 struct file *file_in, 937 loff_t pos_in, 938 struct file *file_out, 939 loff_t pos_out, 940 u64 len) 941 { 942 return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out, 943 len, true); 944 } 945 946 STATIC int 947 xfs_file_open( 948 struct inode *inode, 949 struct file *file) 950 { 951 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 952 return -EFBIG; 953 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 954 return -EIO; 955 file->f_mode |= FMODE_NOWAIT; 956 return 0; 957 } 958 959 STATIC int 960 xfs_dir_open( 961 struct inode *inode, 962 struct file *file) 963 { 964 struct xfs_inode *ip = XFS_I(inode); 965 int mode; 966 int error; 967 968 error = xfs_file_open(inode, file); 969 if (error) 970 return error; 971 972 /* 973 * If there are any blocks, read-ahead block 0 as we're almost 974 * certain to have the next operation be a read there. 975 */ 976 mode = xfs_ilock_data_map_shared(ip); 977 if (ip->i_d.di_nextents > 0) 978 error = xfs_dir3_data_readahead(ip, 0, -1); 979 xfs_iunlock(ip, mode); 980 return error; 981 } 982 983 STATIC int 984 xfs_file_release( 985 struct inode *inode, 986 struct file *filp) 987 { 988 return xfs_release(XFS_I(inode)); 989 } 990 991 STATIC int 992 xfs_file_readdir( 993 struct file *file, 994 struct dir_context *ctx) 995 { 996 struct inode *inode = file_inode(file); 997 xfs_inode_t *ip = XFS_I(inode); 998 size_t bufsize; 999 1000 /* 1001 * The Linux API doesn't pass down the total size of the buffer 1002 * we read into down to the filesystem. With the filldir concept 1003 * it's not needed for correct information, but the XFS dir2 leaf 1004 * code wants an estimate of the buffer size to calculate it's 1005 * readahead window and size the buffers used for mapping to 1006 * physical blocks. 1007 * 1008 * Try to give it an estimate that's good enough, maybe at some 1009 * point we can change the ->readdir prototype to include the 1010 * buffer size. For now we use the current glibc buffer size. 1011 */ 1012 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size); 1013 1014 return xfs_readdir(NULL, ip, ctx, bufsize); 1015 } 1016 1017 STATIC loff_t 1018 xfs_file_llseek( 1019 struct file *file, 1020 loff_t offset, 1021 int whence) 1022 { 1023 struct inode *inode = file->f_mapping->host; 1024 1025 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount)) 1026 return -EIO; 1027 1028 switch (whence) { 1029 default: 1030 return generic_file_llseek(file, offset, whence); 1031 case SEEK_HOLE: 1032 offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops); 1033 break; 1034 case SEEK_DATA: 1035 offset = iomap_seek_data(inode, offset, &xfs_iomap_ops); 1036 break; 1037 } 1038 1039 if (offset < 0) 1040 return offset; 1041 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1042 } 1043 1044 /* 1045 * Locking for serialisation of IO during page faults. This results in a lock 1046 * ordering of: 1047 * 1048 * mmap_sem (MM) 1049 * sb_start_pagefault(vfs, freeze) 1050 * i_mmaplock (XFS - truncate serialisation) 1051 * page_lock (MM) 1052 * i_lock (XFS - extent map serialisation) 1053 */ 1054 static vm_fault_t 1055 __xfs_filemap_fault( 1056 struct vm_fault *vmf, 1057 enum page_entry_size pe_size, 1058 bool write_fault) 1059 { 1060 struct inode *inode = file_inode(vmf->vma->vm_file); 1061 struct xfs_inode *ip = XFS_I(inode); 1062 vm_fault_t ret; 1063 1064 trace_xfs_filemap_fault(ip, pe_size, write_fault); 1065 1066 if (write_fault) { 1067 sb_start_pagefault(inode->i_sb); 1068 file_update_time(vmf->vma->vm_file); 1069 } 1070 1071 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1072 if (IS_DAX(inode)) { 1073 pfn_t pfn; 1074 1075 ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops); 1076 if (ret & VM_FAULT_NEEDDSYNC) 1077 ret = dax_finish_sync_fault(vmf, pe_size, pfn); 1078 } else { 1079 if (write_fault) 1080 ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops); 1081 else 1082 ret = filemap_fault(vmf); 1083 } 1084 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1085 1086 if (write_fault) 1087 sb_end_pagefault(inode->i_sb); 1088 return ret; 1089 } 1090 1091 static vm_fault_t 1092 xfs_filemap_fault( 1093 struct vm_fault *vmf) 1094 { 1095 /* DAX can shortcut the normal fault path on write faults! */ 1096 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, 1097 IS_DAX(file_inode(vmf->vma->vm_file)) && 1098 (vmf->flags & FAULT_FLAG_WRITE)); 1099 } 1100 1101 static vm_fault_t 1102 xfs_filemap_huge_fault( 1103 struct vm_fault *vmf, 1104 enum page_entry_size pe_size) 1105 { 1106 if (!IS_DAX(file_inode(vmf->vma->vm_file))) 1107 return VM_FAULT_FALLBACK; 1108 1109 /* DAX can shortcut the normal fault path on write faults! */ 1110 return __xfs_filemap_fault(vmf, pe_size, 1111 (vmf->flags & FAULT_FLAG_WRITE)); 1112 } 1113 1114 static vm_fault_t 1115 xfs_filemap_page_mkwrite( 1116 struct vm_fault *vmf) 1117 { 1118 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1119 } 1120 1121 /* 1122 * pfn_mkwrite was originally intended to ensure we capture time stamp updates 1123 * on write faults. In reality, it needs to serialise against truncate and 1124 * prepare memory for writing so handle is as standard write fault. 1125 */ 1126 static vm_fault_t 1127 xfs_filemap_pfn_mkwrite( 1128 struct vm_fault *vmf) 1129 { 1130 1131 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); 1132 } 1133 1134 static const struct vm_operations_struct xfs_file_vm_ops = { 1135 .fault = xfs_filemap_fault, 1136 .huge_fault = xfs_filemap_huge_fault, 1137 .map_pages = filemap_map_pages, 1138 .page_mkwrite = xfs_filemap_page_mkwrite, 1139 .pfn_mkwrite = xfs_filemap_pfn_mkwrite, 1140 }; 1141 1142 STATIC int 1143 xfs_file_mmap( 1144 struct file *filp, 1145 struct vm_area_struct *vma) 1146 { 1147 /* 1148 * We don't support synchronous mappings for non-DAX files. At least 1149 * until someone comes with a sensible use case. 1150 */ 1151 if (!IS_DAX(file_inode(filp)) && (vma->vm_flags & VM_SYNC)) 1152 return -EOPNOTSUPP; 1153 1154 file_accessed(filp); 1155 vma->vm_ops = &xfs_file_vm_ops; 1156 if (IS_DAX(file_inode(filp))) 1157 vma->vm_flags |= VM_HUGEPAGE; 1158 return 0; 1159 } 1160 1161 const struct file_operations xfs_file_operations = { 1162 .llseek = xfs_file_llseek, 1163 .read_iter = xfs_file_read_iter, 1164 .write_iter = xfs_file_write_iter, 1165 .splice_read = generic_file_splice_read, 1166 .splice_write = iter_file_splice_write, 1167 .unlocked_ioctl = xfs_file_ioctl, 1168 #ifdef CONFIG_COMPAT 1169 .compat_ioctl = xfs_file_compat_ioctl, 1170 #endif 1171 .mmap = xfs_file_mmap, 1172 .mmap_supported_flags = MAP_SYNC, 1173 .open = xfs_file_open, 1174 .release = xfs_file_release, 1175 .fsync = xfs_file_fsync, 1176 .get_unmapped_area = thp_get_unmapped_area, 1177 .fallocate = xfs_file_fallocate, 1178 .clone_file_range = xfs_file_clone_range, 1179 .dedupe_file_range = xfs_file_dedupe_range, 1180 }; 1181 1182 const struct file_operations xfs_dir_file_operations = { 1183 .open = xfs_dir_open, 1184 .read = generic_read_dir, 1185 .iterate_shared = xfs_file_readdir, 1186 .llseek = generic_file_llseek, 1187 .unlocked_ioctl = xfs_file_ioctl, 1188 #ifdef CONFIG_COMPAT 1189 .compat_ioctl = xfs_file_compat_ioctl, 1190 #endif 1191 .fsync = xfs_dir_fsync, 1192 }; 1193