xref: /openbmc/linux/fs/xfs/xfs_file.c (revision 293d5b43)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40 #include "xfs_iomap.h"
41 
42 #include <linux/dcache.h>
43 #include <linux/falloc.h>
44 #include <linux/pagevec.h>
45 #include <linux/backing-dev.h>
46 
47 static const struct vm_operations_struct xfs_file_vm_ops;
48 
49 /*
50  * Locking primitives for read and write IO paths to ensure we consistently use
51  * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
52  */
53 static inline void
54 xfs_rw_ilock(
55 	struct xfs_inode	*ip,
56 	int			type)
57 {
58 	if (type & XFS_IOLOCK_EXCL)
59 		inode_lock(VFS_I(ip));
60 	xfs_ilock(ip, type);
61 }
62 
63 static inline void
64 xfs_rw_iunlock(
65 	struct xfs_inode	*ip,
66 	int			type)
67 {
68 	xfs_iunlock(ip, type);
69 	if (type & XFS_IOLOCK_EXCL)
70 		inode_unlock(VFS_I(ip));
71 }
72 
73 static inline void
74 xfs_rw_ilock_demote(
75 	struct xfs_inode	*ip,
76 	int			type)
77 {
78 	xfs_ilock_demote(ip, type);
79 	if (type & XFS_IOLOCK_EXCL)
80 		inode_unlock(VFS_I(ip));
81 }
82 
83 /*
84  * Clear the specified ranges to zero through either the pagecache or DAX.
85  * Holes and unwritten extents will be left as-is as they already are zeroed.
86  */
87 int
88 xfs_zero_range(
89 	struct xfs_inode	*ip,
90 	xfs_off_t		pos,
91 	xfs_off_t		count,
92 	bool			*did_zero)
93 {
94 	return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops);
95 }
96 
97 int
98 xfs_update_prealloc_flags(
99 	struct xfs_inode	*ip,
100 	enum xfs_prealloc_flags	flags)
101 {
102 	struct xfs_trans	*tp;
103 	int			error;
104 
105 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
106 			0, 0, 0, &tp);
107 	if (error)
108 		return error;
109 
110 	xfs_ilock(ip, XFS_ILOCK_EXCL);
111 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
112 
113 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
114 		VFS_I(ip)->i_mode &= ~S_ISUID;
115 		if (VFS_I(ip)->i_mode & S_IXGRP)
116 			VFS_I(ip)->i_mode &= ~S_ISGID;
117 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
118 	}
119 
120 	if (flags & XFS_PREALLOC_SET)
121 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
122 	if (flags & XFS_PREALLOC_CLEAR)
123 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
124 
125 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
126 	if (flags & XFS_PREALLOC_SYNC)
127 		xfs_trans_set_sync(tp);
128 	return xfs_trans_commit(tp);
129 }
130 
131 /*
132  * Fsync operations on directories are much simpler than on regular files,
133  * as there is no file data to flush, and thus also no need for explicit
134  * cache flush operations, and there are no non-transaction metadata updates
135  * on directories either.
136  */
137 STATIC int
138 xfs_dir_fsync(
139 	struct file		*file,
140 	loff_t			start,
141 	loff_t			end,
142 	int			datasync)
143 {
144 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
145 	struct xfs_mount	*mp = ip->i_mount;
146 	xfs_lsn_t		lsn = 0;
147 
148 	trace_xfs_dir_fsync(ip);
149 
150 	xfs_ilock(ip, XFS_ILOCK_SHARED);
151 	if (xfs_ipincount(ip))
152 		lsn = ip->i_itemp->ili_last_lsn;
153 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
154 
155 	if (!lsn)
156 		return 0;
157 	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
158 }
159 
160 STATIC int
161 xfs_file_fsync(
162 	struct file		*file,
163 	loff_t			start,
164 	loff_t			end,
165 	int			datasync)
166 {
167 	struct inode		*inode = file->f_mapping->host;
168 	struct xfs_inode	*ip = XFS_I(inode);
169 	struct xfs_mount	*mp = ip->i_mount;
170 	int			error = 0;
171 	int			log_flushed = 0;
172 	xfs_lsn_t		lsn = 0;
173 
174 	trace_xfs_file_fsync(ip);
175 
176 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
177 	if (error)
178 		return error;
179 
180 	if (XFS_FORCED_SHUTDOWN(mp))
181 		return -EIO;
182 
183 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
184 
185 	if (mp->m_flags & XFS_MOUNT_BARRIER) {
186 		/*
187 		 * If we have an RT and/or log subvolume we need to make sure
188 		 * to flush the write cache the device used for file data
189 		 * first.  This is to ensure newly written file data make
190 		 * it to disk before logging the new inode size in case of
191 		 * an extending write.
192 		 */
193 		if (XFS_IS_REALTIME_INODE(ip))
194 			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
195 		else if (mp->m_logdev_targp != mp->m_ddev_targp)
196 			xfs_blkdev_issue_flush(mp->m_ddev_targp);
197 	}
198 
199 	/*
200 	 * All metadata updates are logged, which means that we just have to
201 	 * flush the log up to the latest LSN that touched the inode. If we have
202 	 * concurrent fsync/fdatasync() calls, we need them to all block on the
203 	 * log force before we clear the ili_fsync_fields field. This ensures
204 	 * that we don't get a racing sync operation that does not wait for the
205 	 * metadata to hit the journal before returning. If we race with
206 	 * clearing the ili_fsync_fields, then all that will happen is the log
207 	 * force will do nothing as the lsn will already be on disk. We can't
208 	 * race with setting ili_fsync_fields because that is done under
209 	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
210 	 * until after the ili_fsync_fields is cleared.
211 	 */
212 	xfs_ilock(ip, XFS_ILOCK_SHARED);
213 	if (xfs_ipincount(ip)) {
214 		if (!datasync ||
215 		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
216 			lsn = ip->i_itemp->ili_last_lsn;
217 	}
218 
219 	if (lsn) {
220 		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
221 		ip->i_itemp->ili_fsync_fields = 0;
222 	}
223 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
224 
225 	/*
226 	 * If we only have a single device, and the log force about was
227 	 * a no-op we might have to flush the data device cache here.
228 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
229 	 * an already allocated file and thus do not have any metadata to
230 	 * commit.
231 	 */
232 	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
233 	    mp->m_logdev_targp == mp->m_ddev_targp &&
234 	    !XFS_IS_REALTIME_INODE(ip) &&
235 	    !log_flushed)
236 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
237 
238 	return error;
239 }
240 
241 STATIC ssize_t
242 xfs_file_dio_aio_read(
243 	struct kiocb		*iocb,
244 	struct iov_iter		*to)
245 {
246 	struct address_space	*mapping = iocb->ki_filp->f_mapping;
247 	struct inode		*inode = mapping->host;
248 	struct xfs_inode	*ip = XFS_I(inode);
249 	loff_t			isize = i_size_read(inode);
250 	size_t			count = iov_iter_count(to);
251 	struct iov_iter		data;
252 	struct xfs_buftarg	*target;
253 	ssize_t			ret = 0;
254 
255 	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
256 
257 	if (!count)
258 		return 0; /* skip atime */
259 
260 	if (XFS_IS_REALTIME_INODE(ip))
261 		target = ip->i_mount->m_rtdev_targp;
262 	else
263 		target = ip->i_mount->m_ddev_targp;
264 
265 	/* DIO must be aligned to device logical sector size */
266 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask) {
267 		if (iocb->ki_pos == isize)
268 			return 0;
269 		return -EINVAL;
270 	}
271 
272 	/*
273 	 * Locking is a bit tricky here. If we take an exclusive lock for direct
274 	 * IO, we effectively serialise all new concurrent read IO to this file
275 	 * and block it behind IO that is currently in progress because IO in
276 	 * progress holds the IO lock shared. We only need to hold the lock
277 	 * exclusive to blow away the page cache, so only take lock exclusively
278 	 * if the page cache needs invalidation. This allows the normal direct
279 	 * IO case of no page cache pages to proceeed concurrently without
280 	 * serialisation.
281 	 */
282 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
283 	if (mapping->nrpages) {
284 		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
285 		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
286 
287 		/*
288 		 * The generic dio code only flushes the range of the particular
289 		 * I/O. Because we take an exclusive lock here, this whole
290 		 * sequence is considerably more expensive for us. This has a
291 		 * noticeable performance impact for any file with cached pages,
292 		 * even when outside of the range of the particular I/O.
293 		 *
294 		 * Hence, amortize the cost of the lock against a full file
295 		 * flush and reduce the chances of repeated iolock cycles going
296 		 * forward.
297 		 */
298 		if (mapping->nrpages) {
299 			ret = filemap_write_and_wait(mapping);
300 			if (ret) {
301 				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
302 				return ret;
303 			}
304 
305 			/*
306 			 * Invalidate whole pages. This can return an error if
307 			 * we fail to invalidate a page, but this should never
308 			 * happen on XFS. Warn if it does fail.
309 			 */
310 			ret = invalidate_inode_pages2(mapping);
311 			WARN_ON_ONCE(ret);
312 			ret = 0;
313 		}
314 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
315 	}
316 
317 	data = *to;
318 	ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
319 			xfs_get_blocks_direct, NULL, NULL, 0);
320 	if (ret > 0) {
321 		iocb->ki_pos += ret;
322 		iov_iter_advance(to, ret);
323 	}
324 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
325 
326 	file_accessed(iocb->ki_filp);
327 	return ret;
328 }
329 
330 static noinline ssize_t
331 xfs_file_dax_read(
332 	struct kiocb		*iocb,
333 	struct iov_iter		*to)
334 {
335 	struct address_space	*mapping = iocb->ki_filp->f_mapping;
336 	struct inode		*inode = mapping->host;
337 	struct xfs_inode	*ip = XFS_I(inode);
338 	struct iov_iter		data = *to;
339 	size_t			count = iov_iter_count(to);
340 	ssize_t			ret = 0;
341 
342 	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
343 
344 	if (!count)
345 		return 0; /* skip atime */
346 
347 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
348 	ret = dax_do_io(iocb, inode, &data, xfs_get_blocks_direct, NULL, 0);
349 	if (ret > 0) {
350 		iocb->ki_pos += ret;
351 		iov_iter_advance(to, ret);
352 	}
353 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
354 
355 	file_accessed(iocb->ki_filp);
356 	return ret;
357 }
358 
359 STATIC ssize_t
360 xfs_file_buffered_aio_read(
361 	struct kiocb		*iocb,
362 	struct iov_iter		*to)
363 {
364 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
365 	ssize_t			ret;
366 
367 	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
368 
369 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
370 	ret = generic_file_read_iter(iocb, to);
371 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
372 
373 	return ret;
374 }
375 
376 STATIC ssize_t
377 xfs_file_read_iter(
378 	struct kiocb		*iocb,
379 	struct iov_iter		*to)
380 {
381 	struct inode		*inode = file_inode(iocb->ki_filp);
382 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
383 	ssize_t			ret = 0;
384 
385 	XFS_STATS_INC(mp, xs_read_calls);
386 
387 	if (XFS_FORCED_SHUTDOWN(mp))
388 		return -EIO;
389 
390 	if (IS_DAX(inode))
391 		ret = xfs_file_dax_read(iocb, to);
392 	else if (iocb->ki_flags & IOCB_DIRECT)
393 		ret = xfs_file_dio_aio_read(iocb, to);
394 	else
395 		ret = xfs_file_buffered_aio_read(iocb, to);
396 
397 	if (ret > 0)
398 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
399 	return ret;
400 }
401 
402 STATIC ssize_t
403 xfs_file_splice_read(
404 	struct file		*infilp,
405 	loff_t			*ppos,
406 	struct pipe_inode_info	*pipe,
407 	size_t			count,
408 	unsigned int		flags)
409 {
410 	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
411 	ssize_t			ret;
412 
413 	XFS_STATS_INC(ip->i_mount, xs_read_calls);
414 
415 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
416 		return -EIO;
417 
418 	trace_xfs_file_splice_read(ip, count, *ppos);
419 
420 	/*
421 	 * DAX inodes cannot ues the page cache for splice, so we have to push
422 	 * them through the VFS IO path. This means it goes through
423 	 * ->read_iter, which for us takes the XFS_IOLOCK_SHARED. Hence we
424 	 * cannot lock the splice operation at this level for DAX inodes.
425 	 */
426 	if (IS_DAX(VFS_I(ip))) {
427 		ret = default_file_splice_read(infilp, ppos, pipe, count,
428 					       flags);
429 		goto out;
430 	}
431 
432 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
433 	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
434 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
435 out:
436 	if (ret > 0)
437 		XFS_STATS_ADD(ip->i_mount, xs_read_bytes, ret);
438 	return ret;
439 }
440 
441 /*
442  * Zero any on disk space between the current EOF and the new, larger EOF.
443  *
444  * This handles the normal case of zeroing the remainder of the last block in
445  * the file and the unusual case of zeroing blocks out beyond the size of the
446  * file.  This second case only happens with fixed size extents and when the
447  * system crashes before the inode size was updated but after blocks were
448  * allocated.
449  *
450  * Expects the iolock to be held exclusive, and will take the ilock internally.
451  */
452 int					/* error (positive) */
453 xfs_zero_eof(
454 	struct xfs_inode	*ip,
455 	xfs_off_t		offset,		/* starting I/O offset */
456 	xfs_fsize_t		isize,		/* current inode size */
457 	bool			*did_zeroing)
458 {
459 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
460 	ASSERT(offset > isize);
461 
462 	trace_xfs_zero_eof(ip, isize, offset - isize);
463 	return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
464 }
465 
466 /*
467  * Common pre-write limit and setup checks.
468  *
469  * Called with the iolocked held either shared and exclusive according to
470  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
471  * if called for a direct write beyond i_size.
472  */
473 STATIC ssize_t
474 xfs_file_aio_write_checks(
475 	struct kiocb		*iocb,
476 	struct iov_iter		*from,
477 	int			*iolock)
478 {
479 	struct file		*file = iocb->ki_filp;
480 	struct inode		*inode = file->f_mapping->host;
481 	struct xfs_inode	*ip = XFS_I(inode);
482 	ssize_t			error = 0;
483 	size_t			count = iov_iter_count(from);
484 	bool			drained_dio = false;
485 
486 restart:
487 	error = generic_write_checks(iocb, from);
488 	if (error <= 0)
489 		return error;
490 
491 	error = xfs_break_layouts(inode, iolock, true);
492 	if (error)
493 		return error;
494 
495 	/* For changing security info in file_remove_privs() we need i_mutex */
496 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
497 		xfs_rw_iunlock(ip, *iolock);
498 		*iolock = XFS_IOLOCK_EXCL;
499 		xfs_rw_ilock(ip, *iolock);
500 		goto restart;
501 	}
502 	/*
503 	 * If the offset is beyond the size of the file, we need to zero any
504 	 * blocks that fall between the existing EOF and the start of this
505 	 * write.  If zeroing is needed and we are currently holding the
506 	 * iolock shared, we need to update it to exclusive which implies
507 	 * having to redo all checks before.
508 	 *
509 	 * We need to serialise against EOF updates that occur in IO
510 	 * completions here. We want to make sure that nobody is changing the
511 	 * size while we do this check until we have placed an IO barrier (i.e.
512 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
513 	 * The spinlock effectively forms a memory barrier once we have the
514 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
515 	 * and hence be able to correctly determine if we need to run zeroing.
516 	 */
517 	spin_lock(&ip->i_flags_lock);
518 	if (iocb->ki_pos > i_size_read(inode)) {
519 		bool	zero = false;
520 
521 		spin_unlock(&ip->i_flags_lock);
522 		if (!drained_dio) {
523 			if (*iolock == XFS_IOLOCK_SHARED) {
524 				xfs_rw_iunlock(ip, *iolock);
525 				*iolock = XFS_IOLOCK_EXCL;
526 				xfs_rw_ilock(ip, *iolock);
527 				iov_iter_reexpand(from, count);
528 			}
529 			/*
530 			 * We now have an IO submission barrier in place, but
531 			 * AIO can do EOF updates during IO completion and hence
532 			 * we now need to wait for all of them to drain. Non-AIO
533 			 * DIO will have drained before we are given the
534 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
535 			 * no-op.
536 			 */
537 			inode_dio_wait(inode);
538 			drained_dio = true;
539 			goto restart;
540 		}
541 		error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
542 		if (error)
543 			return error;
544 	} else
545 		spin_unlock(&ip->i_flags_lock);
546 
547 	/*
548 	 * Updating the timestamps will grab the ilock again from
549 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
550 	 * lock above.  Eventually we should look into a way to avoid
551 	 * the pointless lock roundtrip.
552 	 */
553 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
554 		error = file_update_time(file);
555 		if (error)
556 			return error;
557 	}
558 
559 	/*
560 	 * If we're writing the file then make sure to clear the setuid and
561 	 * setgid bits if the process is not being run by root.  This keeps
562 	 * people from modifying setuid and setgid binaries.
563 	 */
564 	if (!IS_NOSEC(inode))
565 		return file_remove_privs(file);
566 	return 0;
567 }
568 
569 /*
570  * xfs_file_dio_aio_write - handle direct IO writes
571  *
572  * Lock the inode appropriately to prepare for and issue a direct IO write.
573  * By separating it from the buffered write path we remove all the tricky to
574  * follow locking changes and looping.
575  *
576  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
577  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
578  * pages are flushed out.
579  *
580  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
581  * allowing them to be done in parallel with reads and other direct IO writes.
582  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
583  * needs to do sub-block zeroing and that requires serialisation against other
584  * direct IOs to the same block. In this case we need to serialise the
585  * submission of the unaligned IOs so that we don't get racing block zeroing in
586  * the dio layer.  To avoid the problem with aio, we also need to wait for
587  * outstanding IOs to complete so that unwritten extent conversion is completed
588  * before we try to map the overlapping block. This is currently implemented by
589  * hitting it with a big hammer (i.e. inode_dio_wait()).
590  *
591  * Returns with locks held indicated by @iolock and errors indicated by
592  * negative return values.
593  */
594 STATIC ssize_t
595 xfs_file_dio_aio_write(
596 	struct kiocb		*iocb,
597 	struct iov_iter		*from)
598 {
599 	struct file		*file = iocb->ki_filp;
600 	struct address_space	*mapping = file->f_mapping;
601 	struct inode		*inode = mapping->host;
602 	struct xfs_inode	*ip = XFS_I(inode);
603 	struct xfs_mount	*mp = ip->i_mount;
604 	ssize_t			ret = 0;
605 	int			unaligned_io = 0;
606 	int			iolock;
607 	size_t			count = iov_iter_count(from);
608 	loff_t			end;
609 	struct iov_iter		data;
610 	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
611 					mp->m_rtdev_targp : mp->m_ddev_targp;
612 
613 	/* DIO must be aligned to device logical sector size */
614 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
615 		return -EINVAL;
616 
617 	/* "unaligned" here means not aligned to a filesystem block */
618 	if ((iocb->ki_pos & mp->m_blockmask) ||
619 	    ((iocb->ki_pos + count) & mp->m_blockmask))
620 		unaligned_io = 1;
621 
622 	/*
623 	 * We don't need to take an exclusive lock unless there page cache needs
624 	 * to be invalidated or unaligned IO is being executed. We don't need to
625 	 * consider the EOF extension case here because
626 	 * xfs_file_aio_write_checks() will relock the inode as necessary for
627 	 * EOF zeroing cases and fill out the new inode size as appropriate.
628 	 */
629 	if (unaligned_io || mapping->nrpages)
630 		iolock = XFS_IOLOCK_EXCL;
631 	else
632 		iolock = XFS_IOLOCK_SHARED;
633 	xfs_rw_ilock(ip, iolock);
634 
635 	/*
636 	 * Recheck if there are cached pages that need invalidate after we got
637 	 * the iolock to protect against other threads adding new pages while
638 	 * we were waiting for the iolock.
639 	 */
640 	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
641 		xfs_rw_iunlock(ip, iolock);
642 		iolock = XFS_IOLOCK_EXCL;
643 		xfs_rw_ilock(ip, iolock);
644 	}
645 
646 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
647 	if (ret)
648 		goto out;
649 	count = iov_iter_count(from);
650 	end = iocb->ki_pos + count - 1;
651 
652 	/*
653 	 * See xfs_file_dio_aio_read() for why we do a full-file flush here.
654 	 */
655 	if (mapping->nrpages) {
656 		ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
657 		if (ret)
658 			goto out;
659 		/*
660 		 * Invalidate whole pages. This can return an error if we fail
661 		 * to invalidate a page, but this should never happen on XFS.
662 		 * Warn if it does fail.
663 		 */
664 		ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
665 		WARN_ON_ONCE(ret);
666 		ret = 0;
667 	}
668 
669 	/*
670 	 * If we are doing unaligned IO, wait for all other IO to drain,
671 	 * otherwise demote the lock if we had to flush cached pages
672 	 */
673 	if (unaligned_io)
674 		inode_dio_wait(inode);
675 	else if (iolock == XFS_IOLOCK_EXCL) {
676 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
677 		iolock = XFS_IOLOCK_SHARED;
678 	}
679 
680 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
681 
682 	data = *from;
683 	ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
684 			xfs_get_blocks_direct, xfs_end_io_direct_write,
685 			NULL, DIO_ASYNC_EXTEND);
686 
687 	/* see generic_file_direct_write() for why this is necessary */
688 	if (mapping->nrpages) {
689 		invalidate_inode_pages2_range(mapping,
690 					      iocb->ki_pos >> PAGE_SHIFT,
691 					      end >> PAGE_SHIFT);
692 	}
693 
694 	if (ret > 0) {
695 		iocb->ki_pos += ret;
696 		iov_iter_advance(from, ret);
697 	}
698 out:
699 	xfs_rw_iunlock(ip, iolock);
700 
701 	/*
702 	 * No fallback to buffered IO on errors for XFS, direct IO will either
703 	 * complete fully or fail.
704 	 */
705 	ASSERT(ret < 0 || ret == count);
706 	return ret;
707 }
708 
709 static noinline ssize_t
710 xfs_file_dax_write(
711 	struct kiocb		*iocb,
712 	struct iov_iter		*from)
713 {
714 	struct address_space	*mapping = iocb->ki_filp->f_mapping;
715 	struct inode		*inode = mapping->host;
716 	struct xfs_inode	*ip = XFS_I(inode);
717 	struct xfs_mount	*mp = ip->i_mount;
718 	ssize_t			ret = 0;
719 	int			unaligned_io = 0;
720 	int			iolock;
721 	struct iov_iter		data;
722 
723 	/* "unaligned" here means not aligned to a filesystem block */
724 	if ((iocb->ki_pos & mp->m_blockmask) ||
725 	    ((iocb->ki_pos + iov_iter_count(from)) & mp->m_blockmask)) {
726 		unaligned_io = 1;
727 		iolock = XFS_IOLOCK_EXCL;
728 	} else if (mapping->nrpages) {
729 		iolock = XFS_IOLOCK_EXCL;
730 	} else {
731 		iolock = XFS_IOLOCK_SHARED;
732 	}
733 	xfs_rw_ilock(ip, iolock);
734 
735 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
736 	if (ret)
737 		goto out;
738 
739 	/*
740 	 * Yes, even DAX files can have page cache attached to them:  A zeroed
741 	 * page is inserted into the pagecache when we have to serve a write
742 	 * fault on a hole.  It should never be dirtied and can simply be
743 	 * dropped from the pagecache once we get real data for the page.
744 	 */
745 	if (mapping->nrpages) {
746 		ret = invalidate_inode_pages2(mapping);
747 		WARN_ON_ONCE(ret);
748 	}
749 
750 	if (iolock == XFS_IOLOCK_EXCL && !unaligned_io) {
751 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
752 		iolock = XFS_IOLOCK_SHARED;
753 	}
754 
755 	trace_xfs_file_dax_write(ip, iov_iter_count(from), iocb->ki_pos);
756 
757 	data = *from;
758 	ret = dax_do_io(iocb, inode, &data, xfs_get_blocks_direct,
759 			xfs_end_io_direct_write, 0);
760 	if (ret > 0) {
761 		iocb->ki_pos += ret;
762 		iov_iter_advance(from, ret);
763 	}
764 out:
765 	xfs_rw_iunlock(ip, iolock);
766 	return ret;
767 }
768 
769 STATIC ssize_t
770 xfs_file_buffered_aio_write(
771 	struct kiocb		*iocb,
772 	struct iov_iter		*from)
773 {
774 	struct file		*file = iocb->ki_filp;
775 	struct address_space	*mapping = file->f_mapping;
776 	struct inode		*inode = mapping->host;
777 	struct xfs_inode	*ip = XFS_I(inode);
778 	ssize_t			ret;
779 	int			enospc = 0;
780 	int			iolock = XFS_IOLOCK_EXCL;
781 
782 	xfs_rw_ilock(ip, iolock);
783 
784 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
785 	if (ret)
786 		goto out;
787 
788 	/* We can write back this queue in page reclaim */
789 	current->backing_dev_info = inode_to_bdi(inode);
790 
791 write_retry:
792 	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
793 	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
794 	if (likely(ret >= 0))
795 		iocb->ki_pos += ret;
796 
797 	/*
798 	 * If we hit a space limit, try to free up some lingering preallocated
799 	 * space before returning an error. In the case of ENOSPC, first try to
800 	 * write back all dirty inodes to free up some of the excess reserved
801 	 * metadata space. This reduces the chances that the eofblocks scan
802 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
803 	 * also behaves as a filter to prevent too many eofblocks scans from
804 	 * running at the same time.
805 	 */
806 	if (ret == -EDQUOT && !enospc) {
807 		enospc = xfs_inode_free_quota_eofblocks(ip);
808 		if (enospc)
809 			goto write_retry;
810 	} else if (ret == -ENOSPC && !enospc) {
811 		struct xfs_eofblocks eofb = {0};
812 
813 		enospc = 1;
814 		xfs_flush_inodes(ip->i_mount);
815 		eofb.eof_scan_owner = ip->i_ino; /* for locking */
816 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
817 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
818 		goto write_retry;
819 	}
820 
821 	current->backing_dev_info = NULL;
822 out:
823 	xfs_rw_iunlock(ip, iolock);
824 	return ret;
825 }
826 
827 STATIC ssize_t
828 xfs_file_write_iter(
829 	struct kiocb		*iocb,
830 	struct iov_iter		*from)
831 {
832 	struct file		*file = iocb->ki_filp;
833 	struct address_space	*mapping = file->f_mapping;
834 	struct inode		*inode = mapping->host;
835 	struct xfs_inode	*ip = XFS_I(inode);
836 	ssize_t			ret;
837 	size_t			ocount = iov_iter_count(from);
838 
839 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
840 
841 	if (ocount == 0)
842 		return 0;
843 
844 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
845 		return -EIO;
846 
847 	if (IS_DAX(inode))
848 		ret = xfs_file_dax_write(iocb, from);
849 	else if (iocb->ki_flags & IOCB_DIRECT)
850 		ret = xfs_file_dio_aio_write(iocb, from);
851 	else
852 		ret = xfs_file_buffered_aio_write(iocb, from);
853 
854 	if (ret > 0) {
855 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
856 
857 		/* Handle various SYNC-type writes */
858 		ret = generic_write_sync(iocb, ret);
859 	}
860 	return ret;
861 }
862 
863 #define	XFS_FALLOC_FL_SUPPORTED						\
864 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
865 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
866 		 FALLOC_FL_INSERT_RANGE)
867 
868 STATIC long
869 xfs_file_fallocate(
870 	struct file		*file,
871 	int			mode,
872 	loff_t			offset,
873 	loff_t			len)
874 {
875 	struct inode		*inode = file_inode(file);
876 	struct xfs_inode	*ip = XFS_I(inode);
877 	long			error;
878 	enum xfs_prealloc_flags	flags = 0;
879 	uint			iolock = XFS_IOLOCK_EXCL;
880 	loff_t			new_size = 0;
881 	bool			do_file_insert = 0;
882 
883 	if (!S_ISREG(inode->i_mode))
884 		return -EINVAL;
885 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
886 		return -EOPNOTSUPP;
887 
888 	xfs_ilock(ip, iolock);
889 	error = xfs_break_layouts(inode, &iolock, false);
890 	if (error)
891 		goto out_unlock;
892 
893 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
894 	iolock |= XFS_MMAPLOCK_EXCL;
895 
896 	if (mode & FALLOC_FL_PUNCH_HOLE) {
897 		error = xfs_free_file_space(ip, offset, len);
898 		if (error)
899 			goto out_unlock;
900 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
901 		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
902 
903 		if (offset & blksize_mask || len & blksize_mask) {
904 			error = -EINVAL;
905 			goto out_unlock;
906 		}
907 
908 		/*
909 		 * There is no need to overlap collapse range with EOF,
910 		 * in which case it is effectively a truncate operation
911 		 */
912 		if (offset + len >= i_size_read(inode)) {
913 			error = -EINVAL;
914 			goto out_unlock;
915 		}
916 
917 		new_size = i_size_read(inode) - len;
918 
919 		error = xfs_collapse_file_space(ip, offset, len);
920 		if (error)
921 			goto out_unlock;
922 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
923 		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
924 
925 		new_size = i_size_read(inode) + len;
926 		if (offset & blksize_mask || len & blksize_mask) {
927 			error = -EINVAL;
928 			goto out_unlock;
929 		}
930 
931 		/* check the new inode size does not wrap through zero */
932 		if (new_size > inode->i_sb->s_maxbytes) {
933 			error = -EFBIG;
934 			goto out_unlock;
935 		}
936 
937 		/* Offset should be less than i_size */
938 		if (offset >= i_size_read(inode)) {
939 			error = -EINVAL;
940 			goto out_unlock;
941 		}
942 		do_file_insert = 1;
943 	} else {
944 		flags |= XFS_PREALLOC_SET;
945 
946 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
947 		    offset + len > i_size_read(inode)) {
948 			new_size = offset + len;
949 			error = inode_newsize_ok(inode, new_size);
950 			if (error)
951 				goto out_unlock;
952 		}
953 
954 		if (mode & FALLOC_FL_ZERO_RANGE)
955 			error = xfs_zero_file_space(ip, offset, len);
956 		else
957 			error = xfs_alloc_file_space(ip, offset, len,
958 						     XFS_BMAPI_PREALLOC);
959 		if (error)
960 			goto out_unlock;
961 	}
962 
963 	if (file->f_flags & O_DSYNC)
964 		flags |= XFS_PREALLOC_SYNC;
965 
966 	error = xfs_update_prealloc_flags(ip, flags);
967 	if (error)
968 		goto out_unlock;
969 
970 	/* Change file size if needed */
971 	if (new_size) {
972 		struct iattr iattr;
973 
974 		iattr.ia_valid = ATTR_SIZE;
975 		iattr.ia_size = new_size;
976 		error = xfs_setattr_size(ip, &iattr);
977 		if (error)
978 			goto out_unlock;
979 	}
980 
981 	/*
982 	 * Perform hole insertion now that the file size has been
983 	 * updated so that if we crash during the operation we don't
984 	 * leave shifted extents past EOF and hence losing access to
985 	 * the data that is contained within them.
986 	 */
987 	if (do_file_insert)
988 		error = xfs_insert_file_space(ip, offset, len);
989 
990 out_unlock:
991 	xfs_iunlock(ip, iolock);
992 	return error;
993 }
994 
995 
996 STATIC int
997 xfs_file_open(
998 	struct inode	*inode,
999 	struct file	*file)
1000 {
1001 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1002 		return -EFBIG;
1003 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1004 		return -EIO;
1005 	return 0;
1006 }
1007 
1008 STATIC int
1009 xfs_dir_open(
1010 	struct inode	*inode,
1011 	struct file	*file)
1012 {
1013 	struct xfs_inode *ip = XFS_I(inode);
1014 	int		mode;
1015 	int		error;
1016 
1017 	error = xfs_file_open(inode, file);
1018 	if (error)
1019 		return error;
1020 
1021 	/*
1022 	 * If there are any blocks, read-ahead block 0 as we're almost
1023 	 * certain to have the next operation be a read there.
1024 	 */
1025 	mode = xfs_ilock_data_map_shared(ip);
1026 	if (ip->i_d.di_nextents > 0)
1027 		xfs_dir3_data_readahead(ip, 0, -1);
1028 	xfs_iunlock(ip, mode);
1029 	return 0;
1030 }
1031 
1032 STATIC int
1033 xfs_file_release(
1034 	struct inode	*inode,
1035 	struct file	*filp)
1036 {
1037 	return xfs_release(XFS_I(inode));
1038 }
1039 
1040 STATIC int
1041 xfs_file_readdir(
1042 	struct file	*file,
1043 	struct dir_context *ctx)
1044 {
1045 	struct inode	*inode = file_inode(file);
1046 	xfs_inode_t	*ip = XFS_I(inode);
1047 	size_t		bufsize;
1048 
1049 	/*
1050 	 * The Linux API doesn't pass down the total size of the buffer
1051 	 * we read into down to the filesystem.  With the filldir concept
1052 	 * it's not needed for correct information, but the XFS dir2 leaf
1053 	 * code wants an estimate of the buffer size to calculate it's
1054 	 * readahead window and size the buffers used for mapping to
1055 	 * physical blocks.
1056 	 *
1057 	 * Try to give it an estimate that's good enough, maybe at some
1058 	 * point we can change the ->readdir prototype to include the
1059 	 * buffer size.  For now we use the current glibc buffer size.
1060 	 */
1061 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1062 
1063 	return xfs_readdir(ip, ctx, bufsize);
1064 }
1065 
1066 /*
1067  * This type is designed to indicate the type of offset we would like
1068  * to search from page cache for xfs_seek_hole_data().
1069  */
1070 enum {
1071 	HOLE_OFF = 0,
1072 	DATA_OFF,
1073 };
1074 
1075 /*
1076  * Lookup the desired type of offset from the given page.
1077  *
1078  * On success, return true and the offset argument will point to the
1079  * start of the region that was found.  Otherwise this function will
1080  * return false and keep the offset argument unchanged.
1081  */
1082 STATIC bool
1083 xfs_lookup_buffer_offset(
1084 	struct page		*page,
1085 	loff_t			*offset,
1086 	unsigned int		type)
1087 {
1088 	loff_t			lastoff = page_offset(page);
1089 	bool			found = false;
1090 	struct buffer_head	*bh, *head;
1091 
1092 	bh = head = page_buffers(page);
1093 	do {
1094 		/*
1095 		 * Unwritten extents that have data in the page
1096 		 * cache covering them can be identified by the
1097 		 * BH_Unwritten state flag.  Pages with multiple
1098 		 * buffers might have a mix of holes, data and
1099 		 * unwritten extents - any buffer with valid
1100 		 * data in it should have BH_Uptodate flag set
1101 		 * on it.
1102 		 */
1103 		if (buffer_unwritten(bh) ||
1104 		    buffer_uptodate(bh)) {
1105 			if (type == DATA_OFF)
1106 				found = true;
1107 		} else {
1108 			if (type == HOLE_OFF)
1109 				found = true;
1110 		}
1111 
1112 		if (found) {
1113 			*offset = lastoff;
1114 			break;
1115 		}
1116 		lastoff += bh->b_size;
1117 	} while ((bh = bh->b_this_page) != head);
1118 
1119 	return found;
1120 }
1121 
1122 /*
1123  * This routine is called to find out and return a data or hole offset
1124  * from the page cache for unwritten extents according to the desired
1125  * type for xfs_seek_hole_data().
1126  *
1127  * The argument offset is used to tell where we start to search from the
1128  * page cache.  Map is used to figure out the end points of the range to
1129  * lookup pages.
1130  *
1131  * Return true if the desired type of offset was found, and the argument
1132  * offset is filled with that address.  Otherwise, return false and keep
1133  * offset unchanged.
1134  */
1135 STATIC bool
1136 xfs_find_get_desired_pgoff(
1137 	struct inode		*inode,
1138 	struct xfs_bmbt_irec	*map,
1139 	unsigned int		type,
1140 	loff_t			*offset)
1141 {
1142 	struct xfs_inode	*ip = XFS_I(inode);
1143 	struct xfs_mount	*mp = ip->i_mount;
1144 	struct pagevec		pvec;
1145 	pgoff_t			index;
1146 	pgoff_t			end;
1147 	loff_t			endoff;
1148 	loff_t			startoff = *offset;
1149 	loff_t			lastoff = startoff;
1150 	bool			found = false;
1151 
1152 	pagevec_init(&pvec, 0);
1153 
1154 	index = startoff >> PAGE_SHIFT;
1155 	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1156 	end = endoff >> PAGE_SHIFT;
1157 	do {
1158 		int		want;
1159 		unsigned	nr_pages;
1160 		unsigned int	i;
1161 
1162 		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1163 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1164 					  want);
1165 		/*
1166 		 * No page mapped into given range.  If we are searching holes
1167 		 * and if this is the first time we got into the loop, it means
1168 		 * that the given offset is landed in a hole, return it.
1169 		 *
1170 		 * If we have already stepped through some block buffers to find
1171 		 * holes but they all contains data.  In this case, the last
1172 		 * offset is already updated and pointed to the end of the last
1173 		 * mapped page, if it does not reach the endpoint to search,
1174 		 * that means there should be a hole between them.
1175 		 */
1176 		if (nr_pages == 0) {
1177 			/* Data search found nothing */
1178 			if (type == DATA_OFF)
1179 				break;
1180 
1181 			ASSERT(type == HOLE_OFF);
1182 			if (lastoff == startoff || lastoff < endoff) {
1183 				found = true;
1184 				*offset = lastoff;
1185 			}
1186 			break;
1187 		}
1188 
1189 		/*
1190 		 * At lease we found one page.  If this is the first time we
1191 		 * step into the loop, and if the first page index offset is
1192 		 * greater than the given search offset, a hole was found.
1193 		 */
1194 		if (type == HOLE_OFF && lastoff == startoff &&
1195 		    lastoff < page_offset(pvec.pages[0])) {
1196 			found = true;
1197 			break;
1198 		}
1199 
1200 		for (i = 0; i < nr_pages; i++) {
1201 			struct page	*page = pvec.pages[i];
1202 			loff_t		b_offset;
1203 
1204 			/*
1205 			 * At this point, the page may be truncated or
1206 			 * invalidated (changing page->mapping to NULL),
1207 			 * or even swizzled back from swapper_space to tmpfs
1208 			 * file mapping. However, page->index will not change
1209 			 * because we have a reference on the page.
1210 			 *
1211 			 * Searching done if the page index is out of range.
1212 			 * If the current offset is not reaches the end of
1213 			 * the specified search range, there should be a hole
1214 			 * between them.
1215 			 */
1216 			if (page->index > end) {
1217 				if (type == HOLE_OFF && lastoff < endoff) {
1218 					*offset = lastoff;
1219 					found = true;
1220 				}
1221 				goto out;
1222 			}
1223 
1224 			lock_page(page);
1225 			/*
1226 			 * Page truncated or invalidated(page->mapping == NULL).
1227 			 * We can freely skip it and proceed to check the next
1228 			 * page.
1229 			 */
1230 			if (unlikely(page->mapping != inode->i_mapping)) {
1231 				unlock_page(page);
1232 				continue;
1233 			}
1234 
1235 			if (!page_has_buffers(page)) {
1236 				unlock_page(page);
1237 				continue;
1238 			}
1239 
1240 			found = xfs_lookup_buffer_offset(page, &b_offset, type);
1241 			if (found) {
1242 				/*
1243 				 * The found offset may be less than the start
1244 				 * point to search if this is the first time to
1245 				 * come here.
1246 				 */
1247 				*offset = max_t(loff_t, startoff, b_offset);
1248 				unlock_page(page);
1249 				goto out;
1250 			}
1251 
1252 			/*
1253 			 * We either searching data but nothing was found, or
1254 			 * searching hole but found a data buffer.  In either
1255 			 * case, probably the next page contains the desired
1256 			 * things, update the last offset to it so.
1257 			 */
1258 			lastoff = page_offset(page) + PAGE_SIZE;
1259 			unlock_page(page);
1260 		}
1261 
1262 		/*
1263 		 * The number of returned pages less than our desired, search
1264 		 * done.  In this case, nothing was found for searching data,
1265 		 * but we found a hole behind the last offset.
1266 		 */
1267 		if (nr_pages < want) {
1268 			if (type == HOLE_OFF) {
1269 				*offset = lastoff;
1270 				found = true;
1271 			}
1272 			break;
1273 		}
1274 
1275 		index = pvec.pages[i - 1]->index + 1;
1276 		pagevec_release(&pvec);
1277 	} while (index <= end);
1278 
1279 out:
1280 	pagevec_release(&pvec);
1281 	return found;
1282 }
1283 
1284 /*
1285  * caller must lock inode with xfs_ilock_data_map_shared,
1286  * can we craft an appropriate ASSERT?
1287  *
1288  * end is because the VFS-level lseek interface is defined such that any
1289  * offset past i_size shall return -ENXIO, but we use this for quota code
1290  * which does not maintain i_size, and we want to SEEK_DATA past i_size.
1291  */
1292 loff_t
1293 __xfs_seek_hole_data(
1294 	struct inode		*inode,
1295 	loff_t			start,
1296 	loff_t			end,
1297 	int			whence)
1298 {
1299 	struct xfs_inode	*ip = XFS_I(inode);
1300 	struct xfs_mount	*mp = ip->i_mount;
1301 	loff_t			uninitialized_var(offset);
1302 	xfs_fileoff_t		fsbno;
1303 	xfs_filblks_t		lastbno;
1304 	int			error;
1305 
1306 	if (start >= end) {
1307 		error = -ENXIO;
1308 		goto out_error;
1309 	}
1310 
1311 	/*
1312 	 * Try to read extents from the first block indicated
1313 	 * by fsbno to the end block of the file.
1314 	 */
1315 	fsbno = XFS_B_TO_FSBT(mp, start);
1316 	lastbno = XFS_B_TO_FSB(mp, end);
1317 
1318 	for (;;) {
1319 		struct xfs_bmbt_irec	map[2];
1320 		int			nmap = 2;
1321 		unsigned int		i;
1322 
1323 		error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
1324 				       XFS_BMAPI_ENTIRE);
1325 		if (error)
1326 			goto out_error;
1327 
1328 		/* No extents at given offset, must be beyond EOF */
1329 		if (nmap == 0) {
1330 			error = -ENXIO;
1331 			goto out_error;
1332 		}
1333 
1334 		for (i = 0; i < nmap; i++) {
1335 			offset = max_t(loff_t, start,
1336 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1337 
1338 			/* Landed in the hole we wanted? */
1339 			if (whence == SEEK_HOLE &&
1340 			    map[i].br_startblock == HOLESTARTBLOCK)
1341 				goto out;
1342 
1343 			/* Landed in the data extent we wanted? */
1344 			if (whence == SEEK_DATA &&
1345 			    (map[i].br_startblock == DELAYSTARTBLOCK ||
1346 			     (map[i].br_state == XFS_EXT_NORM &&
1347 			      !isnullstartblock(map[i].br_startblock))))
1348 				goto out;
1349 
1350 			/*
1351 			 * Landed in an unwritten extent, try to search
1352 			 * for hole or data from page cache.
1353 			 */
1354 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1355 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1356 				      whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1357 							&offset))
1358 					goto out;
1359 			}
1360 		}
1361 
1362 		/*
1363 		 * We only received one extent out of the two requested. This
1364 		 * means we've hit EOF and didn't find what we are looking for.
1365 		 */
1366 		if (nmap == 1) {
1367 			/*
1368 			 * If we were looking for a hole, set offset to
1369 			 * the end of the file (i.e., there is an implicit
1370 			 * hole at the end of any file).
1371 		 	 */
1372 			if (whence == SEEK_HOLE) {
1373 				offset = end;
1374 				break;
1375 			}
1376 			/*
1377 			 * If we were looking for data, it's nowhere to be found
1378 			 */
1379 			ASSERT(whence == SEEK_DATA);
1380 			error = -ENXIO;
1381 			goto out_error;
1382 		}
1383 
1384 		ASSERT(i > 1);
1385 
1386 		/*
1387 		 * Nothing was found, proceed to the next round of search
1388 		 * if the next reading offset is not at or beyond EOF.
1389 		 */
1390 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1391 		start = XFS_FSB_TO_B(mp, fsbno);
1392 		if (start >= end) {
1393 			if (whence == SEEK_HOLE) {
1394 				offset = end;
1395 				break;
1396 			}
1397 			ASSERT(whence == SEEK_DATA);
1398 			error = -ENXIO;
1399 			goto out_error;
1400 		}
1401 	}
1402 
1403 out:
1404 	/*
1405 	 * If at this point we have found the hole we wanted, the returned
1406 	 * offset may be bigger than the file size as it may be aligned to
1407 	 * page boundary for unwritten extents.  We need to deal with this
1408 	 * situation in particular.
1409 	 */
1410 	if (whence == SEEK_HOLE)
1411 		offset = min_t(loff_t, offset, end);
1412 
1413 	return offset;
1414 
1415 out_error:
1416 	return error;
1417 }
1418 
1419 STATIC loff_t
1420 xfs_seek_hole_data(
1421 	struct file		*file,
1422 	loff_t			start,
1423 	int			whence)
1424 {
1425 	struct inode		*inode = file->f_mapping->host;
1426 	struct xfs_inode	*ip = XFS_I(inode);
1427 	struct xfs_mount	*mp = ip->i_mount;
1428 	uint			lock;
1429 	loff_t			offset, end;
1430 	int			error = 0;
1431 
1432 	if (XFS_FORCED_SHUTDOWN(mp))
1433 		return -EIO;
1434 
1435 	lock = xfs_ilock_data_map_shared(ip);
1436 
1437 	end = i_size_read(inode);
1438 	offset = __xfs_seek_hole_data(inode, start, end, whence);
1439 	if (offset < 0) {
1440 		error = offset;
1441 		goto out_unlock;
1442 	}
1443 
1444 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1445 
1446 out_unlock:
1447 	xfs_iunlock(ip, lock);
1448 
1449 	if (error)
1450 		return error;
1451 	return offset;
1452 }
1453 
1454 STATIC loff_t
1455 xfs_file_llseek(
1456 	struct file	*file,
1457 	loff_t		offset,
1458 	int		whence)
1459 {
1460 	switch (whence) {
1461 	case SEEK_END:
1462 	case SEEK_CUR:
1463 	case SEEK_SET:
1464 		return generic_file_llseek(file, offset, whence);
1465 	case SEEK_HOLE:
1466 	case SEEK_DATA:
1467 		return xfs_seek_hole_data(file, offset, whence);
1468 	default:
1469 		return -EINVAL;
1470 	}
1471 }
1472 
1473 /*
1474  * Locking for serialisation of IO during page faults. This results in a lock
1475  * ordering of:
1476  *
1477  * mmap_sem (MM)
1478  *   sb_start_pagefault(vfs, freeze)
1479  *     i_mmaplock (XFS - truncate serialisation)
1480  *       page_lock (MM)
1481  *         i_lock (XFS - extent map serialisation)
1482  */
1483 
1484 /*
1485  * mmap()d file has taken write protection fault and is being made writable. We
1486  * can set the page state up correctly for a writable page, which means we can
1487  * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1488  * mapping.
1489  */
1490 STATIC int
1491 xfs_filemap_page_mkwrite(
1492 	struct vm_area_struct	*vma,
1493 	struct vm_fault		*vmf)
1494 {
1495 	struct inode		*inode = file_inode(vma->vm_file);
1496 	int			ret;
1497 
1498 	trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1499 
1500 	sb_start_pagefault(inode->i_sb);
1501 	file_update_time(vma->vm_file);
1502 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1503 
1504 	if (IS_DAX(inode)) {
1505 		ret = dax_mkwrite(vma, vmf, xfs_get_blocks_dax_fault);
1506 	} else {
1507 		ret = iomap_page_mkwrite(vma, vmf, &xfs_iomap_ops);
1508 		ret = block_page_mkwrite_return(ret);
1509 	}
1510 
1511 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1512 	sb_end_pagefault(inode->i_sb);
1513 
1514 	return ret;
1515 }
1516 
1517 STATIC int
1518 xfs_filemap_fault(
1519 	struct vm_area_struct	*vma,
1520 	struct vm_fault		*vmf)
1521 {
1522 	struct inode		*inode = file_inode(vma->vm_file);
1523 	int			ret;
1524 
1525 	trace_xfs_filemap_fault(XFS_I(inode));
1526 
1527 	/* DAX can shortcut the normal fault path on write faults! */
1528 	if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1529 		return xfs_filemap_page_mkwrite(vma, vmf);
1530 
1531 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1532 	if (IS_DAX(inode)) {
1533 		/*
1534 		 * we do not want to trigger unwritten extent conversion on read
1535 		 * faults - that is unnecessary overhead and would also require
1536 		 * changes to xfs_get_blocks_direct() to map unwritten extent
1537 		 * ioend for conversion on read-only mappings.
1538 		 */
1539 		ret = dax_fault(vma, vmf, xfs_get_blocks_dax_fault);
1540 	} else
1541 		ret = filemap_fault(vma, vmf);
1542 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1543 
1544 	return ret;
1545 }
1546 
1547 /*
1548  * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
1549  * both read and write faults. Hence we need to handle both cases. There is no
1550  * ->pmd_mkwrite callout for huge pages, so we have a single function here to
1551  * handle both cases here. @flags carries the information on the type of fault
1552  * occuring.
1553  */
1554 STATIC int
1555 xfs_filemap_pmd_fault(
1556 	struct vm_area_struct	*vma,
1557 	unsigned long		addr,
1558 	pmd_t			*pmd,
1559 	unsigned int		flags)
1560 {
1561 	struct inode		*inode = file_inode(vma->vm_file);
1562 	struct xfs_inode	*ip = XFS_I(inode);
1563 	int			ret;
1564 
1565 	if (!IS_DAX(inode))
1566 		return VM_FAULT_FALLBACK;
1567 
1568 	trace_xfs_filemap_pmd_fault(ip);
1569 
1570 	if (flags & FAULT_FLAG_WRITE) {
1571 		sb_start_pagefault(inode->i_sb);
1572 		file_update_time(vma->vm_file);
1573 	}
1574 
1575 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1576 	ret = dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault);
1577 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1578 
1579 	if (flags & FAULT_FLAG_WRITE)
1580 		sb_end_pagefault(inode->i_sb);
1581 
1582 	return ret;
1583 }
1584 
1585 /*
1586  * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1587  * updates on write faults. In reality, it's need to serialise against
1588  * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1589  * to ensure we serialise the fault barrier in place.
1590  */
1591 static int
1592 xfs_filemap_pfn_mkwrite(
1593 	struct vm_area_struct	*vma,
1594 	struct vm_fault		*vmf)
1595 {
1596 
1597 	struct inode		*inode = file_inode(vma->vm_file);
1598 	struct xfs_inode	*ip = XFS_I(inode);
1599 	int			ret = VM_FAULT_NOPAGE;
1600 	loff_t			size;
1601 
1602 	trace_xfs_filemap_pfn_mkwrite(ip);
1603 
1604 	sb_start_pagefault(inode->i_sb);
1605 	file_update_time(vma->vm_file);
1606 
1607 	/* check if the faulting page hasn't raced with truncate */
1608 	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1609 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1610 	if (vmf->pgoff >= size)
1611 		ret = VM_FAULT_SIGBUS;
1612 	else if (IS_DAX(inode))
1613 		ret = dax_pfn_mkwrite(vma, vmf);
1614 	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1615 	sb_end_pagefault(inode->i_sb);
1616 	return ret;
1617 
1618 }
1619 
1620 static const struct vm_operations_struct xfs_file_vm_ops = {
1621 	.fault		= xfs_filemap_fault,
1622 	.pmd_fault	= xfs_filemap_pmd_fault,
1623 	.map_pages	= filemap_map_pages,
1624 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1625 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1626 };
1627 
1628 STATIC int
1629 xfs_file_mmap(
1630 	struct file	*filp,
1631 	struct vm_area_struct *vma)
1632 {
1633 	file_accessed(filp);
1634 	vma->vm_ops = &xfs_file_vm_ops;
1635 	if (IS_DAX(file_inode(filp)))
1636 		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1637 	return 0;
1638 }
1639 
1640 const struct file_operations xfs_file_operations = {
1641 	.llseek		= xfs_file_llseek,
1642 	.read_iter	= xfs_file_read_iter,
1643 	.write_iter	= xfs_file_write_iter,
1644 	.splice_read	= xfs_file_splice_read,
1645 	.splice_write	= iter_file_splice_write,
1646 	.unlocked_ioctl	= xfs_file_ioctl,
1647 #ifdef CONFIG_COMPAT
1648 	.compat_ioctl	= xfs_file_compat_ioctl,
1649 #endif
1650 	.mmap		= xfs_file_mmap,
1651 	.open		= xfs_file_open,
1652 	.release	= xfs_file_release,
1653 	.fsync		= xfs_file_fsync,
1654 	.fallocate	= xfs_file_fallocate,
1655 };
1656 
1657 const struct file_operations xfs_dir_file_operations = {
1658 	.open		= xfs_dir_open,
1659 	.read		= generic_read_dir,
1660 	.iterate_shared	= xfs_file_readdir,
1661 	.llseek		= generic_file_llseek,
1662 	.unlocked_ioctl	= xfs_file_ioctl,
1663 #ifdef CONFIG_COMPAT
1664 	.compat_ioctl	= xfs_file_compat_ioctl,
1665 #endif
1666 	.fsync		= xfs_dir_fsync,
1667 };
1668