xref: /openbmc/linux/fs/xfs/xfs_file.c (revision 151f4e2b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_da_format.h"
14 #include "xfs_da_btree.h"
15 #include "xfs_inode.h"
16 #include "xfs_trans.h"
17 #include "xfs_inode_item.h"
18 #include "xfs_bmap.h"
19 #include "xfs_bmap_util.h"
20 #include "xfs_error.h"
21 #include "xfs_dir2.h"
22 #include "xfs_dir2_priv.h"
23 #include "xfs_ioctl.h"
24 #include "xfs_trace.h"
25 #include "xfs_log.h"
26 #include "xfs_icache.h"
27 #include "xfs_pnfs.h"
28 #include "xfs_iomap.h"
29 #include "xfs_reflink.h"
30 
31 #include <linux/dcache.h>
32 #include <linux/falloc.h>
33 #include <linux/pagevec.h>
34 #include <linux/backing-dev.h>
35 #include <linux/mman.h>
36 
37 static const struct vm_operations_struct xfs_file_vm_ops;
38 
39 int
40 xfs_update_prealloc_flags(
41 	struct xfs_inode	*ip,
42 	enum xfs_prealloc_flags	flags)
43 {
44 	struct xfs_trans	*tp;
45 	int			error;
46 
47 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
48 			0, 0, 0, &tp);
49 	if (error)
50 		return error;
51 
52 	xfs_ilock(ip, XFS_ILOCK_EXCL);
53 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
54 
55 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
56 		VFS_I(ip)->i_mode &= ~S_ISUID;
57 		if (VFS_I(ip)->i_mode & S_IXGRP)
58 			VFS_I(ip)->i_mode &= ~S_ISGID;
59 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
60 	}
61 
62 	if (flags & XFS_PREALLOC_SET)
63 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
64 	if (flags & XFS_PREALLOC_CLEAR)
65 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
66 
67 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
68 	if (flags & XFS_PREALLOC_SYNC)
69 		xfs_trans_set_sync(tp);
70 	return xfs_trans_commit(tp);
71 }
72 
73 /*
74  * Fsync operations on directories are much simpler than on regular files,
75  * as there is no file data to flush, and thus also no need for explicit
76  * cache flush operations, and there are no non-transaction metadata updates
77  * on directories either.
78  */
79 STATIC int
80 xfs_dir_fsync(
81 	struct file		*file,
82 	loff_t			start,
83 	loff_t			end,
84 	int			datasync)
85 {
86 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
87 	struct xfs_mount	*mp = ip->i_mount;
88 	xfs_lsn_t		lsn = 0;
89 
90 	trace_xfs_dir_fsync(ip);
91 
92 	xfs_ilock(ip, XFS_ILOCK_SHARED);
93 	if (xfs_ipincount(ip))
94 		lsn = ip->i_itemp->ili_last_lsn;
95 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
96 
97 	if (!lsn)
98 		return 0;
99 	return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
100 }
101 
102 STATIC int
103 xfs_file_fsync(
104 	struct file		*file,
105 	loff_t			start,
106 	loff_t			end,
107 	int			datasync)
108 {
109 	struct inode		*inode = file->f_mapping->host;
110 	struct xfs_inode	*ip = XFS_I(inode);
111 	struct xfs_mount	*mp = ip->i_mount;
112 	int			error = 0;
113 	int			log_flushed = 0;
114 	xfs_lsn_t		lsn = 0;
115 
116 	trace_xfs_file_fsync(ip);
117 
118 	error = file_write_and_wait_range(file, start, end);
119 	if (error)
120 		return error;
121 
122 	if (XFS_FORCED_SHUTDOWN(mp))
123 		return -EIO;
124 
125 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
126 
127 	/*
128 	 * If we have an RT and/or log subvolume we need to make sure to flush
129 	 * the write cache the device used for file data first.  This is to
130 	 * ensure newly written file data make it to disk before logging the new
131 	 * inode size in case of an extending write.
132 	 */
133 	if (XFS_IS_REALTIME_INODE(ip))
134 		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
135 	else if (mp->m_logdev_targp != mp->m_ddev_targp)
136 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
137 
138 	/*
139 	 * All metadata updates are logged, which means that we just have to
140 	 * flush the log up to the latest LSN that touched the inode. If we have
141 	 * concurrent fsync/fdatasync() calls, we need them to all block on the
142 	 * log force before we clear the ili_fsync_fields field. This ensures
143 	 * that we don't get a racing sync operation that does not wait for the
144 	 * metadata to hit the journal before returning. If we race with
145 	 * clearing the ili_fsync_fields, then all that will happen is the log
146 	 * force will do nothing as the lsn will already be on disk. We can't
147 	 * race with setting ili_fsync_fields because that is done under
148 	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
149 	 * until after the ili_fsync_fields is cleared.
150 	 */
151 	xfs_ilock(ip, XFS_ILOCK_SHARED);
152 	if (xfs_ipincount(ip)) {
153 		if (!datasync ||
154 		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
155 			lsn = ip->i_itemp->ili_last_lsn;
156 	}
157 
158 	if (lsn) {
159 		error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
160 		ip->i_itemp->ili_fsync_fields = 0;
161 	}
162 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
163 
164 	/*
165 	 * If we only have a single device, and the log force about was
166 	 * a no-op we might have to flush the data device cache here.
167 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
168 	 * an already allocated file and thus do not have any metadata to
169 	 * commit.
170 	 */
171 	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
172 	    mp->m_logdev_targp == mp->m_ddev_targp)
173 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
174 
175 	return error;
176 }
177 
178 STATIC ssize_t
179 xfs_file_dio_aio_read(
180 	struct kiocb		*iocb,
181 	struct iov_iter		*to)
182 {
183 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
184 	size_t			count = iov_iter_count(to);
185 	ssize_t			ret;
186 
187 	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
188 
189 	if (!count)
190 		return 0; /* skip atime */
191 
192 	file_accessed(iocb->ki_filp);
193 
194 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
195 	ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
196 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
197 
198 	return ret;
199 }
200 
201 static noinline ssize_t
202 xfs_file_dax_read(
203 	struct kiocb		*iocb,
204 	struct iov_iter		*to)
205 {
206 	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
207 	size_t			count = iov_iter_count(to);
208 	ssize_t			ret = 0;
209 
210 	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
211 
212 	if (!count)
213 		return 0; /* skip atime */
214 
215 	if (iocb->ki_flags & IOCB_NOWAIT) {
216 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
217 			return -EAGAIN;
218 	} else {
219 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
220 	}
221 
222 	ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
223 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
224 
225 	file_accessed(iocb->ki_filp);
226 	return ret;
227 }
228 
229 STATIC ssize_t
230 xfs_file_buffered_aio_read(
231 	struct kiocb		*iocb,
232 	struct iov_iter		*to)
233 {
234 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
235 	ssize_t			ret;
236 
237 	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
238 
239 	if (iocb->ki_flags & IOCB_NOWAIT) {
240 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
241 			return -EAGAIN;
242 	} else {
243 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
244 	}
245 	ret = generic_file_read_iter(iocb, to);
246 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
247 
248 	return ret;
249 }
250 
251 STATIC ssize_t
252 xfs_file_read_iter(
253 	struct kiocb		*iocb,
254 	struct iov_iter		*to)
255 {
256 	struct inode		*inode = file_inode(iocb->ki_filp);
257 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
258 	ssize_t			ret = 0;
259 
260 	XFS_STATS_INC(mp, xs_read_calls);
261 
262 	if (XFS_FORCED_SHUTDOWN(mp))
263 		return -EIO;
264 
265 	if (IS_DAX(inode))
266 		ret = xfs_file_dax_read(iocb, to);
267 	else if (iocb->ki_flags & IOCB_DIRECT)
268 		ret = xfs_file_dio_aio_read(iocb, to);
269 	else
270 		ret = xfs_file_buffered_aio_read(iocb, to);
271 
272 	if (ret > 0)
273 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
274 	return ret;
275 }
276 
277 /*
278  * Common pre-write limit and setup checks.
279  *
280  * Called with the iolocked held either shared and exclusive according to
281  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
282  * if called for a direct write beyond i_size.
283  */
284 STATIC ssize_t
285 xfs_file_aio_write_checks(
286 	struct kiocb		*iocb,
287 	struct iov_iter		*from,
288 	int			*iolock)
289 {
290 	struct file		*file = iocb->ki_filp;
291 	struct inode		*inode = file->f_mapping->host;
292 	struct xfs_inode	*ip = XFS_I(inode);
293 	ssize_t			error = 0;
294 	size_t			count = iov_iter_count(from);
295 	bool			drained_dio = false;
296 	loff_t			isize;
297 
298 restart:
299 	error = generic_write_checks(iocb, from);
300 	if (error <= 0)
301 		return error;
302 
303 	error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
304 	if (error)
305 		return error;
306 
307 	/*
308 	 * For changing security info in file_remove_privs() we need i_rwsem
309 	 * exclusively.
310 	 */
311 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
312 		xfs_iunlock(ip, *iolock);
313 		*iolock = XFS_IOLOCK_EXCL;
314 		xfs_ilock(ip, *iolock);
315 		goto restart;
316 	}
317 	/*
318 	 * If the offset is beyond the size of the file, we need to zero any
319 	 * blocks that fall between the existing EOF and the start of this
320 	 * write.  If zeroing is needed and we are currently holding the
321 	 * iolock shared, we need to update it to exclusive which implies
322 	 * having to redo all checks before.
323 	 *
324 	 * We need to serialise against EOF updates that occur in IO
325 	 * completions here. We want to make sure that nobody is changing the
326 	 * size while we do this check until we have placed an IO barrier (i.e.
327 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
328 	 * The spinlock effectively forms a memory barrier once we have the
329 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
330 	 * and hence be able to correctly determine if we need to run zeroing.
331 	 */
332 	spin_lock(&ip->i_flags_lock);
333 	isize = i_size_read(inode);
334 	if (iocb->ki_pos > isize) {
335 		spin_unlock(&ip->i_flags_lock);
336 		if (!drained_dio) {
337 			if (*iolock == XFS_IOLOCK_SHARED) {
338 				xfs_iunlock(ip, *iolock);
339 				*iolock = XFS_IOLOCK_EXCL;
340 				xfs_ilock(ip, *iolock);
341 				iov_iter_reexpand(from, count);
342 			}
343 			/*
344 			 * We now have an IO submission barrier in place, but
345 			 * AIO can do EOF updates during IO completion and hence
346 			 * we now need to wait for all of them to drain. Non-AIO
347 			 * DIO will have drained before we are given the
348 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
349 			 * no-op.
350 			 */
351 			inode_dio_wait(inode);
352 			drained_dio = true;
353 			goto restart;
354 		}
355 
356 		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
357 		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
358 				NULL, &xfs_iomap_ops);
359 		if (error)
360 			return error;
361 	} else
362 		spin_unlock(&ip->i_flags_lock);
363 
364 	/*
365 	 * Updating the timestamps will grab the ilock again from
366 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
367 	 * lock above.  Eventually we should look into a way to avoid
368 	 * the pointless lock roundtrip.
369 	 */
370 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
371 		error = file_update_time(file);
372 		if (error)
373 			return error;
374 	}
375 
376 	/*
377 	 * If we're writing the file then make sure to clear the setuid and
378 	 * setgid bits if the process is not being run by root.  This keeps
379 	 * people from modifying setuid and setgid binaries.
380 	 */
381 	if (!IS_NOSEC(inode))
382 		return file_remove_privs(file);
383 	return 0;
384 }
385 
386 static int
387 xfs_dio_write_end_io(
388 	struct kiocb		*iocb,
389 	ssize_t			size,
390 	unsigned		flags)
391 {
392 	struct inode		*inode = file_inode(iocb->ki_filp);
393 	struct xfs_inode	*ip = XFS_I(inode);
394 	loff_t			offset = iocb->ki_pos;
395 	int			error = 0;
396 
397 	trace_xfs_end_io_direct_write(ip, offset, size);
398 
399 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
400 		return -EIO;
401 
402 	if (size <= 0)
403 		return size;
404 
405 	/*
406 	 * Capture amount written on completion as we can't reliably account
407 	 * for it on submission.
408 	 */
409 	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
410 
411 	if (flags & IOMAP_DIO_COW) {
412 		error = xfs_reflink_end_cow(ip, offset, size);
413 		if (error)
414 			return error;
415 	}
416 
417 	/*
418 	 * Unwritten conversion updates the in-core isize after extent
419 	 * conversion but before updating the on-disk size. Updating isize any
420 	 * earlier allows a racing dio read to find unwritten extents before
421 	 * they are converted.
422 	 */
423 	if (flags & IOMAP_DIO_UNWRITTEN)
424 		return xfs_iomap_write_unwritten(ip, offset, size, true);
425 
426 	/*
427 	 * We need to update the in-core inode size here so that we don't end up
428 	 * with the on-disk inode size being outside the in-core inode size. We
429 	 * have no other method of updating EOF for AIO, so always do it here
430 	 * if necessary.
431 	 *
432 	 * We need to lock the test/set EOF update as we can be racing with
433 	 * other IO completions here to update the EOF. Failing to serialise
434 	 * here can result in EOF moving backwards and Bad Things Happen when
435 	 * that occurs.
436 	 */
437 	spin_lock(&ip->i_flags_lock);
438 	if (offset + size > i_size_read(inode)) {
439 		i_size_write(inode, offset + size);
440 		spin_unlock(&ip->i_flags_lock);
441 		error = xfs_setfilesize(ip, offset, size);
442 	} else {
443 		spin_unlock(&ip->i_flags_lock);
444 	}
445 
446 	return error;
447 }
448 
449 /*
450  * xfs_file_dio_aio_write - handle direct IO writes
451  *
452  * Lock the inode appropriately to prepare for and issue a direct IO write.
453  * By separating it from the buffered write path we remove all the tricky to
454  * follow locking changes and looping.
455  *
456  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
457  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
458  * pages are flushed out.
459  *
460  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
461  * allowing them to be done in parallel with reads and other direct IO writes.
462  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
463  * needs to do sub-block zeroing and that requires serialisation against other
464  * direct IOs to the same block. In this case we need to serialise the
465  * submission of the unaligned IOs so that we don't get racing block zeroing in
466  * the dio layer.  To avoid the problem with aio, we also need to wait for
467  * outstanding IOs to complete so that unwritten extent conversion is completed
468  * before we try to map the overlapping block. This is currently implemented by
469  * hitting it with a big hammer (i.e. inode_dio_wait()).
470  *
471  * Returns with locks held indicated by @iolock and errors indicated by
472  * negative return values.
473  */
474 STATIC ssize_t
475 xfs_file_dio_aio_write(
476 	struct kiocb		*iocb,
477 	struct iov_iter		*from)
478 {
479 	struct file		*file = iocb->ki_filp;
480 	struct address_space	*mapping = file->f_mapping;
481 	struct inode		*inode = mapping->host;
482 	struct xfs_inode	*ip = XFS_I(inode);
483 	struct xfs_mount	*mp = ip->i_mount;
484 	ssize_t			ret = 0;
485 	int			unaligned_io = 0;
486 	int			iolock;
487 	size_t			count = iov_iter_count(from);
488 	struct xfs_buftarg      *target = XFS_IS_REALTIME_INODE(ip) ?
489 					mp->m_rtdev_targp : mp->m_ddev_targp;
490 
491 	/* DIO must be aligned to device logical sector size */
492 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
493 		return -EINVAL;
494 
495 	/*
496 	 * Don't take the exclusive iolock here unless the I/O is unaligned to
497 	 * the file system block size.  We don't need to consider the EOF
498 	 * extension case here because xfs_file_aio_write_checks() will relock
499 	 * the inode as necessary for EOF zeroing cases and fill out the new
500 	 * inode size as appropriate.
501 	 */
502 	if ((iocb->ki_pos & mp->m_blockmask) ||
503 	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
504 		unaligned_io = 1;
505 
506 		/*
507 		 * We can't properly handle unaligned direct I/O to reflink
508 		 * files yet, as we can't unshare a partial block.
509 		 */
510 		if (xfs_is_cow_inode(ip)) {
511 			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
512 			return -EREMCHG;
513 		}
514 		iolock = XFS_IOLOCK_EXCL;
515 	} else {
516 		iolock = XFS_IOLOCK_SHARED;
517 	}
518 
519 	if (iocb->ki_flags & IOCB_NOWAIT) {
520 		/* unaligned dio always waits, bail */
521 		if (unaligned_io)
522 			return -EAGAIN;
523 		if (!xfs_ilock_nowait(ip, iolock))
524 			return -EAGAIN;
525 	} else {
526 		xfs_ilock(ip, iolock);
527 	}
528 
529 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
530 	if (ret)
531 		goto out;
532 	count = iov_iter_count(from);
533 
534 	/*
535 	 * If we are doing unaligned IO, we can't allow any other overlapping IO
536 	 * in-flight at the same time or we risk data corruption. Wait for all
537 	 * other IO to drain before we submit. If the IO is aligned, demote the
538 	 * iolock if we had to take the exclusive lock in
539 	 * xfs_file_aio_write_checks() for other reasons.
540 	 */
541 	if (unaligned_io) {
542 		inode_dio_wait(inode);
543 	} else if (iolock == XFS_IOLOCK_EXCL) {
544 		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
545 		iolock = XFS_IOLOCK_SHARED;
546 	}
547 
548 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
549 	ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
550 
551 	/*
552 	 * If unaligned, this is the only IO in-flight. If it has not yet
553 	 * completed, wait on it before we release the iolock to prevent
554 	 * subsequent overlapping IO.
555 	 */
556 	if (ret == -EIOCBQUEUED && unaligned_io)
557 		inode_dio_wait(inode);
558 out:
559 	xfs_iunlock(ip, iolock);
560 
561 	/*
562 	 * No fallback to buffered IO on errors for XFS, direct IO will either
563 	 * complete fully or fail.
564 	 */
565 	ASSERT(ret < 0 || ret == count);
566 	return ret;
567 }
568 
569 static noinline ssize_t
570 xfs_file_dax_write(
571 	struct kiocb		*iocb,
572 	struct iov_iter		*from)
573 {
574 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
575 	struct xfs_inode	*ip = XFS_I(inode);
576 	int			iolock = XFS_IOLOCK_EXCL;
577 	ssize_t			ret, error = 0;
578 	size_t			count;
579 	loff_t			pos;
580 
581 	if (iocb->ki_flags & IOCB_NOWAIT) {
582 		if (!xfs_ilock_nowait(ip, iolock))
583 			return -EAGAIN;
584 	} else {
585 		xfs_ilock(ip, iolock);
586 	}
587 
588 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
589 	if (ret)
590 		goto out;
591 
592 	pos = iocb->ki_pos;
593 	count = iov_iter_count(from);
594 
595 	trace_xfs_file_dax_write(ip, count, pos);
596 	ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
597 	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
598 		i_size_write(inode, iocb->ki_pos);
599 		error = xfs_setfilesize(ip, pos, ret);
600 	}
601 out:
602 	xfs_iunlock(ip, iolock);
603 	if (error)
604 		return error;
605 
606 	if (ret > 0) {
607 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
608 
609 		/* Handle various SYNC-type writes */
610 		ret = generic_write_sync(iocb, ret);
611 	}
612 	return ret;
613 }
614 
615 STATIC ssize_t
616 xfs_file_buffered_aio_write(
617 	struct kiocb		*iocb,
618 	struct iov_iter		*from)
619 {
620 	struct file		*file = iocb->ki_filp;
621 	struct address_space	*mapping = file->f_mapping;
622 	struct inode		*inode = mapping->host;
623 	struct xfs_inode	*ip = XFS_I(inode);
624 	ssize_t			ret;
625 	int			enospc = 0;
626 	int			iolock;
627 
628 	if (iocb->ki_flags & IOCB_NOWAIT)
629 		return -EOPNOTSUPP;
630 
631 write_retry:
632 	iolock = XFS_IOLOCK_EXCL;
633 	xfs_ilock(ip, iolock);
634 
635 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
636 	if (ret)
637 		goto out;
638 
639 	/* We can write back this queue in page reclaim */
640 	current->backing_dev_info = inode_to_bdi(inode);
641 
642 	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
643 	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
644 	if (likely(ret >= 0))
645 		iocb->ki_pos += ret;
646 
647 	/*
648 	 * If we hit a space limit, try to free up some lingering preallocated
649 	 * space before returning an error. In the case of ENOSPC, first try to
650 	 * write back all dirty inodes to free up some of the excess reserved
651 	 * metadata space. This reduces the chances that the eofblocks scan
652 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
653 	 * also behaves as a filter to prevent too many eofblocks scans from
654 	 * running at the same time.
655 	 */
656 	if (ret == -EDQUOT && !enospc) {
657 		xfs_iunlock(ip, iolock);
658 		enospc = xfs_inode_free_quota_eofblocks(ip);
659 		if (enospc)
660 			goto write_retry;
661 		enospc = xfs_inode_free_quota_cowblocks(ip);
662 		if (enospc)
663 			goto write_retry;
664 		iolock = 0;
665 	} else if (ret == -ENOSPC && !enospc) {
666 		struct xfs_eofblocks eofb = {0};
667 
668 		enospc = 1;
669 		xfs_flush_inodes(ip->i_mount);
670 
671 		xfs_iunlock(ip, iolock);
672 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
673 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
674 		xfs_icache_free_cowblocks(ip->i_mount, &eofb);
675 		goto write_retry;
676 	}
677 
678 	current->backing_dev_info = NULL;
679 out:
680 	if (iolock)
681 		xfs_iunlock(ip, iolock);
682 
683 	if (ret > 0) {
684 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
685 		/* Handle various SYNC-type writes */
686 		ret = generic_write_sync(iocb, ret);
687 	}
688 	return ret;
689 }
690 
691 STATIC ssize_t
692 xfs_file_write_iter(
693 	struct kiocb		*iocb,
694 	struct iov_iter		*from)
695 {
696 	struct file		*file = iocb->ki_filp;
697 	struct address_space	*mapping = file->f_mapping;
698 	struct inode		*inode = mapping->host;
699 	struct xfs_inode	*ip = XFS_I(inode);
700 	ssize_t			ret;
701 	size_t			ocount = iov_iter_count(from);
702 
703 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
704 
705 	if (ocount == 0)
706 		return 0;
707 
708 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
709 		return -EIO;
710 
711 	if (IS_DAX(inode))
712 		return xfs_file_dax_write(iocb, from);
713 
714 	if (iocb->ki_flags & IOCB_DIRECT) {
715 		/*
716 		 * Allow a directio write to fall back to a buffered
717 		 * write *only* in the case that we're doing a reflink
718 		 * CoW.  In all other directio scenarios we do not
719 		 * allow an operation to fall back to buffered mode.
720 		 */
721 		ret = xfs_file_dio_aio_write(iocb, from);
722 		if (ret != -EREMCHG)
723 			return ret;
724 	}
725 
726 	return xfs_file_buffered_aio_write(iocb, from);
727 }
728 
729 static void
730 xfs_wait_dax_page(
731 	struct inode		*inode)
732 {
733 	struct xfs_inode        *ip = XFS_I(inode);
734 
735 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
736 	schedule();
737 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
738 }
739 
740 static int
741 xfs_break_dax_layouts(
742 	struct inode		*inode,
743 	bool			*retry)
744 {
745 	struct page		*page;
746 
747 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
748 
749 	page = dax_layout_busy_page(inode->i_mapping);
750 	if (!page)
751 		return 0;
752 
753 	*retry = true;
754 	return ___wait_var_event(&page->_refcount,
755 			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
756 			0, 0, xfs_wait_dax_page(inode));
757 }
758 
759 int
760 xfs_break_layouts(
761 	struct inode		*inode,
762 	uint			*iolock,
763 	enum layout_break_reason reason)
764 {
765 	bool			retry;
766 	int			error;
767 
768 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
769 
770 	do {
771 		retry = false;
772 		switch (reason) {
773 		case BREAK_UNMAP:
774 			error = xfs_break_dax_layouts(inode, &retry);
775 			if (error || retry)
776 				break;
777 			/* fall through */
778 		case BREAK_WRITE:
779 			error = xfs_break_leased_layouts(inode, iolock, &retry);
780 			break;
781 		default:
782 			WARN_ON_ONCE(1);
783 			error = -EINVAL;
784 		}
785 	} while (error == 0 && retry);
786 
787 	return error;
788 }
789 
790 #define	XFS_FALLOC_FL_SUPPORTED						\
791 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
792 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
793 		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
794 
795 STATIC long
796 xfs_file_fallocate(
797 	struct file		*file,
798 	int			mode,
799 	loff_t			offset,
800 	loff_t			len)
801 {
802 	struct inode		*inode = file_inode(file);
803 	struct xfs_inode	*ip = XFS_I(inode);
804 	long			error;
805 	enum xfs_prealloc_flags	flags = 0;
806 	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
807 	loff_t			new_size = 0;
808 	bool			do_file_insert = false;
809 
810 	if (!S_ISREG(inode->i_mode))
811 		return -EINVAL;
812 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
813 		return -EOPNOTSUPP;
814 
815 	xfs_ilock(ip, iolock);
816 	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
817 	if (error)
818 		goto out_unlock;
819 
820 	if (mode & FALLOC_FL_PUNCH_HOLE) {
821 		error = xfs_free_file_space(ip, offset, len);
822 		if (error)
823 			goto out_unlock;
824 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
825 		unsigned int blksize_mask = i_blocksize(inode) - 1;
826 
827 		if (offset & blksize_mask || len & blksize_mask) {
828 			error = -EINVAL;
829 			goto out_unlock;
830 		}
831 
832 		/*
833 		 * There is no need to overlap collapse range with EOF,
834 		 * in which case it is effectively a truncate operation
835 		 */
836 		if (offset + len >= i_size_read(inode)) {
837 			error = -EINVAL;
838 			goto out_unlock;
839 		}
840 
841 		new_size = i_size_read(inode) - len;
842 
843 		error = xfs_collapse_file_space(ip, offset, len);
844 		if (error)
845 			goto out_unlock;
846 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
847 		unsigned int	blksize_mask = i_blocksize(inode) - 1;
848 		loff_t		isize = i_size_read(inode);
849 
850 		if (offset & blksize_mask || len & blksize_mask) {
851 			error = -EINVAL;
852 			goto out_unlock;
853 		}
854 
855 		/*
856 		 * New inode size must not exceed ->s_maxbytes, accounting for
857 		 * possible signed overflow.
858 		 */
859 		if (inode->i_sb->s_maxbytes - isize < len) {
860 			error = -EFBIG;
861 			goto out_unlock;
862 		}
863 		new_size = isize + len;
864 
865 		/* Offset should be less than i_size */
866 		if (offset >= isize) {
867 			error = -EINVAL;
868 			goto out_unlock;
869 		}
870 		do_file_insert = true;
871 	} else {
872 		flags |= XFS_PREALLOC_SET;
873 
874 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
875 		    offset + len > i_size_read(inode)) {
876 			new_size = offset + len;
877 			error = inode_newsize_ok(inode, new_size);
878 			if (error)
879 				goto out_unlock;
880 		}
881 
882 		if (mode & FALLOC_FL_ZERO_RANGE) {
883 			error = xfs_zero_file_space(ip, offset, len);
884 		} else if (mode & FALLOC_FL_UNSHARE_RANGE) {
885 			error = xfs_reflink_unshare(ip, offset, len);
886 			if (error)
887 				goto out_unlock;
888 
889 			if (!xfs_is_always_cow_inode(ip)) {
890 				error = xfs_alloc_file_space(ip, offset, len,
891 						XFS_BMAPI_PREALLOC);
892 			}
893 		} else {
894 			/*
895 			 * If always_cow mode we can't use preallocations and
896 			 * thus should not create them.
897 			 */
898 			if (xfs_is_always_cow_inode(ip)) {
899 				error = -EOPNOTSUPP;
900 				goto out_unlock;
901 			}
902 
903 			error = xfs_alloc_file_space(ip, offset, len,
904 						     XFS_BMAPI_PREALLOC);
905 		}
906 		if (error)
907 			goto out_unlock;
908 	}
909 
910 	if (file->f_flags & O_DSYNC)
911 		flags |= XFS_PREALLOC_SYNC;
912 
913 	error = xfs_update_prealloc_flags(ip, flags);
914 	if (error)
915 		goto out_unlock;
916 
917 	/* Change file size if needed */
918 	if (new_size) {
919 		struct iattr iattr;
920 
921 		iattr.ia_valid = ATTR_SIZE;
922 		iattr.ia_size = new_size;
923 		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
924 		if (error)
925 			goto out_unlock;
926 	}
927 
928 	/*
929 	 * Perform hole insertion now that the file size has been
930 	 * updated so that if we crash during the operation we don't
931 	 * leave shifted extents past EOF and hence losing access to
932 	 * the data that is contained within them.
933 	 */
934 	if (do_file_insert)
935 		error = xfs_insert_file_space(ip, offset, len);
936 
937 out_unlock:
938 	xfs_iunlock(ip, iolock);
939 	return error;
940 }
941 
942 
943 STATIC loff_t
944 xfs_file_remap_range(
945 	struct file		*file_in,
946 	loff_t			pos_in,
947 	struct file		*file_out,
948 	loff_t			pos_out,
949 	loff_t			len,
950 	unsigned int		remap_flags)
951 {
952 	struct inode		*inode_in = file_inode(file_in);
953 	struct xfs_inode	*src = XFS_I(inode_in);
954 	struct inode		*inode_out = file_inode(file_out);
955 	struct xfs_inode	*dest = XFS_I(inode_out);
956 	struct xfs_mount	*mp = src->i_mount;
957 	loff_t			remapped = 0;
958 	xfs_extlen_t		cowextsize;
959 	int			ret;
960 
961 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
962 		return -EINVAL;
963 
964 	if (!xfs_sb_version_hasreflink(&mp->m_sb))
965 		return -EOPNOTSUPP;
966 
967 	if (XFS_FORCED_SHUTDOWN(mp))
968 		return -EIO;
969 
970 	/* Prepare and then clone file data. */
971 	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
972 			&len, remap_flags);
973 	if (ret < 0 || len == 0)
974 		return ret;
975 
976 	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
977 
978 	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
979 			&remapped);
980 	if (ret)
981 		goto out_unlock;
982 
983 	/*
984 	 * Carry the cowextsize hint from src to dest if we're sharing the
985 	 * entire source file to the entire destination file, the source file
986 	 * has a cowextsize hint, and the destination file does not.
987 	 */
988 	cowextsize = 0;
989 	if (pos_in == 0 && len == i_size_read(inode_in) &&
990 	    (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
991 	    pos_out == 0 && len >= i_size_read(inode_out) &&
992 	    !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
993 		cowextsize = src->i_d.di_cowextsize;
994 
995 	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
996 			remap_flags);
997 
998 out_unlock:
999 	xfs_reflink_remap_unlock(file_in, file_out);
1000 	if (ret)
1001 		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1002 	return remapped > 0 ? remapped : ret;
1003 }
1004 
1005 STATIC int
1006 xfs_file_open(
1007 	struct inode	*inode,
1008 	struct file	*file)
1009 {
1010 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1011 		return -EFBIG;
1012 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1013 		return -EIO;
1014 	file->f_mode |= FMODE_NOWAIT;
1015 	return 0;
1016 }
1017 
1018 STATIC int
1019 xfs_dir_open(
1020 	struct inode	*inode,
1021 	struct file	*file)
1022 {
1023 	struct xfs_inode *ip = XFS_I(inode);
1024 	int		mode;
1025 	int		error;
1026 
1027 	error = xfs_file_open(inode, file);
1028 	if (error)
1029 		return error;
1030 
1031 	/*
1032 	 * If there are any blocks, read-ahead block 0 as we're almost
1033 	 * certain to have the next operation be a read there.
1034 	 */
1035 	mode = xfs_ilock_data_map_shared(ip);
1036 	if (ip->i_d.di_nextents > 0)
1037 		error = xfs_dir3_data_readahead(ip, 0, -1);
1038 	xfs_iunlock(ip, mode);
1039 	return error;
1040 }
1041 
1042 STATIC int
1043 xfs_file_release(
1044 	struct inode	*inode,
1045 	struct file	*filp)
1046 {
1047 	return xfs_release(XFS_I(inode));
1048 }
1049 
1050 STATIC int
1051 xfs_file_readdir(
1052 	struct file	*file,
1053 	struct dir_context *ctx)
1054 {
1055 	struct inode	*inode = file_inode(file);
1056 	xfs_inode_t	*ip = XFS_I(inode);
1057 	size_t		bufsize;
1058 
1059 	/*
1060 	 * The Linux API doesn't pass down the total size of the buffer
1061 	 * we read into down to the filesystem.  With the filldir concept
1062 	 * it's not needed for correct information, but the XFS dir2 leaf
1063 	 * code wants an estimate of the buffer size to calculate it's
1064 	 * readahead window and size the buffers used for mapping to
1065 	 * physical blocks.
1066 	 *
1067 	 * Try to give it an estimate that's good enough, maybe at some
1068 	 * point we can change the ->readdir prototype to include the
1069 	 * buffer size.  For now we use the current glibc buffer size.
1070 	 */
1071 	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1072 
1073 	return xfs_readdir(NULL, ip, ctx, bufsize);
1074 }
1075 
1076 STATIC loff_t
1077 xfs_file_llseek(
1078 	struct file	*file,
1079 	loff_t		offset,
1080 	int		whence)
1081 {
1082 	struct inode		*inode = file->f_mapping->host;
1083 
1084 	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1085 		return -EIO;
1086 
1087 	switch (whence) {
1088 	default:
1089 		return generic_file_llseek(file, offset, whence);
1090 	case SEEK_HOLE:
1091 		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1092 		break;
1093 	case SEEK_DATA:
1094 		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1095 		break;
1096 	}
1097 
1098 	if (offset < 0)
1099 		return offset;
1100 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1101 }
1102 
1103 /*
1104  * Locking for serialisation of IO during page faults. This results in a lock
1105  * ordering of:
1106  *
1107  * mmap_sem (MM)
1108  *   sb_start_pagefault(vfs, freeze)
1109  *     i_mmaplock (XFS - truncate serialisation)
1110  *       page_lock (MM)
1111  *         i_lock (XFS - extent map serialisation)
1112  */
1113 static vm_fault_t
1114 __xfs_filemap_fault(
1115 	struct vm_fault		*vmf,
1116 	enum page_entry_size	pe_size,
1117 	bool			write_fault)
1118 {
1119 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1120 	struct xfs_inode	*ip = XFS_I(inode);
1121 	vm_fault_t		ret;
1122 
1123 	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1124 
1125 	if (write_fault) {
1126 		sb_start_pagefault(inode->i_sb);
1127 		file_update_time(vmf->vma->vm_file);
1128 	}
1129 
1130 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1131 	if (IS_DAX(inode)) {
1132 		pfn_t pfn;
1133 
1134 		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops);
1135 		if (ret & VM_FAULT_NEEDDSYNC)
1136 			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1137 	} else {
1138 		if (write_fault)
1139 			ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
1140 		else
1141 			ret = filemap_fault(vmf);
1142 	}
1143 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1144 
1145 	if (write_fault)
1146 		sb_end_pagefault(inode->i_sb);
1147 	return ret;
1148 }
1149 
1150 static vm_fault_t
1151 xfs_filemap_fault(
1152 	struct vm_fault		*vmf)
1153 {
1154 	/* DAX can shortcut the normal fault path on write faults! */
1155 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1156 			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1157 			(vmf->flags & FAULT_FLAG_WRITE));
1158 }
1159 
1160 static vm_fault_t
1161 xfs_filemap_huge_fault(
1162 	struct vm_fault		*vmf,
1163 	enum page_entry_size	pe_size)
1164 {
1165 	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1166 		return VM_FAULT_FALLBACK;
1167 
1168 	/* DAX can shortcut the normal fault path on write faults! */
1169 	return __xfs_filemap_fault(vmf, pe_size,
1170 			(vmf->flags & FAULT_FLAG_WRITE));
1171 }
1172 
1173 static vm_fault_t
1174 xfs_filemap_page_mkwrite(
1175 	struct vm_fault		*vmf)
1176 {
1177 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1178 }
1179 
1180 /*
1181  * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1182  * on write faults. In reality, it needs to serialise against truncate and
1183  * prepare memory for writing so handle is as standard write fault.
1184  */
1185 static vm_fault_t
1186 xfs_filemap_pfn_mkwrite(
1187 	struct vm_fault		*vmf)
1188 {
1189 
1190 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1191 }
1192 
1193 static const struct vm_operations_struct xfs_file_vm_ops = {
1194 	.fault		= xfs_filemap_fault,
1195 	.huge_fault	= xfs_filemap_huge_fault,
1196 	.map_pages	= filemap_map_pages,
1197 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1198 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1199 };
1200 
1201 STATIC int
1202 xfs_file_mmap(
1203 	struct file	*filp,
1204 	struct vm_area_struct *vma)
1205 {
1206 	/*
1207 	 * We don't support synchronous mappings for non-DAX files. At least
1208 	 * until someone comes with a sensible use case.
1209 	 */
1210 	if (!IS_DAX(file_inode(filp)) && (vma->vm_flags & VM_SYNC))
1211 		return -EOPNOTSUPP;
1212 
1213 	file_accessed(filp);
1214 	vma->vm_ops = &xfs_file_vm_ops;
1215 	if (IS_DAX(file_inode(filp)))
1216 		vma->vm_flags |= VM_HUGEPAGE;
1217 	return 0;
1218 }
1219 
1220 const struct file_operations xfs_file_operations = {
1221 	.llseek		= xfs_file_llseek,
1222 	.read_iter	= xfs_file_read_iter,
1223 	.write_iter	= xfs_file_write_iter,
1224 	.splice_read	= generic_file_splice_read,
1225 	.splice_write	= iter_file_splice_write,
1226 	.iopoll		= iomap_dio_iopoll,
1227 	.unlocked_ioctl	= xfs_file_ioctl,
1228 #ifdef CONFIG_COMPAT
1229 	.compat_ioctl	= xfs_file_compat_ioctl,
1230 #endif
1231 	.mmap		= xfs_file_mmap,
1232 	.mmap_supported_flags = MAP_SYNC,
1233 	.open		= xfs_file_open,
1234 	.release	= xfs_file_release,
1235 	.fsync		= xfs_file_fsync,
1236 	.get_unmapped_area = thp_get_unmapped_area,
1237 	.fallocate	= xfs_file_fallocate,
1238 	.remap_file_range = xfs_file_remap_range,
1239 };
1240 
1241 const struct file_operations xfs_dir_file_operations = {
1242 	.open		= xfs_dir_open,
1243 	.read		= generic_read_dir,
1244 	.iterate_shared	= xfs_file_readdir,
1245 	.llseek		= generic_file_llseek,
1246 	.unlocked_ioctl	= xfs_file_ioctl,
1247 #ifdef CONFIG_COMPAT
1248 	.compat_ioctl	= xfs_file_compat_ioctl,
1249 #endif
1250 	.fsync		= xfs_dir_fsync,
1251 };
1252