xref: /openbmc/linux/fs/xfs/xfs_file.c (revision 11a163f2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_dir2.h"
19 #include "xfs_dir2_priv.h"
20 #include "xfs_ioctl.h"
21 #include "xfs_trace.h"
22 #include "xfs_log.h"
23 #include "xfs_icache.h"
24 #include "xfs_pnfs.h"
25 #include "xfs_iomap.h"
26 #include "xfs_reflink.h"
27 
28 #include <linux/falloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mman.h>
31 #include <linux/fadvise.h>
32 
33 static const struct vm_operations_struct xfs_file_vm_ops;
34 
35 /*
36  * Decide if the given file range is aligned to the size of the fundamental
37  * allocation unit for the file.
38  */
39 static bool
40 xfs_is_falloc_aligned(
41 	struct xfs_inode	*ip,
42 	loff_t			pos,
43 	long long int		len)
44 {
45 	struct xfs_mount	*mp = ip->i_mount;
46 	uint64_t		mask;
47 
48 	if (XFS_IS_REALTIME_INODE(ip)) {
49 		if (!is_power_of_2(mp->m_sb.sb_rextsize)) {
50 			u64	rextbytes;
51 			u32	mod;
52 
53 			rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize);
54 			div_u64_rem(pos, rextbytes, &mod);
55 			if (mod)
56 				return false;
57 			div_u64_rem(len, rextbytes, &mod);
58 			return mod == 0;
59 		}
60 		mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1;
61 	} else {
62 		mask = mp->m_sb.sb_blocksize - 1;
63 	}
64 
65 	return !((pos | len) & mask);
66 }
67 
68 int
69 xfs_update_prealloc_flags(
70 	struct xfs_inode	*ip,
71 	enum xfs_prealloc_flags	flags)
72 {
73 	struct xfs_trans	*tp;
74 	int			error;
75 
76 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
77 			0, 0, 0, &tp);
78 	if (error)
79 		return error;
80 
81 	xfs_ilock(ip, XFS_ILOCK_EXCL);
82 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
83 
84 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
85 		VFS_I(ip)->i_mode &= ~S_ISUID;
86 		if (VFS_I(ip)->i_mode & S_IXGRP)
87 			VFS_I(ip)->i_mode &= ~S_ISGID;
88 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
89 	}
90 
91 	if (flags & XFS_PREALLOC_SET)
92 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
93 	if (flags & XFS_PREALLOC_CLEAR)
94 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
95 
96 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
97 	if (flags & XFS_PREALLOC_SYNC)
98 		xfs_trans_set_sync(tp);
99 	return xfs_trans_commit(tp);
100 }
101 
102 /*
103  * Fsync operations on directories are much simpler than on regular files,
104  * as there is no file data to flush, and thus also no need for explicit
105  * cache flush operations, and there are no non-transaction metadata updates
106  * on directories either.
107  */
108 STATIC int
109 xfs_dir_fsync(
110 	struct file		*file,
111 	loff_t			start,
112 	loff_t			end,
113 	int			datasync)
114 {
115 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
116 
117 	trace_xfs_dir_fsync(ip);
118 	return xfs_log_force_inode(ip);
119 }
120 
121 STATIC int
122 xfs_file_fsync(
123 	struct file		*file,
124 	loff_t			start,
125 	loff_t			end,
126 	int			datasync)
127 {
128 	struct inode		*inode = file->f_mapping->host;
129 	struct xfs_inode	*ip = XFS_I(inode);
130 	struct xfs_inode_log_item *iip = ip->i_itemp;
131 	struct xfs_mount	*mp = ip->i_mount;
132 	int			error = 0;
133 	int			log_flushed = 0;
134 	xfs_lsn_t		lsn = 0;
135 
136 	trace_xfs_file_fsync(ip);
137 
138 	error = file_write_and_wait_range(file, start, end);
139 	if (error)
140 		return error;
141 
142 	if (XFS_FORCED_SHUTDOWN(mp))
143 		return -EIO;
144 
145 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
146 
147 	/*
148 	 * If we have an RT and/or log subvolume we need to make sure to flush
149 	 * the write cache the device used for file data first.  This is to
150 	 * ensure newly written file data make it to disk before logging the new
151 	 * inode size in case of an extending write.
152 	 */
153 	if (XFS_IS_REALTIME_INODE(ip))
154 		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
155 	else if (mp->m_logdev_targp != mp->m_ddev_targp)
156 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
157 
158 	/*
159 	 * All metadata updates are logged, which means that we just have to
160 	 * flush the log up to the latest LSN that touched the inode. If we have
161 	 * concurrent fsync/fdatasync() calls, we need them to all block on the
162 	 * log force before we clear the ili_fsync_fields field. This ensures
163 	 * that we don't get a racing sync operation that does not wait for the
164 	 * metadata to hit the journal before returning. If we race with
165 	 * clearing the ili_fsync_fields, then all that will happen is the log
166 	 * force will do nothing as the lsn will already be on disk. We can't
167 	 * race with setting ili_fsync_fields because that is done under
168 	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
169 	 * until after the ili_fsync_fields is cleared.
170 	 */
171 	xfs_ilock(ip, XFS_ILOCK_SHARED);
172 	if (xfs_ipincount(ip)) {
173 		if (!datasync ||
174 		    (iip->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
175 			lsn = iip->ili_last_lsn;
176 	}
177 
178 	if (lsn) {
179 		error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
180 		spin_lock(&iip->ili_lock);
181 		iip->ili_fsync_fields = 0;
182 		spin_unlock(&iip->ili_lock);
183 	}
184 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
185 
186 	/*
187 	 * If we only have a single device, and the log force about was
188 	 * a no-op we might have to flush the data device cache here.
189 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
190 	 * an already allocated file and thus do not have any metadata to
191 	 * commit.
192 	 */
193 	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
194 	    mp->m_logdev_targp == mp->m_ddev_targp)
195 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
196 
197 	return error;
198 }
199 
200 STATIC ssize_t
201 xfs_file_dio_aio_read(
202 	struct kiocb		*iocb,
203 	struct iov_iter		*to)
204 {
205 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
206 	size_t			count = iov_iter_count(to);
207 	ssize_t			ret;
208 
209 	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
210 
211 	if (!count)
212 		return 0; /* skip atime */
213 
214 	file_accessed(iocb->ki_filp);
215 
216 	if (iocb->ki_flags & IOCB_NOWAIT) {
217 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
218 			return -EAGAIN;
219 	} else {
220 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
221 	}
222 	ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL,
223 			is_sync_kiocb(iocb));
224 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
225 
226 	return ret;
227 }
228 
229 static noinline ssize_t
230 xfs_file_dax_read(
231 	struct kiocb		*iocb,
232 	struct iov_iter		*to)
233 {
234 	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
235 	size_t			count = iov_iter_count(to);
236 	ssize_t			ret = 0;
237 
238 	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
239 
240 	if (!count)
241 		return 0; /* skip atime */
242 
243 	if (iocb->ki_flags & IOCB_NOWAIT) {
244 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
245 			return -EAGAIN;
246 	} else {
247 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
248 	}
249 
250 	ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
251 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
252 
253 	file_accessed(iocb->ki_filp);
254 	return ret;
255 }
256 
257 STATIC ssize_t
258 xfs_file_buffered_aio_read(
259 	struct kiocb		*iocb,
260 	struct iov_iter		*to)
261 {
262 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
263 	ssize_t			ret;
264 
265 	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
266 
267 	if (iocb->ki_flags & IOCB_NOWAIT) {
268 		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
269 			return -EAGAIN;
270 	} else {
271 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
272 	}
273 	ret = generic_file_read_iter(iocb, to);
274 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
275 
276 	return ret;
277 }
278 
279 STATIC ssize_t
280 xfs_file_read_iter(
281 	struct kiocb		*iocb,
282 	struct iov_iter		*to)
283 {
284 	struct inode		*inode = file_inode(iocb->ki_filp);
285 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
286 	ssize_t			ret = 0;
287 
288 	XFS_STATS_INC(mp, xs_read_calls);
289 
290 	if (XFS_FORCED_SHUTDOWN(mp))
291 		return -EIO;
292 
293 	if (IS_DAX(inode))
294 		ret = xfs_file_dax_read(iocb, to);
295 	else if (iocb->ki_flags & IOCB_DIRECT)
296 		ret = xfs_file_dio_aio_read(iocb, to);
297 	else
298 		ret = xfs_file_buffered_aio_read(iocb, to);
299 
300 	if (ret > 0)
301 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
302 	return ret;
303 }
304 
305 /*
306  * Common pre-write limit and setup checks.
307  *
308  * Called with the iolocked held either shared and exclusive according to
309  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
310  * if called for a direct write beyond i_size.
311  */
312 STATIC ssize_t
313 xfs_file_aio_write_checks(
314 	struct kiocb		*iocb,
315 	struct iov_iter		*from,
316 	int			*iolock)
317 {
318 	struct file		*file = iocb->ki_filp;
319 	struct inode		*inode = file->f_mapping->host;
320 	struct xfs_inode	*ip = XFS_I(inode);
321 	ssize_t			error = 0;
322 	size_t			count = iov_iter_count(from);
323 	bool			drained_dio = false;
324 	loff_t			isize;
325 
326 restart:
327 	error = generic_write_checks(iocb, from);
328 	if (error <= 0)
329 		return error;
330 
331 	error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
332 	if (error)
333 		return error;
334 
335 	/*
336 	 * For changing security info in file_remove_privs() we need i_rwsem
337 	 * exclusively.
338 	 */
339 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
340 		xfs_iunlock(ip, *iolock);
341 		*iolock = XFS_IOLOCK_EXCL;
342 		xfs_ilock(ip, *iolock);
343 		goto restart;
344 	}
345 	/*
346 	 * If the offset is beyond the size of the file, we need to zero any
347 	 * blocks that fall between the existing EOF and the start of this
348 	 * write.  If zeroing is needed and we are currently holding the
349 	 * iolock shared, we need to update it to exclusive which implies
350 	 * having to redo all checks before.
351 	 *
352 	 * We need to serialise against EOF updates that occur in IO
353 	 * completions here. We want to make sure that nobody is changing the
354 	 * size while we do this check until we have placed an IO barrier (i.e.
355 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
356 	 * The spinlock effectively forms a memory barrier once we have the
357 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
358 	 * and hence be able to correctly determine if we need to run zeroing.
359 	 */
360 	spin_lock(&ip->i_flags_lock);
361 	isize = i_size_read(inode);
362 	if (iocb->ki_pos > isize) {
363 		spin_unlock(&ip->i_flags_lock);
364 		if (!drained_dio) {
365 			if (*iolock == XFS_IOLOCK_SHARED) {
366 				xfs_iunlock(ip, *iolock);
367 				*iolock = XFS_IOLOCK_EXCL;
368 				xfs_ilock(ip, *iolock);
369 				iov_iter_reexpand(from, count);
370 			}
371 			/*
372 			 * We now have an IO submission barrier in place, but
373 			 * AIO can do EOF updates during IO completion and hence
374 			 * we now need to wait for all of them to drain. Non-AIO
375 			 * DIO will have drained before we are given the
376 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
377 			 * no-op.
378 			 */
379 			inode_dio_wait(inode);
380 			drained_dio = true;
381 			goto restart;
382 		}
383 
384 		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
385 		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
386 				NULL, &xfs_buffered_write_iomap_ops);
387 		if (error)
388 			return error;
389 	} else
390 		spin_unlock(&ip->i_flags_lock);
391 
392 	/*
393 	 * Updating the timestamps will grab the ilock again from
394 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
395 	 * lock above.  Eventually we should look into a way to avoid
396 	 * the pointless lock roundtrip.
397 	 */
398 	return file_modified(file);
399 }
400 
401 static int
402 xfs_dio_write_end_io(
403 	struct kiocb		*iocb,
404 	ssize_t			size,
405 	int			error,
406 	unsigned		flags)
407 {
408 	struct inode		*inode = file_inode(iocb->ki_filp);
409 	struct xfs_inode	*ip = XFS_I(inode);
410 	loff_t			offset = iocb->ki_pos;
411 	unsigned int		nofs_flag;
412 
413 	trace_xfs_end_io_direct_write(ip, offset, size);
414 
415 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
416 		return -EIO;
417 
418 	if (error)
419 		return error;
420 	if (!size)
421 		return 0;
422 
423 	/*
424 	 * Capture amount written on completion as we can't reliably account
425 	 * for it on submission.
426 	 */
427 	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
428 
429 	/*
430 	 * We can allocate memory here while doing writeback on behalf of
431 	 * memory reclaim.  To avoid memory allocation deadlocks set the
432 	 * task-wide nofs context for the following operations.
433 	 */
434 	nofs_flag = memalloc_nofs_save();
435 
436 	if (flags & IOMAP_DIO_COW) {
437 		error = xfs_reflink_end_cow(ip, offset, size);
438 		if (error)
439 			goto out;
440 	}
441 
442 	/*
443 	 * Unwritten conversion updates the in-core isize after extent
444 	 * conversion but before updating the on-disk size. Updating isize any
445 	 * earlier allows a racing dio read to find unwritten extents before
446 	 * they are converted.
447 	 */
448 	if (flags & IOMAP_DIO_UNWRITTEN) {
449 		error = xfs_iomap_write_unwritten(ip, offset, size, true);
450 		goto out;
451 	}
452 
453 	/*
454 	 * We need to update the in-core inode size here so that we don't end up
455 	 * with the on-disk inode size being outside the in-core inode size. We
456 	 * have no other method of updating EOF for AIO, so always do it here
457 	 * if necessary.
458 	 *
459 	 * We need to lock the test/set EOF update as we can be racing with
460 	 * other IO completions here to update the EOF. Failing to serialise
461 	 * here can result in EOF moving backwards and Bad Things Happen when
462 	 * that occurs.
463 	 */
464 	spin_lock(&ip->i_flags_lock);
465 	if (offset + size > i_size_read(inode)) {
466 		i_size_write(inode, offset + size);
467 		spin_unlock(&ip->i_flags_lock);
468 		error = xfs_setfilesize(ip, offset, size);
469 	} else {
470 		spin_unlock(&ip->i_flags_lock);
471 	}
472 
473 out:
474 	memalloc_nofs_restore(nofs_flag);
475 	return error;
476 }
477 
478 static const struct iomap_dio_ops xfs_dio_write_ops = {
479 	.end_io		= xfs_dio_write_end_io,
480 };
481 
482 /*
483  * xfs_file_dio_aio_write - handle direct IO writes
484  *
485  * Lock the inode appropriately to prepare for and issue a direct IO write.
486  * By separating it from the buffered write path we remove all the tricky to
487  * follow locking changes and looping.
488  *
489  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
490  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
491  * pages are flushed out.
492  *
493  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
494  * allowing them to be done in parallel with reads and other direct IO writes.
495  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
496  * needs to do sub-block zeroing and that requires serialisation against other
497  * direct IOs to the same block. In this case we need to serialise the
498  * submission of the unaligned IOs so that we don't get racing block zeroing in
499  * the dio layer.  To avoid the problem with aio, we also need to wait for
500  * outstanding IOs to complete so that unwritten extent conversion is completed
501  * before we try to map the overlapping block. This is currently implemented by
502  * hitting it with a big hammer (i.e. inode_dio_wait()).
503  *
504  * Returns with locks held indicated by @iolock and errors indicated by
505  * negative return values.
506  */
507 STATIC ssize_t
508 xfs_file_dio_aio_write(
509 	struct kiocb		*iocb,
510 	struct iov_iter		*from)
511 {
512 	struct file		*file = iocb->ki_filp;
513 	struct address_space	*mapping = file->f_mapping;
514 	struct inode		*inode = mapping->host;
515 	struct xfs_inode	*ip = XFS_I(inode);
516 	struct xfs_mount	*mp = ip->i_mount;
517 	ssize_t			ret = 0;
518 	int			unaligned_io = 0;
519 	int			iolock;
520 	size_t			count = iov_iter_count(from);
521 	struct xfs_buftarg      *target = xfs_inode_buftarg(ip);
522 
523 	/* DIO must be aligned to device logical sector size */
524 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
525 		return -EINVAL;
526 
527 	/*
528 	 * Don't take the exclusive iolock here unless the I/O is unaligned to
529 	 * the file system block size.  We don't need to consider the EOF
530 	 * extension case here because xfs_file_aio_write_checks() will relock
531 	 * the inode as necessary for EOF zeroing cases and fill out the new
532 	 * inode size as appropriate.
533 	 */
534 	if ((iocb->ki_pos & mp->m_blockmask) ||
535 	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
536 		unaligned_io = 1;
537 
538 		/*
539 		 * We can't properly handle unaligned direct I/O to reflink
540 		 * files yet, as we can't unshare a partial block.
541 		 */
542 		if (xfs_is_cow_inode(ip)) {
543 			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
544 			return -ENOTBLK;
545 		}
546 		iolock = XFS_IOLOCK_EXCL;
547 	} else {
548 		iolock = XFS_IOLOCK_SHARED;
549 	}
550 
551 	if (iocb->ki_flags & IOCB_NOWAIT) {
552 		/* unaligned dio always waits, bail */
553 		if (unaligned_io)
554 			return -EAGAIN;
555 		if (!xfs_ilock_nowait(ip, iolock))
556 			return -EAGAIN;
557 	} else {
558 		xfs_ilock(ip, iolock);
559 	}
560 
561 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
562 	if (ret)
563 		goto out;
564 	count = iov_iter_count(from);
565 
566 	/*
567 	 * If we are doing unaligned IO, we can't allow any other overlapping IO
568 	 * in-flight at the same time or we risk data corruption. Wait for all
569 	 * other IO to drain before we submit. If the IO is aligned, demote the
570 	 * iolock if we had to take the exclusive lock in
571 	 * xfs_file_aio_write_checks() for other reasons.
572 	 */
573 	if (unaligned_io) {
574 		inode_dio_wait(inode);
575 	} else if (iolock == XFS_IOLOCK_EXCL) {
576 		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
577 		iolock = XFS_IOLOCK_SHARED;
578 	}
579 
580 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
581 	/*
582 	 * If unaligned, this is the only IO in-flight. Wait on it before we
583 	 * release the iolock to prevent subsequent overlapping IO.
584 	 */
585 	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
586 			   &xfs_dio_write_ops,
587 			   is_sync_kiocb(iocb) || unaligned_io);
588 out:
589 	xfs_iunlock(ip, iolock);
590 
591 	/*
592 	 * No fallback to buffered IO after short writes for XFS, direct I/O
593 	 * will either complete fully or return an error.
594 	 */
595 	ASSERT(ret < 0 || ret == count);
596 	return ret;
597 }
598 
599 static noinline ssize_t
600 xfs_file_dax_write(
601 	struct kiocb		*iocb,
602 	struct iov_iter		*from)
603 {
604 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
605 	struct xfs_inode	*ip = XFS_I(inode);
606 	int			iolock = XFS_IOLOCK_EXCL;
607 	ssize_t			ret, error = 0;
608 	size_t			count;
609 	loff_t			pos;
610 
611 	if (iocb->ki_flags & IOCB_NOWAIT) {
612 		if (!xfs_ilock_nowait(ip, iolock))
613 			return -EAGAIN;
614 	} else {
615 		xfs_ilock(ip, iolock);
616 	}
617 
618 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
619 	if (ret)
620 		goto out;
621 
622 	pos = iocb->ki_pos;
623 	count = iov_iter_count(from);
624 
625 	trace_xfs_file_dax_write(ip, count, pos);
626 	ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops);
627 	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
628 		i_size_write(inode, iocb->ki_pos);
629 		error = xfs_setfilesize(ip, pos, ret);
630 	}
631 out:
632 	xfs_iunlock(ip, iolock);
633 	if (error)
634 		return error;
635 
636 	if (ret > 0) {
637 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
638 
639 		/* Handle various SYNC-type writes */
640 		ret = generic_write_sync(iocb, ret);
641 	}
642 	return ret;
643 }
644 
645 STATIC ssize_t
646 xfs_file_buffered_aio_write(
647 	struct kiocb		*iocb,
648 	struct iov_iter		*from)
649 {
650 	struct file		*file = iocb->ki_filp;
651 	struct address_space	*mapping = file->f_mapping;
652 	struct inode		*inode = mapping->host;
653 	struct xfs_inode	*ip = XFS_I(inode);
654 	ssize_t			ret;
655 	int			enospc = 0;
656 	int			iolock;
657 
658 	if (iocb->ki_flags & IOCB_NOWAIT)
659 		return -EOPNOTSUPP;
660 
661 write_retry:
662 	iolock = XFS_IOLOCK_EXCL;
663 	xfs_ilock(ip, iolock);
664 
665 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
666 	if (ret)
667 		goto out;
668 
669 	/* We can write back this queue in page reclaim */
670 	current->backing_dev_info = inode_to_bdi(inode);
671 
672 	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
673 	ret = iomap_file_buffered_write(iocb, from,
674 			&xfs_buffered_write_iomap_ops);
675 	if (likely(ret >= 0))
676 		iocb->ki_pos += ret;
677 
678 	/*
679 	 * If we hit a space limit, try to free up some lingering preallocated
680 	 * space before returning an error. In the case of ENOSPC, first try to
681 	 * write back all dirty inodes to free up some of the excess reserved
682 	 * metadata space. This reduces the chances that the eofblocks scan
683 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
684 	 * also behaves as a filter to prevent too many eofblocks scans from
685 	 * running at the same time.
686 	 */
687 	if (ret == -EDQUOT && !enospc) {
688 		xfs_iunlock(ip, iolock);
689 		enospc = xfs_inode_free_quota_eofblocks(ip);
690 		if (enospc)
691 			goto write_retry;
692 		enospc = xfs_inode_free_quota_cowblocks(ip);
693 		if (enospc)
694 			goto write_retry;
695 		iolock = 0;
696 	} else if (ret == -ENOSPC && !enospc) {
697 		struct xfs_eofblocks eofb = {0};
698 
699 		enospc = 1;
700 		xfs_flush_inodes(ip->i_mount);
701 
702 		xfs_iunlock(ip, iolock);
703 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
704 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
705 		xfs_icache_free_cowblocks(ip->i_mount, &eofb);
706 		goto write_retry;
707 	}
708 
709 	current->backing_dev_info = NULL;
710 out:
711 	if (iolock)
712 		xfs_iunlock(ip, iolock);
713 
714 	if (ret > 0) {
715 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
716 		/* Handle various SYNC-type writes */
717 		ret = generic_write_sync(iocb, ret);
718 	}
719 	return ret;
720 }
721 
722 STATIC ssize_t
723 xfs_file_write_iter(
724 	struct kiocb		*iocb,
725 	struct iov_iter		*from)
726 {
727 	struct file		*file = iocb->ki_filp;
728 	struct address_space	*mapping = file->f_mapping;
729 	struct inode		*inode = mapping->host;
730 	struct xfs_inode	*ip = XFS_I(inode);
731 	ssize_t			ret;
732 	size_t			ocount = iov_iter_count(from);
733 
734 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
735 
736 	if (ocount == 0)
737 		return 0;
738 
739 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
740 		return -EIO;
741 
742 	if (IS_DAX(inode))
743 		return xfs_file_dax_write(iocb, from);
744 
745 	if (iocb->ki_flags & IOCB_DIRECT) {
746 		/*
747 		 * Allow a directio write to fall back to a buffered
748 		 * write *only* in the case that we're doing a reflink
749 		 * CoW.  In all other directio scenarios we do not
750 		 * allow an operation to fall back to buffered mode.
751 		 */
752 		ret = xfs_file_dio_aio_write(iocb, from);
753 		if (ret != -ENOTBLK)
754 			return ret;
755 	}
756 
757 	return xfs_file_buffered_aio_write(iocb, from);
758 }
759 
760 static void
761 xfs_wait_dax_page(
762 	struct inode		*inode)
763 {
764 	struct xfs_inode        *ip = XFS_I(inode);
765 
766 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
767 	schedule();
768 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
769 }
770 
771 static int
772 xfs_break_dax_layouts(
773 	struct inode		*inode,
774 	bool			*retry)
775 {
776 	struct page		*page;
777 
778 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
779 
780 	page = dax_layout_busy_page(inode->i_mapping);
781 	if (!page)
782 		return 0;
783 
784 	*retry = true;
785 	return ___wait_var_event(&page->_refcount,
786 			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
787 			0, 0, xfs_wait_dax_page(inode));
788 }
789 
790 int
791 xfs_break_layouts(
792 	struct inode		*inode,
793 	uint			*iolock,
794 	enum layout_break_reason reason)
795 {
796 	bool			retry;
797 	int			error;
798 
799 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
800 
801 	do {
802 		retry = false;
803 		switch (reason) {
804 		case BREAK_UNMAP:
805 			error = xfs_break_dax_layouts(inode, &retry);
806 			if (error || retry)
807 				break;
808 			/* fall through */
809 		case BREAK_WRITE:
810 			error = xfs_break_leased_layouts(inode, iolock, &retry);
811 			break;
812 		default:
813 			WARN_ON_ONCE(1);
814 			error = -EINVAL;
815 		}
816 	} while (error == 0 && retry);
817 
818 	return error;
819 }
820 
821 #define	XFS_FALLOC_FL_SUPPORTED						\
822 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
823 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
824 		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
825 
826 STATIC long
827 xfs_file_fallocate(
828 	struct file		*file,
829 	int			mode,
830 	loff_t			offset,
831 	loff_t			len)
832 {
833 	struct inode		*inode = file_inode(file);
834 	struct xfs_inode	*ip = XFS_I(inode);
835 	long			error;
836 	enum xfs_prealloc_flags	flags = 0;
837 	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
838 	loff_t			new_size = 0;
839 	bool			do_file_insert = false;
840 
841 	if (!S_ISREG(inode->i_mode))
842 		return -EINVAL;
843 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
844 		return -EOPNOTSUPP;
845 
846 	xfs_ilock(ip, iolock);
847 	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
848 	if (error)
849 		goto out_unlock;
850 
851 	/*
852 	 * Must wait for all AIO to complete before we continue as AIO can
853 	 * change the file size on completion without holding any locks we
854 	 * currently hold. We must do this first because AIO can update both
855 	 * the on disk and in memory inode sizes, and the operations that follow
856 	 * require the in-memory size to be fully up-to-date.
857 	 */
858 	inode_dio_wait(inode);
859 
860 	/*
861 	 * Now AIO and DIO has drained we flush and (if necessary) invalidate
862 	 * the cached range over the first operation we are about to run.
863 	 *
864 	 * We care about zero and collapse here because they both run a hole
865 	 * punch over the range first. Because that can zero data, and the range
866 	 * of invalidation for the shift operations is much larger, we still do
867 	 * the required flush for collapse in xfs_prepare_shift().
868 	 *
869 	 * Insert has the same range requirements as collapse, and we extend the
870 	 * file first which can zero data. Hence insert has the same
871 	 * flush/invalidate requirements as collapse and so they are both
872 	 * handled at the right time by xfs_prepare_shift().
873 	 */
874 	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
875 		    FALLOC_FL_COLLAPSE_RANGE)) {
876 		error = xfs_flush_unmap_range(ip, offset, len);
877 		if (error)
878 			goto out_unlock;
879 	}
880 
881 	if (mode & FALLOC_FL_PUNCH_HOLE) {
882 		error = xfs_free_file_space(ip, offset, len);
883 		if (error)
884 			goto out_unlock;
885 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
886 		if (!xfs_is_falloc_aligned(ip, offset, len)) {
887 			error = -EINVAL;
888 			goto out_unlock;
889 		}
890 
891 		/*
892 		 * There is no need to overlap collapse range with EOF,
893 		 * in which case it is effectively a truncate operation
894 		 */
895 		if (offset + len >= i_size_read(inode)) {
896 			error = -EINVAL;
897 			goto out_unlock;
898 		}
899 
900 		new_size = i_size_read(inode) - len;
901 
902 		error = xfs_collapse_file_space(ip, offset, len);
903 		if (error)
904 			goto out_unlock;
905 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
906 		loff_t		isize = i_size_read(inode);
907 
908 		if (!xfs_is_falloc_aligned(ip, offset, len)) {
909 			error = -EINVAL;
910 			goto out_unlock;
911 		}
912 
913 		/*
914 		 * New inode size must not exceed ->s_maxbytes, accounting for
915 		 * possible signed overflow.
916 		 */
917 		if (inode->i_sb->s_maxbytes - isize < len) {
918 			error = -EFBIG;
919 			goto out_unlock;
920 		}
921 		new_size = isize + len;
922 
923 		/* Offset should be less than i_size */
924 		if (offset >= isize) {
925 			error = -EINVAL;
926 			goto out_unlock;
927 		}
928 		do_file_insert = true;
929 	} else {
930 		flags |= XFS_PREALLOC_SET;
931 
932 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
933 		    offset + len > i_size_read(inode)) {
934 			new_size = offset + len;
935 			error = inode_newsize_ok(inode, new_size);
936 			if (error)
937 				goto out_unlock;
938 		}
939 
940 		if (mode & FALLOC_FL_ZERO_RANGE) {
941 			/*
942 			 * Punch a hole and prealloc the range.  We use a hole
943 			 * punch rather than unwritten extent conversion for two
944 			 * reasons:
945 			 *
946 			 *   1.) Hole punch handles partial block zeroing for us.
947 			 *   2.) If prealloc returns ENOSPC, the file range is
948 			 *       still zero-valued by virtue of the hole punch.
949 			 */
950 			unsigned int blksize = i_blocksize(inode);
951 
952 			trace_xfs_zero_file_space(ip);
953 
954 			error = xfs_free_file_space(ip, offset, len);
955 			if (error)
956 				goto out_unlock;
957 
958 			len = round_up(offset + len, blksize) -
959 			      round_down(offset, blksize);
960 			offset = round_down(offset, blksize);
961 		} else if (mode & FALLOC_FL_UNSHARE_RANGE) {
962 			error = xfs_reflink_unshare(ip, offset, len);
963 			if (error)
964 				goto out_unlock;
965 		} else {
966 			/*
967 			 * If always_cow mode we can't use preallocations and
968 			 * thus should not create them.
969 			 */
970 			if (xfs_is_always_cow_inode(ip)) {
971 				error = -EOPNOTSUPP;
972 				goto out_unlock;
973 			}
974 		}
975 
976 		if (!xfs_is_always_cow_inode(ip)) {
977 			error = xfs_alloc_file_space(ip, offset, len,
978 						     XFS_BMAPI_PREALLOC);
979 			if (error)
980 				goto out_unlock;
981 		}
982 	}
983 
984 	if (file->f_flags & O_DSYNC)
985 		flags |= XFS_PREALLOC_SYNC;
986 
987 	error = xfs_update_prealloc_flags(ip, flags);
988 	if (error)
989 		goto out_unlock;
990 
991 	/* Change file size if needed */
992 	if (new_size) {
993 		struct iattr iattr;
994 
995 		iattr.ia_valid = ATTR_SIZE;
996 		iattr.ia_size = new_size;
997 		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
998 		if (error)
999 			goto out_unlock;
1000 	}
1001 
1002 	/*
1003 	 * Perform hole insertion now that the file size has been
1004 	 * updated so that if we crash during the operation we don't
1005 	 * leave shifted extents past EOF and hence losing access to
1006 	 * the data that is contained within them.
1007 	 */
1008 	if (do_file_insert)
1009 		error = xfs_insert_file_space(ip, offset, len);
1010 
1011 out_unlock:
1012 	xfs_iunlock(ip, iolock);
1013 	return error;
1014 }
1015 
1016 STATIC int
1017 xfs_file_fadvise(
1018 	struct file	*file,
1019 	loff_t		start,
1020 	loff_t		end,
1021 	int		advice)
1022 {
1023 	struct xfs_inode *ip = XFS_I(file_inode(file));
1024 	int ret;
1025 	int lockflags = 0;
1026 
1027 	/*
1028 	 * Operations creating pages in page cache need protection from hole
1029 	 * punching and similar ops
1030 	 */
1031 	if (advice == POSIX_FADV_WILLNEED) {
1032 		lockflags = XFS_IOLOCK_SHARED;
1033 		xfs_ilock(ip, lockflags);
1034 	}
1035 	ret = generic_fadvise(file, start, end, advice);
1036 	if (lockflags)
1037 		xfs_iunlock(ip, lockflags);
1038 	return ret;
1039 }
1040 
1041 /* Does this file, inode, or mount want synchronous writes? */
1042 static inline bool xfs_file_sync_writes(struct file *filp)
1043 {
1044 	struct xfs_inode	*ip = XFS_I(file_inode(filp));
1045 
1046 	if (ip->i_mount->m_flags & XFS_MOUNT_WSYNC)
1047 		return true;
1048 	if (filp->f_flags & (__O_SYNC | O_DSYNC))
1049 		return true;
1050 	if (IS_SYNC(file_inode(filp)))
1051 		return true;
1052 
1053 	return false;
1054 }
1055 
1056 STATIC loff_t
1057 xfs_file_remap_range(
1058 	struct file		*file_in,
1059 	loff_t			pos_in,
1060 	struct file		*file_out,
1061 	loff_t			pos_out,
1062 	loff_t			len,
1063 	unsigned int		remap_flags)
1064 {
1065 	struct inode		*inode_in = file_inode(file_in);
1066 	struct xfs_inode	*src = XFS_I(inode_in);
1067 	struct inode		*inode_out = file_inode(file_out);
1068 	struct xfs_inode	*dest = XFS_I(inode_out);
1069 	struct xfs_mount	*mp = src->i_mount;
1070 	loff_t			remapped = 0;
1071 	xfs_extlen_t		cowextsize;
1072 	int			ret;
1073 
1074 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1075 		return -EINVAL;
1076 
1077 	if (!xfs_sb_version_hasreflink(&mp->m_sb))
1078 		return -EOPNOTSUPP;
1079 
1080 	if (XFS_FORCED_SHUTDOWN(mp))
1081 		return -EIO;
1082 
1083 	/* Prepare and then clone file data. */
1084 	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1085 			&len, remap_flags);
1086 	if (ret || len == 0)
1087 		return ret;
1088 
1089 	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1090 
1091 	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1092 			&remapped);
1093 	if (ret)
1094 		goto out_unlock;
1095 
1096 	/*
1097 	 * Carry the cowextsize hint from src to dest if we're sharing the
1098 	 * entire source file to the entire destination file, the source file
1099 	 * has a cowextsize hint, and the destination file does not.
1100 	 */
1101 	cowextsize = 0;
1102 	if (pos_in == 0 && len == i_size_read(inode_in) &&
1103 	    (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1104 	    pos_out == 0 && len >= i_size_read(inode_out) &&
1105 	    !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1106 		cowextsize = src->i_d.di_cowextsize;
1107 
1108 	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1109 			remap_flags);
1110 	if (ret)
1111 		goto out_unlock;
1112 
1113 	if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
1114 		xfs_log_force_inode(dest);
1115 out_unlock:
1116 	xfs_iunlock2_io_mmap(src, dest);
1117 	if (ret)
1118 		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1119 	return remapped > 0 ? remapped : ret;
1120 }
1121 
1122 STATIC int
1123 xfs_file_open(
1124 	struct inode	*inode,
1125 	struct file	*file)
1126 {
1127 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1128 		return -EFBIG;
1129 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1130 		return -EIO;
1131 	file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
1132 	return 0;
1133 }
1134 
1135 STATIC int
1136 xfs_dir_open(
1137 	struct inode	*inode,
1138 	struct file	*file)
1139 {
1140 	struct xfs_inode *ip = XFS_I(inode);
1141 	int		mode;
1142 	int		error;
1143 
1144 	error = xfs_file_open(inode, file);
1145 	if (error)
1146 		return error;
1147 
1148 	/*
1149 	 * If there are any blocks, read-ahead block 0 as we're almost
1150 	 * certain to have the next operation be a read there.
1151 	 */
1152 	mode = xfs_ilock_data_map_shared(ip);
1153 	if (ip->i_df.if_nextents > 0)
1154 		error = xfs_dir3_data_readahead(ip, 0, 0);
1155 	xfs_iunlock(ip, mode);
1156 	return error;
1157 }
1158 
1159 STATIC int
1160 xfs_file_release(
1161 	struct inode	*inode,
1162 	struct file	*filp)
1163 {
1164 	return xfs_release(XFS_I(inode));
1165 }
1166 
1167 STATIC int
1168 xfs_file_readdir(
1169 	struct file	*file,
1170 	struct dir_context *ctx)
1171 {
1172 	struct inode	*inode = file_inode(file);
1173 	xfs_inode_t	*ip = XFS_I(inode);
1174 	size_t		bufsize;
1175 
1176 	/*
1177 	 * The Linux API doesn't pass down the total size of the buffer
1178 	 * we read into down to the filesystem.  With the filldir concept
1179 	 * it's not needed for correct information, but the XFS dir2 leaf
1180 	 * code wants an estimate of the buffer size to calculate it's
1181 	 * readahead window and size the buffers used for mapping to
1182 	 * physical blocks.
1183 	 *
1184 	 * Try to give it an estimate that's good enough, maybe at some
1185 	 * point we can change the ->readdir prototype to include the
1186 	 * buffer size.  For now we use the current glibc buffer size.
1187 	 */
1188 	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1189 
1190 	return xfs_readdir(NULL, ip, ctx, bufsize);
1191 }
1192 
1193 STATIC loff_t
1194 xfs_file_llseek(
1195 	struct file	*file,
1196 	loff_t		offset,
1197 	int		whence)
1198 {
1199 	struct inode		*inode = file->f_mapping->host;
1200 
1201 	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1202 		return -EIO;
1203 
1204 	switch (whence) {
1205 	default:
1206 		return generic_file_llseek(file, offset, whence);
1207 	case SEEK_HOLE:
1208 		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1209 		break;
1210 	case SEEK_DATA:
1211 		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1212 		break;
1213 	}
1214 
1215 	if (offset < 0)
1216 		return offset;
1217 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1218 }
1219 
1220 /*
1221  * Locking for serialisation of IO during page faults. This results in a lock
1222  * ordering of:
1223  *
1224  * mmap_lock (MM)
1225  *   sb_start_pagefault(vfs, freeze)
1226  *     i_mmaplock (XFS - truncate serialisation)
1227  *       page_lock (MM)
1228  *         i_lock (XFS - extent map serialisation)
1229  */
1230 static vm_fault_t
1231 __xfs_filemap_fault(
1232 	struct vm_fault		*vmf,
1233 	enum page_entry_size	pe_size,
1234 	bool			write_fault)
1235 {
1236 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1237 	struct xfs_inode	*ip = XFS_I(inode);
1238 	vm_fault_t		ret;
1239 
1240 	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1241 
1242 	if (write_fault) {
1243 		sb_start_pagefault(inode->i_sb);
1244 		file_update_time(vmf->vma->vm_file);
1245 	}
1246 
1247 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1248 	if (IS_DAX(inode)) {
1249 		pfn_t pfn;
1250 
1251 		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL,
1252 				(write_fault && !vmf->cow_page) ?
1253 				 &xfs_direct_write_iomap_ops :
1254 				 &xfs_read_iomap_ops);
1255 		if (ret & VM_FAULT_NEEDDSYNC)
1256 			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1257 	} else {
1258 		if (write_fault)
1259 			ret = iomap_page_mkwrite(vmf,
1260 					&xfs_buffered_write_iomap_ops);
1261 		else
1262 			ret = filemap_fault(vmf);
1263 	}
1264 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1265 
1266 	if (write_fault)
1267 		sb_end_pagefault(inode->i_sb);
1268 	return ret;
1269 }
1270 
1271 static inline bool
1272 xfs_is_write_fault(
1273 	struct vm_fault		*vmf)
1274 {
1275 	return (vmf->flags & FAULT_FLAG_WRITE) &&
1276 	       (vmf->vma->vm_flags & VM_SHARED);
1277 }
1278 
1279 static vm_fault_t
1280 xfs_filemap_fault(
1281 	struct vm_fault		*vmf)
1282 {
1283 	/* DAX can shortcut the normal fault path on write faults! */
1284 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1285 			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1286 			xfs_is_write_fault(vmf));
1287 }
1288 
1289 static vm_fault_t
1290 xfs_filemap_huge_fault(
1291 	struct vm_fault		*vmf,
1292 	enum page_entry_size	pe_size)
1293 {
1294 	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1295 		return VM_FAULT_FALLBACK;
1296 
1297 	/* DAX can shortcut the normal fault path on write faults! */
1298 	return __xfs_filemap_fault(vmf, pe_size,
1299 			xfs_is_write_fault(vmf));
1300 }
1301 
1302 static vm_fault_t
1303 xfs_filemap_page_mkwrite(
1304 	struct vm_fault		*vmf)
1305 {
1306 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1307 }
1308 
1309 /*
1310  * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1311  * on write faults. In reality, it needs to serialise against truncate and
1312  * prepare memory for writing so handle is as standard write fault.
1313  */
1314 static vm_fault_t
1315 xfs_filemap_pfn_mkwrite(
1316 	struct vm_fault		*vmf)
1317 {
1318 
1319 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1320 }
1321 
1322 static void
1323 xfs_filemap_map_pages(
1324 	struct vm_fault		*vmf,
1325 	pgoff_t			start_pgoff,
1326 	pgoff_t			end_pgoff)
1327 {
1328 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1329 
1330 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1331 	filemap_map_pages(vmf, start_pgoff, end_pgoff);
1332 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1333 }
1334 
1335 static const struct vm_operations_struct xfs_file_vm_ops = {
1336 	.fault		= xfs_filemap_fault,
1337 	.huge_fault	= xfs_filemap_huge_fault,
1338 	.map_pages	= xfs_filemap_map_pages,
1339 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1340 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1341 };
1342 
1343 STATIC int
1344 xfs_file_mmap(
1345 	struct file		*file,
1346 	struct vm_area_struct	*vma)
1347 {
1348 	struct inode		*inode = file_inode(file);
1349 	struct xfs_buftarg	*target = xfs_inode_buftarg(XFS_I(inode));
1350 
1351 	/*
1352 	 * We don't support synchronous mappings for non-DAX files and
1353 	 * for DAX files if underneath dax_device is not synchronous.
1354 	 */
1355 	if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1356 		return -EOPNOTSUPP;
1357 
1358 	file_accessed(file);
1359 	vma->vm_ops = &xfs_file_vm_ops;
1360 	if (IS_DAX(inode))
1361 		vma->vm_flags |= VM_HUGEPAGE;
1362 	return 0;
1363 }
1364 
1365 const struct file_operations xfs_file_operations = {
1366 	.llseek		= xfs_file_llseek,
1367 	.read_iter	= xfs_file_read_iter,
1368 	.write_iter	= xfs_file_write_iter,
1369 	.splice_read	= generic_file_splice_read,
1370 	.splice_write	= iter_file_splice_write,
1371 	.iopoll		= iomap_dio_iopoll,
1372 	.unlocked_ioctl	= xfs_file_ioctl,
1373 #ifdef CONFIG_COMPAT
1374 	.compat_ioctl	= xfs_file_compat_ioctl,
1375 #endif
1376 	.mmap		= xfs_file_mmap,
1377 	.mmap_supported_flags = MAP_SYNC,
1378 	.open		= xfs_file_open,
1379 	.release	= xfs_file_release,
1380 	.fsync		= xfs_file_fsync,
1381 	.get_unmapped_area = thp_get_unmapped_area,
1382 	.fallocate	= xfs_file_fallocate,
1383 	.fadvise	= xfs_file_fadvise,
1384 	.remap_file_range = xfs_file_remap_range,
1385 };
1386 
1387 const struct file_operations xfs_dir_file_operations = {
1388 	.open		= xfs_dir_open,
1389 	.read		= generic_read_dir,
1390 	.iterate_shared	= xfs_file_readdir,
1391 	.llseek		= generic_file_llseek,
1392 	.unlocked_ioctl	= xfs_file_ioctl,
1393 #ifdef CONFIG_COMPAT
1394 	.compat_ioctl	= xfs_file_compat_ioctl,
1395 #endif
1396 	.fsync		= xfs_dir_fsync,
1397 };
1398