xref: /openbmc/linux/fs/xfs/xfs_file.c (revision 0661cb2a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_dir2.h"
19 #include "xfs_dir2_priv.h"
20 #include "xfs_ioctl.h"
21 #include "xfs_trace.h"
22 #include "xfs_log.h"
23 #include "xfs_icache.h"
24 #include "xfs_pnfs.h"
25 #include "xfs_iomap.h"
26 #include "xfs_reflink.h"
27 
28 #include <linux/falloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mman.h>
31 #include <linux/fadvise.h>
32 #include <linux/mount.h>
33 
34 static const struct vm_operations_struct xfs_file_vm_ops;
35 
36 /*
37  * Decide if the given file range is aligned to the size of the fundamental
38  * allocation unit for the file.
39  */
40 static bool
41 xfs_is_falloc_aligned(
42 	struct xfs_inode	*ip,
43 	loff_t			pos,
44 	long long int		len)
45 {
46 	struct xfs_mount	*mp = ip->i_mount;
47 	uint64_t		mask;
48 
49 	if (XFS_IS_REALTIME_INODE(ip)) {
50 		if (!is_power_of_2(mp->m_sb.sb_rextsize)) {
51 			u64	rextbytes;
52 			u32	mod;
53 
54 			rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize);
55 			div_u64_rem(pos, rextbytes, &mod);
56 			if (mod)
57 				return false;
58 			div_u64_rem(len, rextbytes, &mod);
59 			return mod == 0;
60 		}
61 		mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1;
62 	} else {
63 		mask = mp->m_sb.sb_blocksize - 1;
64 	}
65 
66 	return !((pos | len) & mask);
67 }
68 
69 int
70 xfs_update_prealloc_flags(
71 	struct xfs_inode	*ip,
72 	enum xfs_prealloc_flags	flags)
73 {
74 	struct xfs_trans	*tp;
75 	int			error;
76 
77 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
78 			0, 0, 0, &tp);
79 	if (error)
80 		return error;
81 
82 	xfs_ilock(ip, XFS_ILOCK_EXCL);
83 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
84 
85 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
86 		VFS_I(ip)->i_mode &= ~S_ISUID;
87 		if (VFS_I(ip)->i_mode & S_IXGRP)
88 			VFS_I(ip)->i_mode &= ~S_ISGID;
89 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
90 	}
91 
92 	if (flags & XFS_PREALLOC_SET)
93 		ip->i_diflags |= XFS_DIFLAG_PREALLOC;
94 	if (flags & XFS_PREALLOC_CLEAR)
95 		ip->i_diflags &= ~XFS_DIFLAG_PREALLOC;
96 
97 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
98 	if (flags & XFS_PREALLOC_SYNC)
99 		xfs_trans_set_sync(tp);
100 	return xfs_trans_commit(tp);
101 }
102 
103 /*
104  * Fsync operations on directories are much simpler than on regular files,
105  * as there is no file data to flush, and thus also no need for explicit
106  * cache flush operations, and there are no non-transaction metadata updates
107  * on directories either.
108  */
109 STATIC int
110 xfs_dir_fsync(
111 	struct file		*file,
112 	loff_t			start,
113 	loff_t			end,
114 	int			datasync)
115 {
116 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
117 
118 	trace_xfs_dir_fsync(ip);
119 	return xfs_log_force_inode(ip);
120 }
121 
122 static xfs_csn_t
123 xfs_fsync_seq(
124 	struct xfs_inode	*ip,
125 	bool			datasync)
126 {
127 	if (!xfs_ipincount(ip))
128 		return 0;
129 	if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
130 		return 0;
131 	return ip->i_itemp->ili_commit_seq;
132 }
133 
134 /*
135  * All metadata updates are logged, which means that we just have to flush the
136  * log up to the latest LSN that touched the inode.
137  *
138  * If we have concurrent fsync/fdatasync() calls, we need them to all block on
139  * the log force before we clear the ili_fsync_fields field. This ensures that
140  * we don't get a racing sync operation that does not wait for the metadata to
141  * hit the journal before returning.  If we race with clearing ili_fsync_fields,
142  * then all that will happen is the log force will do nothing as the lsn will
143  * already be on disk.  We can't race with setting ili_fsync_fields because that
144  * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
145  * shared until after the ili_fsync_fields is cleared.
146  */
147 static  int
148 xfs_fsync_flush_log(
149 	struct xfs_inode	*ip,
150 	bool			datasync,
151 	int			*log_flushed)
152 {
153 	int			error = 0;
154 	xfs_csn_t		seq;
155 
156 	xfs_ilock(ip, XFS_ILOCK_SHARED);
157 	seq = xfs_fsync_seq(ip, datasync);
158 	if (seq) {
159 		error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC,
160 					  log_flushed);
161 
162 		spin_lock(&ip->i_itemp->ili_lock);
163 		ip->i_itemp->ili_fsync_fields = 0;
164 		spin_unlock(&ip->i_itemp->ili_lock);
165 	}
166 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
167 	return error;
168 }
169 
170 STATIC int
171 xfs_file_fsync(
172 	struct file		*file,
173 	loff_t			start,
174 	loff_t			end,
175 	int			datasync)
176 {
177 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
178 	struct xfs_mount	*mp = ip->i_mount;
179 	int			error = 0;
180 	int			log_flushed = 0;
181 
182 	trace_xfs_file_fsync(ip);
183 
184 	error = file_write_and_wait_range(file, start, end);
185 	if (error)
186 		return error;
187 
188 	if (XFS_FORCED_SHUTDOWN(mp))
189 		return -EIO;
190 
191 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
192 
193 	/*
194 	 * If we have an RT and/or log subvolume we need to make sure to flush
195 	 * the write cache the device used for file data first.  This is to
196 	 * ensure newly written file data make it to disk before logging the new
197 	 * inode size in case of an extending write.
198 	 */
199 	if (XFS_IS_REALTIME_INODE(ip))
200 		blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev);
201 	else if (mp->m_logdev_targp != mp->m_ddev_targp)
202 		blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
203 
204 	/*
205 	 * Any inode that has dirty modifications in the log is pinned.  The
206 	 * racy check here for a pinned inode while not catch modifications
207 	 * that happen concurrently to the fsync call, but fsync semantics
208 	 * only require to sync previously completed I/O.
209 	 */
210 	if (xfs_ipincount(ip))
211 		error = xfs_fsync_flush_log(ip, datasync, &log_flushed);
212 
213 	/*
214 	 * If we only have a single device, and the log force about was
215 	 * a no-op we might have to flush the data device cache here.
216 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
217 	 * an already allocated file and thus do not have any metadata to
218 	 * commit.
219 	 */
220 	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
221 	    mp->m_logdev_targp == mp->m_ddev_targp)
222 		blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
223 
224 	return error;
225 }
226 
227 static int
228 xfs_ilock_iocb(
229 	struct kiocb		*iocb,
230 	unsigned int		lock_mode)
231 {
232 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
233 
234 	if (iocb->ki_flags & IOCB_NOWAIT) {
235 		if (!xfs_ilock_nowait(ip, lock_mode))
236 			return -EAGAIN;
237 	} else {
238 		xfs_ilock(ip, lock_mode);
239 	}
240 
241 	return 0;
242 }
243 
244 STATIC ssize_t
245 xfs_file_dio_read(
246 	struct kiocb		*iocb,
247 	struct iov_iter		*to)
248 {
249 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
250 	ssize_t			ret;
251 
252 	trace_xfs_file_direct_read(iocb, to);
253 
254 	if (!iov_iter_count(to))
255 		return 0; /* skip atime */
256 
257 	file_accessed(iocb->ki_filp);
258 
259 	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
260 	if (ret)
261 		return ret;
262 	ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0);
263 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
264 
265 	return ret;
266 }
267 
268 static noinline ssize_t
269 xfs_file_dax_read(
270 	struct kiocb		*iocb,
271 	struct iov_iter		*to)
272 {
273 	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
274 	ssize_t			ret = 0;
275 
276 	trace_xfs_file_dax_read(iocb, to);
277 
278 	if (!iov_iter_count(to))
279 		return 0; /* skip atime */
280 
281 	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
282 	if (ret)
283 		return ret;
284 	ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
285 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
286 
287 	file_accessed(iocb->ki_filp);
288 	return ret;
289 }
290 
291 STATIC ssize_t
292 xfs_file_buffered_read(
293 	struct kiocb		*iocb,
294 	struct iov_iter		*to)
295 {
296 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
297 	ssize_t			ret;
298 
299 	trace_xfs_file_buffered_read(iocb, to);
300 
301 	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
302 	if (ret)
303 		return ret;
304 	ret = generic_file_read_iter(iocb, to);
305 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
306 
307 	return ret;
308 }
309 
310 STATIC ssize_t
311 xfs_file_read_iter(
312 	struct kiocb		*iocb,
313 	struct iov_iter		*to)
314 {
315 	struct inode		*inode = file_inode(iocb->ki_filp);
316 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
317 	ssize_t			ret = 0;
318 
319 	XFS_STATS_INC(mp, xs_read_calls);
320 
321 	if (XFS_FORCED_SHUTDOWN(mp))
322 		return -EIO;
323 
324 	if (IS_DAX(inode))
325 		ret = xfs_file_dax_read(iocb, to);
326 	else if (iocb->ki_flags & IOCB_DIRECT)
327 		ret = xfs_file_dio_read(iocb, to);
328 	else
329 		ret = xfs_file_buffered_read(iocb, to);
330 
331 	if (ret > 0)
332 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
333 	return ret;
334 }
335 
336 /*
337  * Common pre-write limit and setup checks.
338  *
339  * Called with the iolocked held either shared and exclusive according to
340  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
341  * if called for a direct write beyond i_size.
342  */
343 STATIC ssize_t
344 xfs_file_write_checks(
345 	struct kiocb		*iocb,
346 	struct iov_iter		*from,
347 	int			*iolock)
348 {
349 	struct file		*file = iocb->ki_filp;
350 	struct inode		*inode = file->f_mapping->host;
351 	struct xfs_inode	*ip = XFS_I(inode);
352 	ssize_t			error = 0;
353 	size_t			count = iov_iter_count(from);
354 	bool			drained_dio = false;
355 	loff_t			isize;
356 
357 restart:
358 	error = generic_write_checks(iocb, from);
359 	if (error <= 0)
360 		return error;
361 
362 	if (iocb->ki_flags & IOCB_NOWAIT) {
363 		error = break_layout(inode, false);
364 		if (error == -EWOULDBLOCK)
365 			error = -EAGAIN;
366 	} else {
367 		error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
368 	}
369 
370 	if (error)
371 		return error;
372 
373 	/*
374 	 * For changing security info in file_remove_privs() we need i_rwsem
375 	 * exclusively.
376 	 */
377 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
378 		xfs_iunlock(ip, *iolock);
379 		*iolock = XFS_IOLOCK_EXCL;
380 		error = xfs_ilock_iocb(iocb, *iolock);
381 		if (error) {
382 			*iolock = 0;
383 			return error;
384 		}
385 		goto restart;
386 	}
387 
388 	/*
389 	 * If the offset is beyond the size of the file, we need to zero any
390 	 * blocks that fall between the existing EOF and the start of this
391 	 * write.  If zeroing is needed and we are currently holding the iolock
392 	 * shared, we need to update it to exclusive which implies having to
393 	 * redo all checks before.
394 	 *
395 	 * We need to serialise against EOF updates that occur in IO completions
396 	 * here. We want to make sure that nobody is changing the size while we
397 	 * do this check until we have placed an IO barrier (i.e.  hold the
398 	 * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.  The
399 	 * spinlock effectively forms a memory barrier once we have the
400 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and
401 	 * hence be able to correctly determine if we need to run zeroing.
402 	 *
403 	 * We can do an unlocked check here safely as IO completion can only
404 	 * extend EOF. Truncate is locked out at this point, so the EOF can
405 	 * not move backwards, only forwards. Hence we only need to take the
406 	 * slow path and spin locks when we are at or beyond the current EOF.
407 	 */
408 	if (iocb->ki_pos <= i_size_read(inode))
409 		goto out;
410 
411 	spin_lock(&ip->i_flags_lock);
412 	isize = i_size_read(inode);
413 	if (iocb->ki_pos > isize) {
414 		spin_unlock(&ip->i_flags_lock);
415 
416 		if (iocb->ki_flags & IOCB_NOWAIT)
417 			return -EAGAIN;
418 
419 		if (!drained_dio) {
420 			if (*iolock == XFS_IOLOCK_SHARED) {
421 				xfs_iunlock(ip, *iolock);
422 				*iolock = XFS_IOLOCK_EXCL;
423 				xfs_ilock(ip, *iolock);
424 				iov_iter_reexpand(from, count);
425 			}
426 			/*
427 			 * We now have an IO submission barrier in place, but
428 			 * AIO can do EOF updates during IO completion and hence
429 			 * we now need to wait for all of them to drain. Non-AIO
430 			 * DIO will have drained before we are given the
431 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
432 			 * no-op.
433 			 */
434 			inode_dio_wait(inode);
435 			drained_dio = true;
436 			goto restart;
437 		}
438 
439 		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
440 		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
441 				NULL, &xfs_buffered_write_iomap_ops);
442 		if (error)
443 			return error;
444 	} else
445 		spin_unlock(&ip->i_flags_lock);
446 
447 out:
448 	return file_modified(file);
449 }
450 
451 static int
452 xfs_dio_write_end_io(
453 	struct kiocb		*iocb,
454 	ssize_t			size,
455 	int			error,
456 	unsigned		flags)
457 {
458 	struct inode		*inode = file_inode(iocb->ki_filp);
459 	struct xfs_inode	*ip = XFS_I(inode);
460 	loff_t			offset = iocb->ki_pos;
461 	unsigned int		nofs_flag;
462 
463 	trace_xfs_end_io_direct_write(ip, offset, size);
464 
465 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
466 		return -EIO;
467 
468 	if (error)
469 		return error;
470 	if (!size)
471 		return 0;
472 
473 	/*
474 	 * Capture amount written on completion as we can't reliably account
475 	 * for it on submission.
476 	 */
477 	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
478 
479 	/*
480 	 * We can allocate memory here while doing writeback on behalf of
481 	 * memory reclaim.  To avoid memory allocation deadlocks set the
482 	 * task-wide nofs context for the following operations.
483 	 */
484 	nofs_flag = memalloc_nofs_save();
485 
486 	if (flags & IOMAP_DIO_COW) {
487 		error = xfs_reflink_end_cow(ip, offset, size);
488 		if (error)
489 			goto out;
490 	}
491 
492 	/*
493 	 * Unwritten conversion updates the in-core isize after extent
494 	 * conversion but before updating the on-disk size. Updating isize any
495 	 * earlier allows a racing dio read to find unwritten extents before
496 	 * they are converted.
497 	 */
498 	if (flags & IOMAP_DIO_UNWRITTEN) {
499 		error = xfs_iomap_write_unwritten(ip, offset, size, true);
500 		goto out;
501 	}
502 
503 	/*
504 	 * We need to update the in-core inode size here so that we don't end up
505 	 * with the on-disk inode size being outside the in-core inode size. We
506 	 * have no other method of updating EOF for AIO, so always do it here
507 	 * if necessary.
508 	 *
509 	 * We need to lock the test/set EOF update as we can be racing with
510 	 * other IO completions here to update the EOF. Failing to serialise
511 	 * here can result in EOF moving backwards and Bad Things Happen when
512 	 * that occurs.
513 	 *
514 	 * As IO completion only ever extends EOF, we can do an unlocked check
515 	 * here to avoid taking the spinlock. If we land within the current EOF,
516 	 * then we do not need to do an extending update at all, and we don't
517 	 * need to take the lock to check this. If we race with an update moving
518 	 * EOF, then we'll either still be beyond EOF and need to take the lock,
519 	 * or we'll be within EOF and we don't need to take it at all.
520 	 */
521 	if (offset + size <= i_size_read(inode))
522 		goto out;
523 
524 	spin_lock(&ip->i_flags_lock);
525 	if (offset + size > i_size_read(inode)) {
526 		i_size_write(inode, offset + size);
527 		spin_unlock(&ip->i_flags_lock);
528 		error = xfs_setfilesize(ip, offset, size);
529 	} else {
530 		spin_unlock(&ip->i_flags_lock);
531 	}
532 
533 out:
534 	memalloc_nofs_restore(nofs_flag);
535 	return error;
536 }
537 
538 static const struct iomap_dio_ops xfs_dio_write_ops = {
539 	.end_io		= xfs_dio_write_end_io,
540 };
541 
542 /*
543  * Handle block aligned direct I/O writes
544  */
545 static noinline ssize_t
546 xfs_file_dio_write_aligned(
547 	struct xfs_inode	*ip,
548 	struct kiocb		*iocb,
549 	struct iov_iter		*from)
550 {
551 	int			iolock = XFS_IOLOCK_SHARED;
552 	ssize_t			ret;
553 
554 	ret = xfs_ilock_iocb(iocb, iolock);
555 	if (ret)
556 		return ret;
557 	ret = xfs_file_write_checks(iocb, from, &iolock);
558 	if (ret)
559 		goto out_unlock;
560 
561 	/*
562 	 * We don't need to hold the IOLOCK exclusively across the IO, so demote
563 	 * the iolock back to shared if we had to take the exclusive lock in
564 	 * xfs_file_write_checks() for other reasons.
565 	 */
566 	if (iolock == XFS_IOLOCK_EXCL) {
567 		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
568 		iolock = XFS_IOLOCK_SHARED;
569 	}
570 	trace_xfs_file_direct_write(iocb, from);
571 	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
572 			   &xfs_dio_write_ops, 0);
573 out_unlock:
574 	if (iolock)
575 		xfs_iunlock(ip, iolock);
576 	return ret;
577 }
578 
579 /*
580  * Handle block unaligned direct I/O writes
581  *
582  * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing
583  * them to be done in parallel with reads and other direct I/O writes.  However,
584  * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need
585  * to do sub-block zeroing and that requires serialisation against other direct
586  * I/O to the same block.  In this case we need to serialise the submission of
587  * the unaligned I/O so that we don't get racing block zeroing in the dio layer.
588  * In the case where sub-block zeroing is not required, we can do concurrent
589  * sub-block dios to the same block successfully.
590  *
591  * Optimistically submit the I/O using the shared lock first, but use the
592  * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN
593  * if block allocation or partial block zeroing would be required.  In that case
594  * we try again with the exclusive lock.
595  */
596 static noinline ssize_t
597 xfs_file_dio_write_unaligned(
598 	struct xfs_inode	*ip,
599 	struct kiocb		*iocb,
600 	struct iov_iter		*from)
601 {
602 	size_t			isize = i_size_read(VFS_I(ip));
603 	size_t			count = iov_iter_count(from);
604 	int			iolock = XFS_IOLOCK_SHARED;
605 	unsigned int		flags = IOMAP_DIO_OVERWRITE_ONLY;
606 	ssize_t			ret;
607 
608 	/*
609 	 * Extending writes need exclusivity because of the sub-block zeroing
610 	 * that the DIO code always does for partial tail blocks beyond EOF, so
611 	 * don't even bother trying the fast path in this case.
612 	 */
613 	if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) {
614 retry_exclusive:
615 		if (iocb->ki_flags & IOCB_NOWAIT)
616 			return -EAGAIN;
617 		iolock = XFS_IOLOCK_EXCL;
618 		flags = IOMAP_DIO_FORCE_WAIT;
619 	}
620 
621 	ret = xfs_ilock_iocb(iocb, iolock);
622 	if (ret)
623 		return ret;
624 
625 	/*
626 	 * We can't properly handle unaligned direct I/O to reflink files yet,
627 	 * as we can't unshare a partial block.
628 	 */
629 	if (xfs_is_cow_inode(ip)) {
630 		trace_xfs_reflink_bounce_dio_write(iocb, from);
631 		ret = -ENOTBLK;
632 		goto out_unlock;
633 	}
634 
635 	ret = xfs_file_write_checks(iocb, from, &iolock);
636 	if (ret)
637 		goto out_unlock;
638 
639 	/*
640 	 * If we are doing exclusive unaligned I/O, this must be the only I/O
641 	 * in-flight.  Otherwise we risk data corruption due to unwritten extent
642 	 * conversions from the AIO end_io handler.  Wait for all other I/O to
643 	 * drain first.
644 	 */
645 	if (flags & IOMAP_DIO_FORCE_WAIT)
646 		inode_dio_wait(VFS_I(ip));
647 
648 	trace_xfs_file_direct_write(iocb, from);
649 	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
650 			   &xfs_dio_write_ops, flags);
651 
652 	/*
653 	 * Retry unaligned I/O with exclusive blocking semantics if the DIO
654 	 * layer rejected it for mapping or locking reasons. If we are doing
655 	 * nonblocking user I/O, propagate the error.
656 	 */
657 	if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) {
658 		ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY);
659 		xfs_iunlock(ip, iolock);
660 		goto retry_exclusive;
661 	}
662 
663 out_unlock:
664 	if (iolock)
665 		xfs_iunlock(ip, iolock);
666 	return ret;
667 }
668 
669 static ssize_t
670 xfs_file_dio_write(
671 	struct kiocb		*iocb,
672 	struct iov_iter		*from)
673 {
674 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
675 	struct xfs_buftarg      *target = xfs_inode_buftarg(ip);
676 	size_t			count = iov_iter_count(from);
677 
678 	/* direct I/O must be aligned to device logical sector size */
679 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
680 		return -EINVAL;
681 	if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask)
682 		return xfs_file_dio_write_unaligned(ip, iocb, from);
683 	return xfs_file_dio_write_aligned(ip, iocb, from);
684 }
685 
686 static noinline ssize_t
687 xfs_file_dax_write(
688 	struct kiocb		*iocb,
689 	struct iov_iter		*from)
690 {
691 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
692 	struct xfs_inode	*ip = XFS_I(inode);
693 	int			iolock = XFS_IOLOCK_EXCL;
694 	ssize_t			ret, error = 0;
695 	loff_t			pos;
696 
697 	ret = xfs_ilock_iocb(iocb, iolock);
698 	if (ret)
699 		return ret;
700 	ret = xfs_file_write_checks(iocb, from, &iolock);
701 	if (ret)
702 		goto out;
703 
704 	pos = iocb->ki_pos;
705 
706 	trace_xfs_file_dax_write(iocb, from);
707 	ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops);
708 	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
709 		i_size_write(inode, iocb->ki_pos);
710 		error = xfs_setfilesize(ip, pos, ret);
711 	}
712 out:
713 	if (iolock)
714 		xfs_iunlock(ip, iolock);
715 	if (error)
716 		return error;
717 
718 	if (ret > 0) {
719 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
720 
721 		/* Handle various SYNC-type writes */
722 		ret = generic_write_sync(iocb, ret);
723 	}
724 	return ret;
725 }
726 
727 STATIC ssize_t
728 xfs_file_buffered_write(
729 	struct kiocb		*iocb,
730 	struct iov_iter		*from)
731 {
732 	struct file		*file = iocb->ki_filp;
733 	struct address_space	*mapping = file->f_mapping;
734 	struct inode		*inode = mapping->host;
735 	struct xfs_inode	*ip = XFS_I(inode);
736 	ssize_t			ret;
737 	bool			cleared_space = false;
738 	int			iolock;
739 
740 	if (iocb->ki_flags & IOCB_NOWAIT)
741 		return -EOPNOTSUPP;
742 
743 write_retry:
744 	iolock = XFS_IOLOCK_EXCL;
745 	xfs_ilock(ip, iolock);
746 
747 	ret = xfs_file_write_checks(iocb, from, &iolock);
748 	if (ret)
749 		goto out;
750 
751 	/* We can write back this queue in page reclaim */
752 	current->backing_dev_info = inode_to_bdi(inode);
753 
754 	trace_xfs_file_buffered_write(iocb, from);
755 	ret = iomap_file_buffered_write(iocb, from,
756 			&xfs_buffered_write_iomap_ops);
757 	if (likely(ret >= 0))
758 		iocb->ki_pos += ret;
759 
760 	/*
761 	 * If we hit a space limit, try to free up some lingering preallocated
762 	 * space before returning an error. In the case of ENOSPC, first try to
763 	 * write back all dirty inodes to free up some of the excess reserved
764 	 * metadata space. This reduces the chances that the eofblocks scan
765 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
766 	 * also behaves as a filter to prevent too many eofblocks scans from
767 	 * running at the same time.  Use a synchronous scan to increase the
768 	 * effectiveness of the scan.
769 	 */
770 	if (ret == -EDQUOT && !cleared_space) {
771 		xfs_iunlock(ip, iolock);
772 		xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC);
773 		cleared_space = true;
774 		goto write_retry;
775 	} else if (ret == -ENOSPC && !cleared_space) {
776 		struct xfs_icwalk	icw = {0};
777 
778 		cleared_space = true;
779 		xfs_flush_inodes(ip->i_mount);
780 
781 		xfs_iunlock(ip, iolock);
782 		icw.icw_flags = XFS_ICWALK_FLAG_SYNC;
783 		xfs_blockgc_free_space(ip->i_mount, &icw);
784 		goto write_retry;
785 	}
786 
787 	current->backing_dev_info = NULL;
788 out:
789 	if (iolock)
790 		xfs_iunlock(ip, iolock);
791 
792 	if (ret > 0) {
793 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
794 		/* Handle various SYNC-type writes */
795 		ret = generic_write_sync(iocb, ret);
796 	}
797 	return ret;
798 }
799 
800 STATIC ssize_t
801 xfs_file_write_iter(
802 	struct kiocb		*iocb,
803 	struct iov_iter		*from)
804 {
805 	struct file		*file = iocb->ki_filp;
806 	struct address_space	*mapping = file->f_mapping;
807 	struct inode		*inode = mapping->host;
808 	struct xfs_inode	*ip = XFS_I(inode);
809 	ssize_t			ret;
810 	size_t			ocount = iov_iter_count(from);
811 
812 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
813 
814 	if (ocount == 0)
815 		return 0;
816 
817 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
818 		return -EIO;
819 
820 	if (IS_DAX(inode))
821 		return xfs_file_dax_write(iocb, from);
822 
823 	if (iocb->ki_flags & IOCB_DIRECT) {
824 		/*
825 		 * Allow a directio write to fall back to a buffered
826 		 * write *only* in the case that we're doing a reflink
827 		 * CoW.  In all other directio scenarios we do not
828 		 * allow an operation to fall back to buffered mode.
829 		 */
830 		ret = xfs_file_dio_write(iocb, from);
831 		if (ret != -ENOTBLK)
832 			return ret;
833 	}
834 
835 	return xfs_file_buffered_write(iocb, from);
836 }
837 
838 static void
839 xfs_wait_dax_page(
840 	struct inode		*inode)
841 {
842 	struct xfs_inode        *ip = XFS_I(inode);
843 
844 	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
845 	schedule();
846 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
847 }
848 
849 static int
850 xfs_break_dax_layouts(
851 	struct inode		*inode,
852 	bool			*retry)
853 {
854 	struct page		*page;
855 
856 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
857 
858 	page = dax_layout_busy_page(inode->i_mapping);
859 	if (!page)
860 		return 0;
861 
862 	*retry = true;
863 	return ___wait_var_event(&page->_refcount,
864 			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
865 			0, 0, xfs_wait_dax_page(inode));
866 }
867 
868 int
869 xfs_break_layouts(
870 	struct inode		*inode,
871 	uint			*iolock,
872 	enum layout_break_reason reason)
873 {
874 	bool			retry;
875 	int			error;
876 
877 	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
878 
879 	do {
880 		retry = false;
881 		switch (reason) {
882 		case BREAK_UNMAP:
883 			error = xfs_break_dax_layouts(inode, &retry);
884 			if (error || retry)
885 				break;
886 			fallthrough;
887 		case BREAK_WRITE:
888 			error = xfs_break_leased_layouts(inode, iolock, &retry);
889 			break;
890 		default:
891 			WARN_ON_ONCE(1);
892 			error = -EINVAL;
893 		}
894 	} while (error == 0 && retry);
895 
896 	return error;
897 }
898 
899 #define	XFS_FALLOC_FL_SUPPORTED						\
900 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
901 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
902 		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
903 
904 STATIC long
905 xfs_file_fallocate(
906 	struct file		*file,
907 	int			mode,
908 	loff_t			offset,
909 	loff_t			len)
910 {
911 	struct inode		*inode = file_inode(file);
912 	struct xfs_inode	*ip = XFS_I(inode);
913 	long			error;
914 	enum xfs_prealloc_flags	flags = 0;
915 	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
916 	loff_t			new_size = 0;
917 	bool			do_file_insert = false;
918 
919 	if (!S_ISREG(inode->i_mode))
920 		return -EINVAL;
921 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
922 		return -EOPNOTSUPP;
923 
924 	xfs_ilock(ip, iolock);
925 	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
926 	if (error)
927 		goto out_unlock;
928 
929 	/*
930 	 * Must wait for all AIO to complete before we continue as AIO can
931 	 * change the file size on completion without holding any locks we
932 	 * currently hold. We must do this first because AIO can update both
933 	 * the on disk and in memory inode sizes, and the operations that follow
934 	 * require the in-memory size to be fully up-to-date.
935 	 */
936 	inode_dio_wait(inode);
937 
938 	/*
939 	 * Now AIO and DIO has drained we flush and (if necessary) invalidate
940 	 * the cached range over the first operation we are about to run.
941 	 *
942 	 * We care about zero and collapse here because they both run a hole
943 	 * punch over the range first. Because that can zero data, and the range
944 	 * of invalidation for the shift operations is much larger, we still do
945 	 * the required flush for collapse in xfs_prepare_shift().
946 	 *
947 	 * Insert has the same range requirements as collapse, and we extend the
948 	 * file first which can zero data. Hence insert has the same
949 	 * flush/invalidate requirements as collapse and so they are both
950 	 * handled at the right time by xfs_prepare_shift().
951 	 */
952 	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
953 		    FALLOC_FL_COLLAPSE_RANGE)) {
954 		error = xfs_flush_unmap_range(ip, offset, len);
955 		if (error)
956 			goto out_unlock;
957 	}
958 
959 	if (mode & FALLOC_FL_PUNCH_HOLE) {
960 		error = xfs_free_file_space(ip, offset, len);
961 		if (error)
962 			goto out_unlock;
963 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
964 		if (!xfs_is_falloc_aligned(ip, offset, len)) {
965 			error = -EINVAL;
966 			goto out_unlock;
967 		}
968 
969 		/*
970 		 * There is no need to overlap collapse range with EOF,
971 		 * in which case it is effectively a truncate operation
972 		 */
973 		if (offset + len >= i_size_read(inode)) {
974 			error = -EINVAL;
975 			goto out_unlock;
976 		}
977 
978 		new_size = i_size_read(inode) - len;
979 
980 		error = xfs_collapse_file_space(ip, offset, len);
981 		if (error)
982 			goto out_unlock;
983 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
984 		loff_t		isize = i_size_read(inode);
985 
986 		if (!xfs_is_falloc_aligned(ip, offset, len)) {
987 			error = -EINVAL;
988 			goto out_unlock;
989 		}
990 
991 		/*
992 		 * New inode size must not exceed ->s_maxbytes, accounting for
993 		 * possible signed overflow.
994 		 */
995 		if (inode->i_sb->s_maxbytes - isize < len) {
996 			error = -EFBIG;
997 			goto out_unlock;
998 		}
999 		new_size = isize + len;
1000 
1001 		/* Offset should be less than i_size */
1002 		if (offset >= isize) {
1003 			error = -EINVAL;
1004 			goto out_unlock;
1005 		}
1006 		do_file_insert = true;
1007 	} else {
1008 		flags |= XFS_PREALLOC_SET;
1009 
1010 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1011 		    offset + len > i_size_read(inode)) {
1012 			new_size = offset + len;
1013 			error = inode_newsize_ok(inode, new_size);
1014 			if (error)
1015 				goto out_unlock;
1016 		}
1017 
1018 		if (mode & FALLOC_FL_ZERO_RANGE) {
1019 			/*
1020 			 * Punch a hole and prealloc the range.  We use a hole
1021 			 * punch rather than unwritten extent conversion for two
1022 			 * reasons:
1023 			 *
1024 			 *   1.) Hole punch handles partial block zeroing for us.
1025 			 *   2.) If prealloc returns ENOSPC, the file range is
1026 			 *       still zero-valued by virtue of the hole punch.
1027 			 */
1028 			unsigned int blksize = i_blocksize(inode);
1029 
1030 			trace_xfs_zero_file_space(ip);
1031 
1032 			error = xfs_free_file_space(ip, offset, len);
1033 			if (error)
1034 				goto out_unlock;
1035 
1036 			len = round_up(offset + len, blksize) -
1037 			      round_down(offset, blksize);
1038 			offset = round_down(offset, blksize);
1039 		} else if (mode & FALLOC_FL_UNSHARE_RANGE) {
1040 			error = xfs_reflink_unshare(ip, offset, len);
1041 			if (error)
1042 				goto out_unlock;
1043 		} else {
1044 			/*
1045 			 * If always_cow mode we can't use preallocations and
1046 			 * thus should not create them.
1047 			 */
1048 			if (xfs_is_always_cow_inode(ip)) {
1049 				error = -EOPNOTSUPP;
1050 				goto out_unlock;
1051 			}
1052 		}
1053 
1054 		if (!xfs_is_always_cow_inode(ip)) {
1055 			error = xfs_alloc_file_space(ip, offset, len,
1056 						     XFS_BMAPI_PREALLOC);
1057 			if (error)
1058 				goto out_unlock;
1059 		}
1060 	}
1061 
1062 	if (file->f_flags & O_DSYNC)
1063 		flags |= XFS_PREALLOC_SYNC;
1064 
1065 	error = xfs_update_prealloc_flags(ip, flags);
1066 	if (error)
1067 		goto out_unlock;
1068 
1069 	/* Change file size if needed */
1070 	if (new_size) {
1071 		struct iattr iattr;
1072 
1073 		iattr.ia_valid = ATTR_SIZE;
1074 		iattr.ia_size = new_size;
1075 		error = xfs_vn_setattr_size(file_mnt_user_ns(file),
1076 					    file_dentry(file), &iattr);
1077 		if (error)
1078 			goto out_unlock;
1079 	}
1080 
1081 	/*
1082 	 * Perform hole insertion now that the file size has been
1083 	 * updated so that if we crash during the operation we don't
1084 	 * leave shifted extents past EOF and hence losing access to
1085 	 * the data that is contained within them.
1086 	 */
1087 	if (do_file_insert)
1088 		error = xfs_insert_file_space(ip, offset, len);
1089 
1090 out_unlock:
1091 	xfs_iunlock(ip, iolock);
1092 	return error;
1093 }
1094 
1095 STATIC int
1096 xfs_file_fadvise(
1097 	struct file	*file,
1098 	loff_t		start,
1099 	loff_t		end,
1100 	int		advice)
1101 {
1102 	struct xfs_inode *ip = XFS_I(file_inode(file));
1103 	int ret;
1104 	int lockflags = 0;
1105 
1106 	/*
1107 	 * Operations creating pages in page cache need protection from hole
1108 	 * punching and similar ops
1109 	 */
1110 	if (advice == POSIX_FADV_WILLNEED) {
1111 		lockflags = XFS_IOLOCK_SHARED;
1112 		xfs_ilock(ip, lockflags);
1113 	}
1114 	ret = generic_fadvise(file, start, end, advice);
1115 	if (lockflags)
1116 		xfs_iunlock(ip, lockflags);
1117 	return ret;
1118 }
1119 
1120 /* Does this file, inode, or mount want synchronous writes? */
1121 static inline bool xfs_file_sync_writes(struct file *filp)
1122 {
1123 	struct xfs_inode	*ip = XFS_I(file_inode(filp));
1124 
1125 	if (ip->i_mount->m_flags & XFS_MOUNT_WSYNC)
1126 		return true;
1127 	if (filp->f_flags & (__O_SYNC | O_DSYNC))
1128 		return true;
1129 	if (IS_SYNC(file_inode(filp)))
1130 		return true;
1131 
1132 	return false;
1133 }
1134 
1135 STATIC loff_t
1136 xfs_file_remap_range(
1137 	struct file		*file_in,
1138 	loff_t			pos_in,
1139 	struct file		*file_out,
1140 	loff_t			pos_out,
1141 	loff_t			len,
1142 	unsigned int		remap_flags)
1143 {
1144 	struct inode		*inode_in = file_inode(file_in);
1145 	struct xfs_inode	*src = XFS_I(inode_in);
1146 	struct inode		*inode_out = file_inode(file_out);
1147 	struct xfs_inode	*dest = XFS_I(inode_out);
1148 	struct xfs_mount	*mp = src->i_mount;
1149 	loff_t			remapped = 0;
1150 	xfs_extlen_t		cowextsize;
1151 	int			ret;
1152 
1153 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1154 		return -EINVAL;
1155 
1156 	if (!xfs_sb_version_hasreflink(&mp->m_sb))
1157 		return -EOPNOTSUPP;
1158 
1159 	if (XFS_FORCED_SHUTDOWN(mp))
1160 		return -EIO;
1161 
1162 	/* Prepare and then clone file data. */
1163 	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1164 			&len, remap_flags);
1165 	if (ret || len == 0)
1166 		return ret;
1167 
1168 	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1169 
1170 	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1171 			&remapped);
1172 	if (ret)
1173 		goto out_unlock;
1174 
1175 	/*
1176 	 * Carry the cowextsize hint from src to dest if we're sharing the
1177 	 * entire source file to the entire destination file, the source file
1178 	 * has a cowextsize hint, and the destination file does not.
1179 	 */
1180 	cowextsize = 0;
1181 	if (pos_in == 0 && len == i_size_read(inode_in) &&
1182 	    (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1183 	    pos_out == 0 && len >= i_size_read(inode_out) &&
1184 	    !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE))
1185 		cowextsize = src->i_cowextsize;
1186 
1187 	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1188 			remap_flags);
1189 	if (ret)
1190 		goto out_unlock;
1191 
1192 	if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
1193 		xfs_log_force_inode(dest);
1194 out_unlock:
1195 	xfs_iunlock2_io_mmap(src, dest);
1196 	if (ret)
1197 		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1198 	return remapped > 0 ? remapped : ret;
1199 }
1200 
1201 STATIC int
1202 xfs_file_open(
1203 	struct inode	*inode,
1204 	struct file	*file)
1205 {
1206 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1207 		return -EFBIG;
1208 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1209 		return -EIO;
1210 	file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
1211 	return 0;
1212 }
1213 
1214 STATIC int
1215 xfs_dir_open(
1216 	struct inode	*inode,
1217 	struct file	*file)
1218 {
1219 	struct xfs_inode *ip = XFS_I(inode);
1220 	int		mode;
1221 	int		error;
1222 
1223 	error = xfs_file_open(inode, file);
1224 	if (error)
1225 		return error;
1226 
1227 	/*
1228 	 * If there are any blocks, read-ahead block 0 as we're almost
1229 	 * certain to have the next operation be a read there.
1230 	 */
1231 	mode = xfs_ilock_data_map_shared(ip);
1232 	if (ip->i_df.if_nextents > 0)
1233 		error = xfs_dir3_data_readahead(ip, 0, 0);
1234 	xfs_iunlock(ip, mode);
1235 	return error;
1236 }
1237 
1238 STATIC int
1239 xfs_file_release(
1240 	struct inode	*inode,
1241 	struct file	*filp)
1242 {
1243 	return xfs_release(XFS_I(inode));
1244 }
1245 
1246 STATIC int
1247 xfs_file_readdir(
1248 	struct file	*file,
1249 	struct dir_context *ctx)
1250 {
1251 	struct inode	*inode = file_inode(file);
1252 	xfs_inode_t	*ip = XFS_I(inode);
1253 	size_t		bufsize;
1254 
1255 	/*
1256 	 * The Linux API doesn't pass down the total size of the buffer
1257 	 * we read into down to the filesystem.  With the filldir concept
1258 	 * it's not needed for correct information, but the XFS dir2 leaf
1259 	 * code wants an estimate of the buffer size to calculate it's
1260 	 * readahead window and size the buffers used for mapping to
1261 	 * physical blocks.
1262 	 *
1263 	 * Try to give it an estimate that's good enough, maybe at some
1264 	 * point we can change the ->readdir prototype to include the
1265 	 * buffer size.  For now we use the current glibc buffer size.
1266 	 */
1267 	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size);
1268 
1269 	return xfs_readdir(NULL, ip, ctx, bufsize);
1270 }
1271 
1272 STATIC loff_t
1273 xfs_file_llseek(
1274 	struct file	*file,
1275 	loff_t		offset,
1276 	int		whence)
1277 {
1278 	struct inode		*inode = file->f_mapping->host;
1279 
1280 	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1281 		return -EIO;
1282 
1283 	switch (whence) {
1284 	default:
1285 		return generic_file_llseek(file, offset, whence);
1286 	case SEEK_HOLE:
1287 		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1288 		break;
1289 	case SEEK_DATA:
1290 		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1291 		break;
1292 	}
1293 
1294 	if (offset < 0)
1295 		return offset;
1296 	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1297 }
1298 
1299 /*
1300  * Locking for serialisation of IO during page faults. This results in a lock
1301  * ordering of:
1302  *
1303  * mmap_lock (MM)
1304  *   sb_start_pagefault(vfs, freeze)
1305  *     i_mmaplock (XFS - truncate serialisation)
1306  *       page_lock (MM)
1307  *         i_lock (XFS - extent map serialisation)
1308  */
1309 static vm_fault_t
1310 __xfs_filemap_fault(
1311 	struct vm_fault		*vmf,
1312 	enum page_entry_size	pe_size,
1313 	bool			write_fault)
1314 {
1315 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1316 	struct xfs_inode	*ip = XFS_I(inode);
1317 	vm_fault_t		ret;
1318 
1319 	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1320 
1321 	if (write_fault) {
1322 		sb_start_pagefault(inode->i_sb);
1323 		file_update_time(vmf->vma->vm_file);
1324 	}
1325 
1326 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1327 	if (IS_DAX(inode)) {
1328 		pfn_t pfn;
1329 
1330 		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL,
1331 				(write_fault && !vmf->cow_page) ?
1332 				 &xfs_direct_write_iomap_ops :
1333 				 &xfs_read_iomap_ops);
1334 		if (ret & VM_FAULT_NEEDDSYNC)
1335 			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1336 	} else {
1337 		if (write_fault)
1338 			ret = iomap_page_mkwrite(vmf,
1339 					&xfs_buffered_write_iomap_ops);
1340 		else
1341 			ret = filemap_fault(vmf);
1342 	}
1343 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1344 
1345 	if (write_fault)
1346 		sb_end_pagefault(inode->i_sb);
1347 	return ret;
1348 }
1349 
1350 static inline bool
1351 xfs_is_write_fault(
1352 	struct vm_fault		*vmf)
1353 {
1354 	return (vmf->flags & FAULT_FLAG_WRITE) &&
1355 	       (vmf->vma->vm_flags & VM_SHARED);
1356 }
1357 
1358 static vm_fault_t
1359 xfs_filemap_fault(
1360 	struct vm_fault		*vmf)
1361 {
1362 	/* DAX can shortcut the normal fault path on write faults! */
1363 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1364 			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1365 			xfs_is_write_fault(vmf));
1366 }
1367 
1368 static vm_fault_t
1369 xfs_filemap_huge_fault(
1370 	struct vm_fault		*vmf,
1371 	enum page_entry_size	pe_size)
1372 {
1373 	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1374 		return VM_FAULT_FALLBACK;
1375 
1376 	/* DAX can shortcut the normal fault path on write faults! */
1377 	return __xfs_filemap_fault(vmf, pe_size,
1378 			xfs_is_write_fault(vmf));
1379 }
1380 
1381 static vm_fault_t
1382 xfs_filemap_page_mkwrite(
1383 	struct vm_fault		*vmf)
1384 {
1385 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1386 }
1387 
1388 /*
1389  * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1390  * on write faults. In reality, it needs to serialise against truncate and
1391  * prepare memory for writing so handle is as standard write fault.
1392  */
1393 static vm_fault_t
1394 xfs_filemap_pfn_mkwrite(
1395 	struct vm_fault		*vmf)
1396 {
1397 
1398 	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1399 }
1400 
1401 static vm_fault_t
1402 xfs_filemap_map_pages(
1403 	struct vm_fault		*vmf,
1404 	pgoff_t			start_pgoff,
1405 	pgoff_t			end_pgoff)
1406 {
1407 	struct inode		*inode = file_inode(vmf->vma->vm_file);
1408 	vm_fault_t ret;
1409 
1410 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1411 	ret = filemap_map_pages(vmf, start_pgoff, end_pgoff);
1412 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1413 	return ret;
1414 }
1415 
1416 static const struct vm_operations_struct xfs_file_vm_ops = {
1417 	.fault		= xfs_filemap_fault,
1418 	.huge_fault	= xfs_filemap_huge_fault,
1419 	.map_pages	= xfs_filemap_map_pages,
1420 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1421 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1422 };
1423 
1424 STATIC int
1425 xfs_file_mmap(
1426 	struct file		*file,
1427 	struct vm_area_struct	*vma)
1428 {
1429 	struct inode		*inode = file_inode(file);
1430 	struct xfs_buftarg	*target = xfs_inode_buftarg(XFS_I(inode));
1431 
1432 	/*
1433 	 * We don't support synchronous mappings for non-DAX files and
1434 	 * for DAX files if underneath dax_device is not synchronous.
1435 	 */
1436 	if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1437 		return -EOPNOTSUPP;
1438 
1439 	file_accessed(file);
1440 	vma->vm_ops = &xfs_file_vm_ops;
1441 	if (IS_DAX(inode))
1442 		vma->vm_flags |= VM_HUGEPAGE;
1443 	return 0;
1444 }
1445 
1446 const struct file_operations xfs_file_operations = {
1447 	.llseek		= xfs_file_llseek,
1448 	.read_iter	= xfs_file_read_iter,
1449 	.write_iter	= xfs_file_write_iter,
1450 	.splice_read	= generic_file_splice_read,
1451 	.splice_write	= iter_file_splice_write,
1452 	.iopoll		= iomap_dio_iopoll,
1453 	.unlocked_ioctl	= xfs_file_ioctl,
1454 #ifdef CONFIG_COMPAT
1455 	.compat_ioctl	= xfs_file_compat_ioctl,
1456 #endif
1457 	.mmap		= xfs_file_mmap,
1458 	.mmap_supported_flags = MAP_SYNC,
1459 	.open		= xfs_file_open,
1460 	.release	= xfs_file_release,
1461 	.fsync		= xfs_file_fsync,
1462 	.get_unmapped_area = thp_get_unmapped_area,
1463 	.fallocate	= xfs_file_fallocate,
1464 	.fadvise	= xfs_file_fadvise,
1465 	.remap_file_range = xfs_file_remap_range,
1466 };
1467 
1468 const struct file_operations xfs_dir_file_operations = {
1469 	.open		= xfs_dir_open,
1470 	.read		= generic_read_dir,
1471 	.iterate_shared	= xfs_file_readdir,
1472 	.llseek		= generic_file_llseek,
1473 	.unlocked_ioctl	= xfs_file_ioctl,
1474 #ifdef CONFIG_COMPAT
1475 	.compat_ioctl	= xfs_file_compat_ioctl,
1476 #endif
1477 	.fsync		= xfs_dir_fsync,
1478 };
1479