1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_log.h" 21 #include "xfs_sb.h" 22 #include "xfs_ag.h" 23 #include "xfs_trans.h" 24 #include "xfs_mount.h" 25 #include "xfs_bmap_btree.h" 26 #include "xfs_alloc.h" 27 #include "xfs_dinode.h" 28 #include "xfs_inode.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_bmap.h" 31 #include "xfs_error.h" 32 #include "xfs_vnodeops.h" 33 #include "xfs_da_btree.h" 34 #include "xfs_ioctl.h" 35 #include "xfs_trace.h" 36 37 #include <linux/dcache.h> 38 #include <linux/falloc.h> 39 #include <linux/pagevec.h> 40 41 static const struct vm_operations_struct xfs_file_vm_ops; 42 43 /* 44 * Locking primitives for read and write IO paths to ensure we consistently use 45 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock. 46 */ 47 static inline void 48 xfs_rw_ilock( 49 struct xfs_inode *ip, 50 int type) 51 { 52 if (type & XFS_IOLOCK_EXCL) 53 mutex_lock(&VFS_I(ip)->i_mutex); 54 xfs_ilock(ip, type); 55 } 56 57 static inline void 58 xfs_rw_iunlock( 59 struct xfs_inode *ip, 60 int type) 61 { 62 xfs_iunlock(ip, type); 63 if (type & XFS_IOLOCK_EXCL) 64 mutex_unlock(&VFS_I(ip)->i_mutex); 65 } 66 67 static inline void 68 xfs_rw_ilock_demote( 69 struct xfs_inode *ip, 70 int type) 71 { 72 xfs_ilock_demote(ip, type); 73 if (type & XFS_IOLOCK_EXCL) 74 mutex_unlock(&VFS_I(ip)->i_mutex); 75 } 76 77 /* 78 * xfs_iozero 79 * 80 * xfs_iozero clears the specified range of buffer supplied, 81 * and marks all the affected blocks as valid and modified. If 82 * an affected block is not allocated, it will be allocated. If 83 * an affected block is not completely overwritten, and is not 84 * valid before the operation, it will be read from disk before 85 * being partially zeroed. 86 */ 87 STATIC int 88 xfs_iozero( 89 struct xfs_inode *ip, /* inode */ 90 loff_t pos, /* offset in file */ 91 size_t count) /* size of data to zero */ 92 { 93 struct page *page; 94 struct address_space *mapping; 95 int status; 96 97 mapping = VFS_I(ip)->i_mapping; 98 do { 99 unsigned offset, bytes; 100 void *fsdata; 101 102 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ 103 bytes = PAGE_CACHE_SIZE - offset; 104 if (bytes > count) 105 bytes = count; 106 107 status = pagecache_write_begin(NULL, mapping, pos, bytes, 108 AOP_FLAG_UNINTERRUPTIBLE, 109 &page, &fsdata); 110 if (status) 111 break; 112 113 zero_user(page, offset, bytes); 114 115 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes, 116 page, fsdata); 117 WARN_ON(status <= 0); /* can't return less than zero! */ 118 pos += bytes; 119 count -= bytes; 120 status = 0; 121 } while (count); 122 123 return (-status); 124 } 125 126 /* 127 * Fsync operations on directories are much simpler than on regular files, 128 * as there is no file data to flush, and thus also no need for explicit 129 * cache flush operations, and there are no non-transaction metadata updates 130 * on directories either. 131 */ 132 STATIC int 133 xfs_dir_fsync( 134 struct file *file, 135 loff_t start, 136 loff_t end, 137 int datasync) 138 { 139 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 140 struct xfs_mount *mp = ip->i_mount; 141 xfs_lsn_t lsn = 0; 142 143 trace_xfs_dir_fsync(ip); 144 145 xfs_ilock(ip, XFS_ILOCK_SHARED); 146 if (xfs_ipincount(ip)) 147 lsn = ip->i_itemp->ili_last_lsn; 148 xfs_iunlock(ip, XFS_ILOCK_SHARED); 149 150 if (!lsn) 151 return 0; 152 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 153 } 154 155 STATIC int 156 xfs_file_fsync( 157 struct file *file, 158 loff_t start, 159 loff_t end, 160 int datasync) 161 { 162 struct inode *inode = file->f_mapping->host; 163 struct xfs_inode *ip = XFS_I(inode); 164 struct xfs_mount *mp = ip->i_mount; 165 int error = 0; 166 int log_flushed = 0; 167 xfs_lsn_t lsn = 0; 168 169 trace_xfs_file_fsync(ip); 170 171 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 172 if (error) 173 return error; 174 175 if (XFS_FORCED_SHUTDOWN(mp)) 176 return -XFS_ERROR(EIO); 177 178 xfs_iflags_clear(ip, XFS_ITRUNCATED); 179 180 if (mp->m_flags & XFS_MOUNT_BARRIER) { 181 /* 182 * If we have an RT and/or log subvolume we need to make sure 183 * to flush the write cache the device used for file data 184 * first. This is to ensure newly written file data make 185 * it to disk before logging the new inode size in case of 186 * an extending write. 187 */ 188 if (XFS_IS_REALTIME_INODE(ip)) 189 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 190 else if (mp->m_logdev_targp != mp->m_ddev_targp) 191 xfs_blkdev_issue_flush(mp->m_ddev_targp); 192 } 193 194 /* 195 * All metadata updates are logged, which means that we just have 196 * to flush the log up to the latest LSN that touched the inode. 197 */ 198 xfs_ilock(ip, XFS_ILOCK_SHARED); 199 if (xfs_ipincount(ip)) { 200 if (!datasync || 201 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP)) 202 lsn = ip->i_itemp->ili_last_lsn; 203 } 204 xfs_iunlock(ip, XFS_ILOCK_SHARED); 205 206 if (lsn) 207 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 208 209 /* 210 * If we only have a single device, and the log force about was 211 * a no-op we might have to flush the data device cache here. 212 * This can only happen for fdatasync/O_DSYNC if we were overwriting 213 * an already allocated file and thus do not have any metadata to 214 * commit. 215 */ 216 if ((mp->m_flags & XFS_MOUNT_BARRIER) && 217 mp->m_logdev_targp == mp->m_ddev_targp && 218 !XFS_IS_REALTIME_INODE(ip) && 219 !log_flushed) 220 xfs_blkdev_issue_flush(mp->m_ddev_targp); 221 222 return -error; 223 } 224 225 STATIC ssize_t 226 xfs_file_aio_read( 227 struct kiocb *iocb, 228 const struct iovec *iovp, 229 unsigned long nr_segs, 230 loff_t pos) 231 { 232 struct file *file = iocb->ki_filp; 233 struct inode *inode = file->f_mapping->host; 234 struct xfs_inode *ip = XFS_I(inode); 235 struct xfs_mount *mp = ip->i_mount; 236 size_t size = 0; 237 ssize_t ret = 0; 238 int ioflags = 0; 239 xfs_fsize_t n; 240 241 XFS_STATS_INC(xs_read_calls); 242 243 BUG_ON(iocb->ki_pos != pos); 244 245 if (unlikely(file->f_flags & O_DIRECT)) 246 ioflags |= IO_ISDIRECT; 247 if (file->f_mode & FMODE_NOCMTIME) 248 ioflags |= IO_INVIS; 249 250 ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE); 251 if (ret < 0) 252 return ret; 253 254 if (unlikely(ioflags & IO_ISDIRECT)) { 255 xfs_buftarg_t *target = 256 XFS_IS_REALTIME_INODE(ip) ? 257 mp->m_rtdev_targp : mp->m_ddev_targp; 258 if ((iocb->ki_pos & target->bt_smask) || 259 (size & target->bt_smask)) { 260 if (iocb->ki_pos == i_size_read(inode)) 261 return 0; 262 return -XFS_ERROR(EINVAL); 263 } 264 } 265 266 n = mp->m_super->s_maxbytes - iocb->ki_pos; 267 if (n <= 0 || size == 0) 268 return 0; 269 270 if (n < size) 271 size = n; 272 273 if (XFS_FORCED_SHUTDOWN(mp)) 274 return -EIO; 275 276 /* 277 * Locking is a bit tricky here. If we take an exclusive lock 278 * for direct IO, we effectively serialise all new concurrent 279 * read IO to this file and block it behind IO that is currently in 280 * progress because IO in progress holds the IO lock shared. We only 281 * need to hold the lock exclusive to blow away the page cache, so 282 * only take lock exclusively if the page cache needs invalidation. 283 * This allows the normal direct IO case of no page cache pages to 284 * proceeed concurrently without serialisation. 285 */ 286 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 287 if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) { 288 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 289 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL); 290 291 if (inode->i_mapping->nrpages) { 292 ret = -xfs_flushinval_pages(ip, 293 (iocb->ki_pos & PAGE_CACHE_MASK), 294 -1, FI_REMAPF_LOCKED); 295 if (ret) { 296 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL); 297 return ret; 298 } 299 } 300 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 301 } 302 303 trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags); 304 305 ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos); 306 if (ret > 0) 307 XFS_STATS_ADD(xs_read_bytes, ret); 308 309 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 310 return ret; 311 } 312 313 STATIC ssize_t 314 xfs_file_splice_read( 315 struct file *infilp, 316 loff_t *ppos, 317 struct pipe_inode_info *pipe, 318 size_t count, 319 unsigned int flags) 320 { 321 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host); 322 int ioflags = 0; 323 ssize_t ret; 324 325 XFS_STATS_INC(xs_read_calls); 326 327 if (infilp->f_mode & FMODE_NOCMTIME) 328 ioflags |= IO_INVIS; 329 330 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 331 return -EIO; 332 333 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 334 335 trace_xfs_file_splice_read(ip, count, *ppos, ioflags); 336 337 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags); 338 if (ret > 0) 339 XFS_STATS_ADD(xs_read_bytes, ret); 340 341 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 342 return ret; 343 } 344 345 /* 346 * xfs_file_splice_write() does not use xfs_rw_ilock() because 347 * generic_file_splice_write() takes the i_mutex itself. This, in theory, 348 * couuld cause lock inversions between the aio_write path and the splice path 349 * if someone is doing concurrent splice(2) based writes and write(2) based 350 * writes to the same inode. The only real way to fix this is to re-implement 351 * the generic code here with correct locking orders. 352 */ 353 STATIC ssize_t 354 xfs_file_splice_write( 355 struct pipe_inode_info *pipe, 356 struct file *outfilp, 357 loff_t *ppos, 358 size_t count, 359 unsigned int flags) 360 { 361 struct inode *inode = outfilp->f_mapping->host; 362 struct xfs_inode *ip = XFS_I(inode); 363 int ioflags = 0; 364 ssize_t ret; 365 366 XFS_STATS_INC(xs_write_calls); 367 368 if (outfilp->f_mode & FMODE_NOCMTIME) 369 ioflags |= IO_INVIS; 370 371 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 372 return -EIO; 373 374 xfs_ilock(ip, XFS_IOLOCK_EXCL); 375 376 trace_xfs_file_splice_write(ip, count, *ppos, ioflags); 377 378 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags); 379 if (ret > 0) 380 XFS_STATS_ADD(xs_write_bytes, ret); 381 382 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 383 return ret; 384 } 385 386 /* 387 * This routine is called to handle zeroing any space in the last block of the 388 * file that is beyond the EOF. We do this since the size is being increased 389 * without writing anything to that block and we don't want to read the 390 * garbage on the disk. 391 */ 392 STATIC int /* error (positive) */ 393 xfs_zero_last_block( 394 struct xfs_inode *ip, 395 xfs_fsize_t offset, 396 xfs_fsize_t isize) 397 { 398 struct xfs_mount *mp = ip->i_mount; 399 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize); 400 int zero_offset = XFS_B_FSB_OFFSET(mp, isize); 401 int zero_len; 402 int nimaps = 1; 403 int error = 0; 404 struct xfs_bmbt_irec imap; 405 406 xfs_ilock(ip, XFS_ILOCK_EXCL); 407 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0); 408 xfs_iunlock(ip, XFS_ILOCK_EXCL); 409 if (error) 410 return error; 411 412 ASSERT(nimaps > 0); 413 414 /* 415 * If the block underlying isize is just a hole, then there 416 * is nothing to zero. 417 */ 418 if (imap.br_startblock == HOLESTARTBLOCK) 419 return 0; 420 421 zero_len = mp->m_sb.sb_blocksize - zero_offset; 422 if (isize + zero_len > offset) 423 zero_len = offset - isize; 424 return xfs_iozero(ip, isize, zero_len); 425 } 426 427 /* 428 * Zero any on disk space between the current EOF and the new, larger EOF. 429 * 430 * This handles the normal case of zeroing the remainder of the last block in 431 * the file and the unusual case of zeroing blocks out beyond the size of the 432 * file. This second case only happens with fixed size extents and when the 433 * system crashes before the inode size was updated but after blocks were 434 * allocated. 435 * 436 * Expects the iolock to be held exclusive, and will take the ilock internally. 437 */ 438 int /* error (positive) */ 439 xfs_zero_eof( 440 struct xfs_inode *ip, 441 xfs_off_t offset, /* starting I/O offset */ 442 xfs_fsize_t isize) /* current inode size */ 443 { 444 struct xfs_mount *mp = ip->i_mount; 445 xfs_fileoff_t start_zero_fsb; 446 xfs_fileoff_t end_zero_fsb; 447 xfs_fileoff_t zero_count_fsb; 448 xfs_fileoff_t last_fsb; 449 xfs_fileoff_t zero_off; 450 xfs_fsize_t zero_len; 451 int nimaps; 452 int error = 0; 453 struct xfs_bmbt_irec imap; 454 455 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 456 ASSERT(offset > isize); 457 458 /* 459 * First handle zeroing the block on which isize resides. 460 * 461 * We only zero a part of that block so it is handled specially. 462 */ 463 if (XFS_B_FSB_OFFSET(mp, isize) != 0) { 464 error = xfs_zero_last_block(ip, offset, isize); 465 if (error) 466 return error; 467 } 468 469 /* 470 * Calculate the range between the new size and the old where blocks 471 * needing to be zeroed may exist. 472 * 473 * To get the block where the last byte in the file currently resides, 474 * we need to subtract one from the size and truncate back to a block 475 * boundary. We subtract 1 in case the size is exactly on a block 476 * boundary. 477 */ 478 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1; 479 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 480 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1); 481 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb); 482 if (last_fsb == end_zero_fsb) { 483 /* 484 * The size was only incremented on its last block. 485 * We took care of that above, so just return. 486 */ 487 return 0; 488 } 489 490 ASSERT(start_zero_fsb <= end_zero_fsb); 491 while (start_zero_fsb <= end_zero_fsb) { 492 nimaps = 1; 493 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1; 494 495 xfs_ilock(ip, XFS_ILOCK_EXCL); 496 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb, 497 &imap, &nimaps, 0); 498 xfs_iunlock(ip, XFS_ILOCK_EXCL); 499 if (error) 500 return error; 501 502 ASSERT(nimaps > 0); 503 504 if (imap.br_state == XFS_EXT_UNWRITTEN || 505 imap.br_startblock == HOLESTARTBLOCK) { 506 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 507 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 508 continue; 509 } 510 511 /* 512 * There are blocks we need to zero. 513 */ 514 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb); 515 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount); 516 517 if ((zero_off + zero_len) > offset) 518 zero_len = offset - zero_off; 519 520 error = xfs_iozero(ip, zero_off, zero_len); 521 if (error) 522 return error; 523 524 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 525 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 526 } 527 528 return 0; 529 } 530 531 /* 532 * Common pre-write limit and setup checks. 533 * 534 * Called with the iolocked held either shared and exclusive according to 535 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 536 * if called for a direct write beyond i_size. 537 */ 538 STATIC ssize_t 539 xfs_file_aio_write_checks( 540 struct file *file, 541 loff_t *pos, 542 size_t *count, 543 int *iolock) 544 { 545 struct inode *inode = file->f_mapping->host; 546 struct xfs_inode *ip = XFS_I(inode); 547 int error = 0; 548 549 restart: 550 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode)); 551 if (error) 552 return error; 553 554 /* 555 * If the offset is beyond the size of the file, we need to zero any 556 * blocks that fall between the existing EOF and the start of this 557 * write. If zeroing is needed and we are currently holding the 558 * iolock shared, we need to update it to exclusive which implies 559 * having to redo all checks before. 560 */ 561 if (*pos > i_size_read(inode)) { 562 if (*iolock == XFS_IOLOCK_SHARED) { 563 xfs_rw_iunlock(ip, *iolock); 564 *iolock = XFS_IOLOCK_EXCL; 565 xfs_rw_ilock(ip, *iolock); 566 goto restart; 567 } 568 error = -xfs_zero_eof(ip, *pos, i_size_read(inode)); 569 if (error) 570 return error; 571 } 572 573 /* 574 * Updating the timestamps will grab the ilock again from 575 * xfs_fs_dirty_inode, so we have to call it after dropping the 576 * lock above. Eventually we should look into a way to avoid 577 * the pointless lock roundtrip. 578 */ 579 if (likely(!(file->f_mode & FMODE_NOCMTIME))) { 580 error = file_update_time(file); 581 if (error) 582 return error; 583 } 584 585 /* 586 * If we're writing the file then make sure to clear the setuid and 587 * setgid bits if the process is not being run by root. This keeps 588 * people from modifying setuid and setgid binaries. 589 */ 590 return file_remove_suid(file); 591 } 592 593 /* 594 * xfs_file_dio_aio_write - handle direct IO writes 595 * 596 * Lock the inode appropriately to prepare for and issue a direct IO write. 597 * By separating it from the buffered write path we remove all the tricky to 598 * follow locking changes and looping. 599 * 600 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 601 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 602 * pages are flushed out. 603 * 604 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 605 * allowing them to be done in parallel with reads and other direct IO writes. 606 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 607 * needs to do sub-block zeroing and that requires serialisation against other 608 * direct IOs to the same block. In this case we need to serialise the 609 * submission of the unaligned IOs so that we don't get racing block zeroing in 610 * the dio layer. To avoid the problem with aio, we also need to wait for 611 * outstanding IOs to complete so that unwritten extent conversion is completed 612 * before we try to map the overlapping block. This is currently implemented by 613 * hitting it with a big hammer (i.e. inode_dio_wait()). 614 * 615 * Returns with locks held indicated by @iolock and errors indicated by 616 * negative return values. 617 */ 618 STATIC ssize_t 619 xfs_file_dio_aio_write( 620 struct kiocb *iocb, 621 const struct iovec *iovp, 622 unsigned long nr_segs, 623 loff_t pos, 624 size_t ocount) 625 { 626 struct file *file = iocb->ki_filp; 627 struct address_space *mapping = file->f_mapping; 628 struct inode *inode = mapping->host; 629 struct xfs_inode *ip = XFS_I(inode); 630 struct xfs_mount *mp = ip->i_mount; 631 ssize_t ret = 0; 632 size_t count = ocount; 633 int unaligned_io = 0; 634 int iolock; 635 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 636 mp->m_rtdev_targp : mp->m_ddev_targp; 637 638 if ((pos & target->bt_smask) || (count & target->bt_smask)) 639 return -XFS_ERROR(EINVAL); 640 641 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask)) 642 unaligned_io = 1; 643 644 /* 645 * We don't need to take an exclusive lock unless there page cache needs 646 * to be invalidated or unaligned IO is being executed. We don't need to 647 * consider the EOF extension case here because 648 * xfs_file_aio_write_checks() will relock the inode as necessary for 649 * EOF zeroing cases and fill out the new inode size as appropriate. 650 */ 651 if (unaligned_io || mapping->nrpages) 652 iolock = XFS_IOLOCK_EXCL; 653 else 654 iolock = XFS_IOLOCK_SHARED; 655 xfs_rw_ilock(ip, iolock); 656 657 /* 658 * Recheck if there are cached pages that need invalidate after we got 659 * the iolock to protect against other threads adding new pages while 660 * we were waiting for the iolock. 661 */ 662 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) { 663 xfs_rw_iunlock(ip, iolock); 664 iolock = XFS_IOLOCK_EXCL; 665 xfs_rw_ilock(ip, iolock); 666 } 667 668 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock); 669 if (ret) 670 goto out; 671 672 if (mapping->nrpages) { 673 ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1, 674 FI_REMAPF_LOCKED); 675 if (ret) 676 goto out; 677 } 678 679 /* 680 * If we are doing unaligned IO, wait for all other IO to drain, 681 * otherwise demote the lock if we had to flush cached pages 682 */ 683 if (unaligned_io) 684 inode_dio_wait(inode); 685 else if (iolock == XFS_IOLOCK_EXCL) { 686 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 687 iolock = XFS_IOLOCK_SHARED; 688 } 689 690 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0); 691 ret = generic_file_direct_write(iocb, iovp, 692 &nr_segs, pos, &iocb->ki_pos, count, ocount); 693 694 out: 695 xfs_rw_iunlock(ip, iolock); 696 697 /* No fallback to buffered IO on errors for XFS. */ 698 ASSERT(ret < 0 || ret == count); 699 return ret; 700 } 701 702 STATIC ssize_t 703 xfs_file_buffered_aio_write( 704 struct kiocb *iocb, 705 const struct iovec *iovp, 706 unsigned long nr_segs, 707 loff_t pos, 708 size_t ocount) 709 { 710 struct file *file = iocb->ki_filp; 711 struct address_space *mapping = file->f_mapping; 712 struct inode *inode = mapping->host; 713 struct xfs_inode *ip = XFS_I(inode); 714 ssize_t ret; 715 int enospc = 0; 716 int iolock = XFS_IOLOCK_EXCL; 717 size_t count = ocount; 718 719 xfs_rw_ilock(ip, iolock); 720 721 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock); 722 if (ret) 723 goto out; 724 725 /* We can write back this queue in page reclaim */ 726 current->backing_dev_info = mapping->backing_dev_info; 727 728 write_retry: 729 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0); 730 ret = generic_file_buffered_write(iocb, iovp, nr_segs, 731 pos, &iocb->ki_pos, count, ret); 732 /* 733 * if we just got an ENOSPC, flush the inode now we aren't holding any 734 * page locks and retry *once* 735 */ 736 if (ret == -ENOSPC && !enospc) { 737 enospc = 1; 738 ret = -xfs_flush_pages(ip, 0, -1, 0, FI_NONE); 739 if (!ret) 740 goto write_retry; 741 } 742 743 current->backing_dev_info = NULL; 744 out: 745 xfs_rw_iunlock(ip, iolock); 746 return ret; 747 } 748 749 STATIC ssize_t 750 xfs_file_aio_write( 751 struct kiocb *iocb, 752 const struct iovec *iovp, 753 unsigned long nr_segs, 754 loff_t pos) 755 { 756 struct file *file = iocb->ki_filp; 757 struct address_space *mapping = file->f_mapping; 758 struct inode *inode = mapping->host; 759 struct xfs_inode *ip = XFS_I(inode); 760 ssize_t ret; 761 size_t ocount = 0; 762 763 XFS_STATS_INC(xs_write_calls); 764 765 BUG_ON(iocb->ki_pos != pos); 766 767 ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ); 768 if (ret) 769 return ret; 770 771 if (ocount == 0) 772 return 0; 773 774 sb_start_write(inode->i_sb); 775 776 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 777 ret = -EIO; 778 goto out; 779 } 780 781 if (unlikely(file->f_flags & O_DIRECT)) 782 ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount); 783 else 784 ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos, 785 ocount); 786 787 if (ret > 0) { 788 ssize_t err; 789 790 XFS_STATS_ADD(xs_write_bytes, ret); 791 792 /* Handle various SYNC-type writes */ 793 err = generic_write_sync(file, pos, ret); 794 if (err < 0) 795 ret = err; 796 } 797 798 out: 799 sb_end_write(inode->i_sb); 800 return ret; 801 } 802 803 STATIC long 804 xfs_file_fallocate( 805 struct file *file, 806 int mode, 807 loff_t offset, 808 loff_t len) 809 { 810 struct inode *inode = file->f_path.dentry->d_inode; 811 long error; 812 loff_t new_size = 0; 813 xfs_flock64_t bf; 814 xfs_inode_t *ip = XFS_I(inode); 815 int cmd = XFS_IOC_RESVSP; 816 int attr_flags = XFS_ATTR_NOLOCK; 817 818 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 819 return -EOPNOTSUPP; 820 821 bf.l_whence = 0; 822 bf.l_start = offset; 823 bf.l_len = len; 824 825 xfs_ilock(ip, XFS_IOLOCK_EXCL); 826 827 if (mode & FALLOC_FL_PUNCH_HOLE) 828 cmd = XFS_IOC_UNRESVSP; 829 830 /* check the new inode size is valid before allocating */ 831 if (!(mode & FALLOC_FL_KEEP_SIZE) && 832 offset + len > i_size_read(inode)) { 833 new_size = offset + len; 834 error = inode_newsize_ok(inode, new_size); 835 if (error) 836 goto out_unlock; 837 } 838 839 if (file->f_flags & O_DSYNC) 840 attr_flags |= XFS_ATTR_SYNC; 841 842 error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags); 843 if (error) 844 goto out_unlock; 845 846 /* Change file size if needed */ 847 if (new_size) { 848 struct iattr iattr; 849 850 iattr.ia_valid = ATTR_SIZE; 851 iattr.ia_size = new_size; 852 error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK); 853 } 854 855 out_unlock: 856 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 857 return error; 858 } 859 860 861 STATIC int 862 xfs_file_open( 863 struct inode *inode, 864 struct file *file) 865 { 866 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 867 return -EFBIG; 868 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 869 return -EIO; 870 return 0; 871 } 872 873 STATIC int 874 xfs_dir_open( 875 struct inode *inode, 876 struct file *file) 877 { 878 struct xfs_inode *ip = XFS_I(inode); 879 int mode; 880 int error; 881 882 error = xfs_file_open(inode, file); 883 if (error) 884 return error; 885 886 /* 887 * If there are any blocks, read-ahead block 0 as we're almost 888 * certain to have the next operation be a read there. 889 */ 890 mode = xfs_ilock_map_shared(ip); 891 if (ip->i_d.di_nextents > 0) 892 xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK); 893 xfs_iunlock(ip, mode); 894 return 0; 895 } 896 897 STATIC int 898 xfs_file_release( 899 struct inode *inode, 900 struct file *filp) 901 { 902 return -xfs_release(XFS_I(inode)); 903 } 904 905 STATIC int 906 xfs_file_readdir( 907 struct file *filp, 908 void *dirent, 909 filldir_t filldir) 910 { 911 struct inode *inode = filp->f_path.dentry->d_inode; 912 xfs_inode_t *ip = XFS_I(inode); 913 int error; 914 size_t bufsize; 915 916 /* 917 * The Linux API doesn't pass down the total size of the buffer 918 * we read into down to the filesystem. With the filldir concept 919 * it's not needed for correct information, but the XFS dir2 leaf 920 * code wants an estimate of the buffer size to calculate it's 921 * readahead window and size the buffers used for mapping to 922 * physical blocks. 923 * 924 * Try to give it an estimate that's good enough, maybe at some 925 * point we can change the ->readdir prototype to include the 926 * buffer size. For now we use the current glibc buffer size. 927 */ 928 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); 929 930 error = xfs_readdir(ip, dirent, bufsize, 931 (xfs_off_t *)&filp->f_pos, filldir); 932 if (error) 933 return -error; 934 return 0; 935 } 936 937 STATIC int 938 xfs_file_mmap( 939 struct file *filp, 940 struct vm_area_struct *vma) 941 { 942 vma->vm_ops = &xfs_file_vm_ops; 943 944 file_accessed(filp); 945 return 0; 946 } 947 948 /* 949 * mmap()d file has taken write protection fault and is being made 950 * writable. We can set the page state up correctly for a writable 951 * page, which means we can do correct delalloc accounting (ENOSPC 952 * checking!) and unwritten extent mapping. 953 */ 954 STATIC int 955 xfs_vm_page_mkwrite( 956 struct vm_area_struct *vma, 957 struct vm_fault *vmf) 958 { 959 return block_page_mkwrite(vma, vmf, xfs_get_blocks); 960 } 961 962 /* 963 * This type is designed to indicate the type of offset we would like 964 * to search from page cache for either xfs_seek_data() or xfs_seek_hole(). 965 */ 966 enum { 967 HOLE_OFF = 0, 968 DATA_OFF, 969 }; 970 971 /* 972 * Lookup the desired type of offset from the given page. 973 * 974 * On success, return true and the offset argument will point to the 975 * start of the region that was found. Otherwise this function will 976 * return false and keep the offset argument unchanged. 977 */ 978 STATIC bool 979 xfs_lookup_buffer_offset( 980 struct page *page, 981 loff_t *offset, 982 unsigned int type) 983 { 984 loff_t lastoff = page_offset(page); 985 bool found = false; 986 struct buffer_head *bh, *head; 987 988 bh = head = page_buffers(page); 989 do { 990 /* 991 * Unwritten extents that have data in the page 992 * cache covering them can be identified by the 993 * BH_Unwritten state flag. Pages with multiple 994 * buffers might have a mix of holes, data and 995 * unwritten extents - any buffer with valid 996 * data in it should have BH_Uptodate flag set 997 * on it. 998 */ 999 if (buffer_unwritten(bh) || 1000 buffer_uptodate(bh)) { 1001 if (type == DATA_OFF) 1002 found = true; 1003 } else { 1004 if (type == HOLE_OFF) 1005 found = true; 1006 } 1007 1008 if (found) { 1009 *offset = lastoff; 1010 break; 1011 } 1012 lastoff += bh->b_size; 1013 } while ((bh = bh->b_this_page) != head); 1014 1015 return found; 1016 } 1017 1018 /* 1019 * This routine is called to find out and return a data or hole offset 1020 * from the page cache for unwritten extents according to the desired 1021 * type for xfs_seek_data() or xfs_seek_hole(). 1022 * 1023 * The argument offset is used to tell where we start to search from the 1024 * page cache. Map is used to figure out the end points of the range to 1025 * lookup pages. 1026 * 1027 * Return true if the desired type of offset was found, and the argument 1028 * offset is filled with that address. Otherwise, return false and keep 1029 * offset unchanged. 1030 */ 1031 STATIC bool 1032 xfs_find_get_desired_pgoff( 1033 struct inode *inode, 1034 struct xfs_bmbt_irec *map, 1035 unsigned int type, 1036 loff_t *offset) 1037 { 1038 struct xfs_inode *ip = XFS_I(inode); 1039 struct xfs_mount *mp = ip->i_mount; 1040 struct pagevec pvec; 1041 pgoff_t index; 1042 pgoff_t end; 1043 loff_t endoff; 1044 loff_t startoff = *offset; 1045 loff_t lastoff = startoff; 1046 bool found = false; 1047 1048 pagevec_init(&pvec, 0); 1049 1050 index = startoff >> PAGE_CACHE_SHIFT; 1051 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount); 1052 end = endoff >> PAGE_CACHE_SHIFT; 1053 do { 1054 int want; 1055 unsigned nr_pages; 1056 unsigned int i; 1057 1058 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE); 1059 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, 1060 want); 1061 /* 1062 * No page mapped into given range. If we are searching holes 1063 * and if this is the first time we got into the loop, it means 1064 * that the given offset is landed in a hole, return it. 1065 * 1066 * If we have already stepped through some block buffers to find 1067 * holes but they all contains data. In this case, the last 1068 * offset is already updated and pointed to the end of the last 1069 * mapped page, if it does not reach the endpoint to search, 1070 * that means there should be a hole between them. 1071 */ 1072 if (nr_pages == 0) { 1073 /* Data search found nothing */ 1074 if (type == DATA_OFF) 1075 break; 1076 1077 ASSERT(type == HOLE_OFF); 1078 if (lastoff == startoff || lastoff < endoff) { 1079 found = true; 1080 *offset = lastoff; 1081 } 1082 break; 1083 } 1084 1085 /* 1086 * At lease we found one page. If this is the first time we 1087 * step into the loop, and if the first page index offset is 1088 * greater than the given search offset, a hole was found. 1089 */ 1090 if (type == HOLE_OFF && lastoff == startoff && 1091 lastoff < page_offset(pvec.pages[0])) { 1092 found = true; 1093 break; 1094 } 1095 1096 for (i = 0; i < nr_pages; i++) { 1097 struct page *page = pvec.pages[i]; 1098 loff_t b_offset; 1099 1100 /* 1101 * At this point, the page may be truncated or 1102 * invalidated (changing page->mapping to NULL), 1103 * or even swizzled back from swapper_space to tmpfs 1104 * file mapping. However, page->index will not change 1105 * because we have a reference on the page. 1106 * 1107 * Searching done if the page index is out of range. 1108 * If the current offset is not reaches the end of 1109 * the specified search range, there should be a hole 1110 * between them. 1111 */ 1112 if (page->index > end) { 1113 if (type == HOLE_OFF && lastoff < endoff) { 1114 *offset = lastoff; 1115 found = true; 1116 } 1117 goto out; 1118 } 1119 1120 lock_page(page); 1121 /* 1122 * Page truncated or invalidated(page->mapping == NULL). 1123 * We can freely skip it and proceed to check the next 1124 * page. 1125 */ 1126 if (unlikely(page->mapping != inode->i_mapping)) { 1127 unlock_page(page); 1128 continue; 1129 } 1130 1131 if (!page_has_buffers(page)) { 1132 unlock_page(page); 1133 continue; 1134 } 1135 1136 found = xfs_lookup_buffer_offset(page, &b_offset, type); 1137 if (found) { 1138 /* 1139 * The found offset may be less than the start 1140 * point to search if this is the first time to 1141 * come here. 1142 */ 1143 *offset = max_t(loff_t, startoff, b_offset); 1144 unlock_page(page); 1145 goto out; 1146 } 1147 1148 /* 1149 * We either searching data but nothing was found, or 1150 * searching hole but found a data buffer. In either 1151 * case, probably the next page contains the desired 1152 * things, update the last offset to it so. 1153 */ 1154 lastoff = page_offset(page) + PAGE_SIZE; 1155 unlock_page(page); 1156 } 1157 1158 /* 1159 * The number of returned pages less than our desired, search 1160 * done. In this case, nothing was found for searching data, 1161 * but we found a hole behind the last offset. 1162 */ 1163 if (nr_pages < want) { 1164 if (type == HOLE_OFF) { 1165 *offset = lastoff; 1166 found = true; 1167 } 1168 break; 1169 } 1170 1171 index = pvec.pages[i - 1]->index + 1; 1172 pagevec_release(&pvec); 1173 } while (index <= end); 1174 1175 out: 1176 pagevec_release(&pvec); 1177 return found; 1178 } 1179 1180 STATIC loff_t 1181 xfs_seek_data( 1182 struct file *file, 1183 loff_t start) 1184 { 1185 struct inode *inode = file->f_mapping->host; 1186 struct xfs_inode *ip = XFS_I(inode); 1187 struct xfs_mount *mp = ip->i_mount; 1188 loff_t uninitialized_var(offset); 1189 xfs_fsize_t isize; 1190 xfs_fileoff_t fsbno; 1191 xfs_filblks_t end; 1192 uint lock; 1193 int error; 1194 1195 lock = xfs_ilock_map_shared(ip); 1196 1197 isize = i_size_read(inode); 1198 if (start >= isize) { 1199 error = ENXIO; 1200 goto out_unlock; 1201 } 1202 1203 /* 1204 * Try to read extents from the first block indicated 1205 * by fsbno to the end block of the file. 1206 */ 1207 fsbno = XFS_B_TO_FSBT(mp, start); 1208 end = XFS_B_TO_FSB(mp, isize); 1209 for (;;) { 1210 struct xfs_bmbt_irec map[2]; 1211 int nmap = 2; 1212 unsigned int i; 1213 1214 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap, 1215 XFS_BMAPI_ENTIRE); 1216 if (error) 1217 goto out_unlock; 1218 1219 /* No extents at given offset, must be beyond EOF */ 1220 if (nmap == 0) { 1221 error = ENXIO; 1222 goto out_unlock; 1223 } 1224 1225 for (i = 0; i < nmap; i++) { 1226 offset = max_t(loff_t, start, 1227 XFS_FSB_TO_B(mp, map[i].br_startoff)); 1228 1229 /* Landed in a data extent */ 1230 if (map[i].br_startblock == DELAYSTARTBLOCK || 1231 (map[i].br_state == XFS_EXT_NORM && 1232 !isnullstartblock(map[i].br_startblock))) 1233 goto out; 1234 1235 /* 1236 * Landed in an unwritten extent, try to search data 1237 * from page cache. 1238 */ 1239 if (map[i].br_state == XFS_EXT_UNWRITTEN) { 1240 if (xfs_find_get_desired_pgoff(inode, &map[i], 1241 DATA_OFF, &offset)) 1242 goto out; 1243 } 1244 } 1245 1246 /* 1247 * map[0] is hole or its an unwritten extent but 1248 * without data in page cache. Probably means that 1249 * we are reading after EOF if nothing in map[1]. 1250 */ 1251 if (nmap == 1) { 1252 error = ENXIO; 1253 goto out_unlock; 1254 } 1255 1256 ASSERT(i > 1); 1257 1258 /* 1259 * Nothing was found, proceed to the next round of search 1260 * if reading offset not beyond or hit EOF. 1261 */ 1262 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount; 1263 start = XFS_FSB_TO_B(mp, fsbno); 1264 if (start >= isize) { 1265 error = ENXIO; 1266 goto out_unlock; 1267 } 1268 } 1269 1270 out: 1271 if (offset != file->f_pos) 1272 file->f_pos = offset; 1273 1274 out_unlock: 1275 xfs_iunlock_map_shared(ip, lock); 1276 1277 if (error) 1278 return -error; 1279 return offset; 1280 } 1281 1282 STATIC loff_t 1283 xfs_seek_hole( 1284 struct file *file, 1285 loff_t start) 1286 { 1287 struct inode *inode = file->f_mapping->host; 1288 struct xfs_inode *ip = XFS_I(inode); 1289 struct xfs_mount *mp = ip->i_mount; 1290 loff_t uninitialized_var(offset); 1291 xfs_fsize_t isize; 1292 xfs_fileoff_t fsbno; 1293 xfs_filblks_t end; 1294 uint lock; 1295 int error; 1296 1297 if (XFS_FORCED_SHUTDOWN(mp)) 1298 return -XFS_ERROR(EIO); 1299 1300 lock = xfs_ilock_map_shared(ip); 1301 1302 isize = i_size_read(inode); 1303 if (start >= isize) { 1304 error = ENXIO; 1305 goto out_unlock; 1306 } 1307 1308 fsbno = XFS_B_TO_FSBT(mp, start); 1309 end = XFS_B_TO_FSB(mp, isize); 1310 1311 for (;;) { 1312 struct xfs_bmbt_irec map[2]; 1313 int nmap = 2; 1314 unsigned int i; 1315 1316 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap, 1317 XFS_BMAPI_ENTIRE); 1318 if (error) 1319 goto out_unlock; 1320 1321 /* No extents at given offset, must be beyond EOF */ 1322 if (nmap == 0) { 1323 error = ENXIO; 1324 goto out_unlock; 1325 } 1326 1327 for (i = 0; i < nmap; i++) { 1328 offset = max_t(loff_t, start, 1329 XFS_FSB_TO_B(mp, map[i].br_startoff)); 1330 1331 /* Landed in a hole */ 1332 if (map[i].br_startblock == HOLESTARTBLOCK) 1333 goto out; 1334 1335 /* 1336 * Landed in an unwritten extent, try to search hole 1337 * from page cache. 1338 */ 1339 if (map[i].br_state == XFS_EXT_UNWRITTEN) { 1340 if (xfs_find_get_desired_pgoff(inode, &map[i], 1341 HOLE_OFF, &offset)) 1342 goto out; 1343 } 1344 } 1345 1346 /* 1347 * map[0] contains data or its unwritten but contains 1348 * data in page cache, probably means that we are 1349 * reading after EOF. We should fix offset to point 1350 * to the end of the file(i.e., there is an implicit 1351 * hole at the end of any file). 1352 */ 1353 if (nmap == 1) { 1354 offset = isize; 1355 break; 1356 } 1357 1358 ASSERT(i > 1); 1359 1360 /* 1361 * Both mappings contains data, proceed to the next round of 1362 * search if the current reading offset not beyond or hit EOF. 1363 */ 1364 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount; 1365 start = XFS_FSB_TO_B(mp, fsbno); 1366 if (start >= isize) { 1367 offset = isize; 1368 break; 1369 } 1370 } 1371 1372 out: 1373 /* 1374 * At this point, we must have found a hole. However, the returned 1375 * offset may be bigger than the file size as it may be aligned to 1376 * page boundary for unwritten extents, we need to deal with this 1377 * situation in particular. 1378 */ 1379 offset = min_t(loff_t, offset, isize); 1380 if (offset != file->f_pos) 1381 file->f_pos = offset; 1382 1383 out_unlock: 1384 xfs_iunlock_map_shared(ip, lock); 1385 1386 if (error) 1387 return -error; 1388 return offset; 1389 } 1390 1391 STATIC loff_t 1392 xfs_file_llseek( 1393 struct file *file, 1394 loff_t offset, 1395 int origin) 1396 { 1397 switch (origin) { 1398 case SEEK_END: 1399 case SEEK_CUR: 1400 case SEEK_SET: 1401 return generic_file_llseek(file, offset, origin); 1402 case SEEK_DATA: 1403 return xfs_seek_data(file, offset); 1404 case SEEK_HOLE: 1405 return xfs_seek_hole(file, offset); 1406 default: 1407 return -EINVAL; 1408 } 1409 } 1410 1411 const struct file_operations xfs_file_operations = { 1412 .llseek = xfs_file_llseek, 1413 .read = do_sync_read, 1414 .write = do_sync_write, 1415 .aio_read = xfs_file_aio_read, 1416 .aio_write = xfs_file_aio_write, 1417 .splice_read = xfs_file_splice_read, 1418 .splice_write = xfs_file_splice_write, 1419 .unlocked_ioctl = xfs_file_ioctl, 1420 #ifdef CONFIG_COMPAT 1421 .compat_ioctl = xfs_file_compat_ioctl, 1422 #endif 1423 .mmap = xfs_file_mmap, 1424 .open = xfs_file_open, 1425 .release = xfs_file_release, 1426 .fsync = xfs_file_fsync, 1427 .fallocate = xfs_file_fallocate, 1428 }; 1429 1430 const struct file_operations xfs_dir_file_operations = { 1431 .open = xfs_dir_open, 1432 .read = generic_read_dir, 1433 .readdir = xfs_file_readdir, 1434 .llseek = generic_file_llseek, 1435 .unlocked_ioctl = xfs_file_ioctl, 1436 #ifdef CONFIG_COMPAT 1437 .compat_ioctl = xfs_file_compat_ioctl, 1438 #endif 1439 .fsync = xfs_dir_fsync, 1440 }; 1441 1442 static const struct vm_operations_struct xfs_file_vm_ops = { 1443 .fault = filemap_fault, 1444 .page_mkwrite = xfs_vm_page_mkwrite, 1445 .remap_pages = generic_file_remap_pages, 1446 }; 1447