1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_da_format.h" 26 #include "xfs_da_btree.h" 27 #include "xfs_inode.h" 28 #include "xfs_trans.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_bmap.h" 31 #include "xfs_bmap_util.h" 32 #include "xfs_error.h" 33 #include "xfs_dir2.h" 34 #include "xfs_dir2_priv.h" 35 #include "xfs_ioctl.h" 36 #include "xfs_trace.h" 37 #include "xfs_log.h" 38 #include "xfs_icache.h" 39 #include "xfs_pnfs.h" 40 41 #include <linux/dcache.h> 42 #include <linux/falloc.h> 43 #include <linux/pagevec.h> 44 #include <linux/backing-dev.h> 45 46 static const struct vm_operations_struct xfs_file_vm_ops; 47 48 /* 49 * Locking primitives for read and write IO paths to ensure we consistently use 50 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock. 51 */ 52 static inline void 53 xfs_rw_ilock( 54 struct xfs_inode *ip, 55 int type) 56 { 57 if (type & XFS_IOLOCK_EXCL) 58 mutex_lock(&VFS_I(ip)->i_mutex); 59 xfs_ilock(ip, type); 60 } 61 62 static inline void 63 xfs_rw_iunlock( 64 struct xfs_inode *ip, 65 int type) 66 { 67 xfs_iunlock(ip, type); 68 if (type & XFS_IOLOCK_EXCL) 69 mutex_unlock(&VFS_I(ip)->i_mutex); 70 } 71 72 static inline void 73 xfs_rw_ilock_demote( 74 struct xfs_inode *ip, 75 int type) 76 { 77 xfs_ilock_demote(ip, type); 78 if (type & XFS_IOLOCK_EXCL) 79 mutex_unlock(&VFS_I(ip)->i_mutex); 80 } 81 82 /* 83 * xfs_iozero clears the specified range supplied via the page cache (except in 84 * the DAX case). Writes through the page cache will allocate blocks over holes, 85 * though the callers usually map the holes first and avoid them. If a block is 86 * not completely zeroed, then it will be read from disk before being partially 87 * zeroed. 88 * 89 * In the DAX case, we can just directly write to the underlying pages. This 90 * will not allocate blocks, but will avoid holes and unwritten extents and so 91 * not do unnecessary work. 92 */ 93 int 94 xfs_iozero( 95 struct xfs_inode *ip, /* inode */ 96 loff_t pos, /* offset in file */ 97 size_t count) /* size of data to zero */ 98 { 99 struct page *page; 100 struct address_space *mapping; 101 int status = 0; 102 103 104 mapping = VFS_I(ip)->i_mapping; 105 do { 106 unsigned offset, bytes; 107 void *fsdata; 108 109 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ 110 bytes = PAGE_CACHE_SIZE - offset; 111 if (bytes > count) 112 bytes = count; 113 114 if (IS_DAX(VFS_I(ip))) { 115 status = dax_zero_page_range(VFS_I(ip), pos, bytes, 116 xfs_get_blocks_direct); 117 if (status) 118 break; 119 } else { 120 status = pagecache_write_begin(NULL, mapping, pos, bytes, 121 AOP_FLAG_UNINTERRUPTIBLE, 122 &page, &fsdata); 123 if (status) 124 break; 125 126 zero_user(page, offset, bytes); 127 128 status = pagecache_write_end(NULL, mapping, pos, bytes, 129 bytes, page, fsdata); 130 WARN_ON(status <= 0); /* can't return less than zero! */ 131 status = 0; 132 } 133 pos += bytes; 134 count -= bytes; 135 } while (count); 136 137 return status; 138 } 139 140 int 141 xfs_update_prealloc_flags( 142 struct xfs_inode *ip, 143 enum xfs_prealloc_flags flags) 144 { 145 struct xfs_trans *tp; 146 int error; 147 148 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID); 149 error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0); 150 if (error) { 151 xfs_trans_cancel(tp); 152 return error; 153 } 154 155 xfs_ilock(ip, XFS_ILOCK_EXCL); 156 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 157 158 if (!(flags & XFS_PREALLOC_INVISIBLE)) { 159 ip->i_d.di_mode &= ~S_ISUID; 160 if (ip->i_d.di_mode & S_IXGRP) 161 ip->i_d.di_mode &= ~S_ISGID; 162 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); 163 } 164 165 if (flags & XFS_PREALLOC_SET) 166 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; 167 if (flags & XFS_PREALLOC_CLEAR) 168 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; 169 170 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 171 if (flags & XFS_PREALLOC_SYNC) 172 xfs_trans_set_sync(tp); 173 return xfs_trans_commit(tp); 174 } 175 176 /* 177 * Fsync operations on directories are much simpler than on regular files, 178 * as there is no file data to flush, and thus also no need for explicit 179 * cache flush operations, and there are no non-transaction metadata updates 180 * on directories either. 181 */ 182 STATIC int 183 xfs_dir_fsync( 184 struct file *file, 185 loff_t start, 186 loff_t end, 187 int datasync) 188 { 189 struct xfs_inode *ip = XFS_I(file->f_mapping->host); 190 struct xfs_mount *mp = ip->i_mount; 191 xfs_lsn_t lsn = 0; 192 193 trace_xfs_dir_fsync(ip); 194 195 xfs_ilock(ip, XFS_ILOCK_SHARED); 196 if (xfs_ipincount(ip)) 197 lsn = ip->i_itemp->ili_last_lsn; 198 xfs_iunlock(ip, XFS_ILOCK_SHARED); 199 200 if (!lsn) 201 return 0; 202 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); 203 } 204 205 STATIC int 206 xfs_file_fsync( 207 struct file *file, 208 loff_t start, 209 loff_t end, 210 int datasync) 211 { 212 struct inode *inode = file->f_mapping->host; 213 struct xfs_inode *ip = XFS_I(inode); 214 struct xfs_mount *mp = ip->i_mount; 215 int error = 0; 216 int log_flushed = 0; 217 xfs_lsn_t lsn = 0; 218 219 trace_xfs_file_fsync(ip); 220 221 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 222 if (error) 223 return error; 224 225 if (XFS_FORCED_SHUTDOWN(mp)) 226 return -EIO; 227 228 xfs_iflags_clear(ip, XFS_ITRUNCATED); 229 230 if (mp->m_flags & XFS_MOUNT_BARRIER) { 231 /* 232 * If we have an RT and/or log subvolume we need to make sure 233 * to flush the write cache the device used for file data 234 * first. This is to ensure newly written file data make 235 * it to disk before logging the new inode size in case of 236 * an extending write. 237 */ 238 if (XFS_IS_REALTIME_INODE(ip)) 239 xfs_blkdev_issue_flush(mp->m_rtdev_targp); 240 else if (mp->m_logdev_targp != mp->m_ddev_targp) 241 xfs_blkdev_issue_flush(mp->m_ddev_targp); 242 } 243 244 /* 245 * All metadata updates are logged, which means that we just have to 246 * flush the log up to the latest LSN that touched the inode. If we have 247 * concurrent fsync/fdatasync() calls, we need them to all block on the 248 * log force before we clear the ili_fsync_fields field. This ensures 249 * that we don't get a racing sync operation that does not wait for the 250 * metadata to hit the journal before returning. If we race with 251 * clearing the ili_fsync_fields, then all that will happen is the log 252 * force will do nothing as the lsn will already be on disk. We can't 253 * race with setting ili_fsync_fields because that is done under 254 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared 255 * until after the ili_fsync_fields is cleared. 256 */ 257 xfs_ilock(ip, XFS_ILOCK_SHARED); 258 if (xfs_ipincount(ip)) { 259 if (!datasync || 260 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) 261 lsn = ip->i_itemp->ili_last_lsn; 262 } 263 264 if (lsn) { 265 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); 266 ip->i_itemp->ili_fsync_fields = 0; 267 } 268 xfs_iunlock(ip, XFS_ILOCK_SHARED); 269 270 /* 271 * If we only have a single device, and the log force about was 272 * a no-op we might have to flush the data device cache here. 273 * This can only happen for fdatasync/O_DSYNC if we were overwriting 274 * an already allocated file and thus do not have any metadata to 275 * commit. 276 */ 277 if ((mp->m_flags & XFS_MOUNT_BARRIER) && 278 mp->m_logdev_targp == mp->m_ddev_targp && 279 !XFS_IS_REALTIME_INODE(ip) && 280 !log_flushed) 281 xfs_blkdev_issue_flush(mp->m_ddev_targp); 282 283 return error; 284 } 285 286 STATIC ssize_t 287 xfs_file_read_iter( 288 struct kiocb *iocb, 289 struct iov_iter *to) 290 { 291 struct file *file = iocb->ki_filp; 292 struct inode *inode = file->f_mapping->host; 293 struct xfs_inode *ip = XFS_I(inode); 294 struct xfs_mount *mp = ip->i_mount; 295 size_t size = iov_iter_count(to); 296 ssize_t ret = 0; 297 int ioflags = 0; 298 xfs_fsize_t n; 299 loff_t pos = iocb->ki_pos; 300 301 XFS_STATS_INC(mp, xs_read_calls); 302 303 if (unlikely(iocb->ki_flags & IOCB_DIRECT)) 304 ioflags |= XFS_IO_ISDIRECT; 305 if (file->f_mode & FMODE_NOCMTIME) 306 ioflags |= XFS_IO_INVIS; 307 308 if ((ioflags & XFS_IO_ISDIRECT) && !IS_DAX(inode)) { 309 xfs_buftarg_t *target = 310 XFS_IS_REALTIME_INODE(ip) ? 311 mp->m_rtdev_targp : mp->m_ddev_targp; 312 /* DIO must be aligned to device logical sector size */ 313 if ((pos | size) & target->bt_logical_sectormask) { 314 if (pos == i_size_read(inode)) 315 return 0; 316 return -EINVAL; 317 } 318 } 319 320 n = mp->m_super->s_maxbytes - pos; 321 if (n <= 0 || size == 0) 322 return 0; 323 324 if (n < size) 325 size = n; 326 327 if (XFS_FORCED_SHUTDOWN(mp)) 328 return -EIO; 329 330 /* 331 * Locking is a bit tricky here. If we take an exclusive lock for direct 332 * IO, we effectively serialise all new concurrent read IO to this file 333 * and block it behind IO that is currently in progress because IO in 334 * progress holds the IO lock shared. We only need to hold the lock 335 * exclusive to blow away the page cache, so only take lock exclusively 336 * if the page cache needs invalidation. This allows the normal direct 337 * IO case of no page cache pages to proceeed concurrently without 338 * serialisation. 339 */ 340 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 341 if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) { 342 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 343 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL); 344 345 /* 346 * The generic dio code only flushes the range of the particular 347 * I/O. Because we take an exclusive lock here, this whole 348 * sequence is considerably more expensive for us. This has a 349 * noticeable performance impact for any file with cached pages, 350 * even when outside of the range of the particular I/O. 351 * 352 * Hence, amortize the cost of the lock against a full file 353 * flush and reduce the chances of repeated iolock cycles going 354 * forward. 355 */ 356 if (inode->i_mapping->nrpages) { 357 ret = filemap_write_and_wait(VFS_I(ip)->i_mapping); 358 if (ret) { 359 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL); 360 return ret; 361 } 362 363 /* 364 * Invalidate whole pages. This can return an error if 365 * we fail to invalidate a page, but this should never 366 * happen on XFS. Warn if it does fail. 367 */ 368 ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping); 369 WARN_ON_ONCE(ret); 370 ret = 0; 371 } 372 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 373 } 374 375 trace_xfs_file_read(ip, size, pos, ioflags); 376 377 ret = generic_file_read_iter(iocb, to); 378 if (ret > 0) 379 XFS_STATS_ADD(mp, xs_read_bytes, ret); 380 381 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 382 return ret; 383 } 384 385 STATIC ssize_t 386 xfs_file_splice_read( 387 struct file *infilp, 388 loff_t *ppos, 389 struct pipe_inode_info *pipe, 390 size_t count, 391 unsigned int flags) 392 { 393 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host); 394 int ioflags = 0; 395 ssize_t ret; 396 397 XFS_STATS_INC(ip->i_mount, xs_read_calls); 398 399 if (infilp->f_mode & FMODE_NOCMTIME) 400 ioflags |= XFS_IO_INVIS; 401 402 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 403 return -EIO; 404 405 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); 406 407 trace_xfs_file_splice_read(ip, count, *ppos, ioflags); 408 409 /* for dax, we need to avoid the page cache */ 410 if (IS_DAX(VFS_I(ip))) 411 ret = default_file_splice_read(infilp, ppos, pipe, count, flags); 412 else 413 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags); 414 if (ret > 0) 415 XFS_STATS_ADD(ip->i_mount, xs_read_bytes, ret); 416 417 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); 418 return ret; 419 } 420 421 /* 422 * This routine is called to handle zeroing any space in the last block of the 423 * file that is beyond the EOF. We do this since the size is being increased 424 * without writing anything to that block and we don't want to read the 425 * garbage on the disk. 426 */ 427 STATIC int /* error (positive) */ 428 xfs_zero_last_block( 429 struct xfs_inode *ip, 430 xfs_fsize_t offset, 431 xfs_fsize_t isize, 432 bool *did_zeroing) 433 { 434 struct xfs_mount *mp = ip->i_mount; 435 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize); 436 int zero_offset = XFS_B_FSB_OFFSET(mp, isize); 437 int zero_len; 438 int nimaps = 1; 439 int error = 0; 440 struct xfs_bmbt_irec imap; 441 442 xfs_ilock(ip, XFS_ILOCK_EXCL); 443 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0); 444 xfs_iunlock(ip, XFS_ILOCK_EXCL); 445 if (error) 446 return error; 447 448 ASSERT(nimaps > 0); 449 450 /* 451 * If the block underlying isize is just a hole, then there 452 * is nothing to zero. 453 */ 454 if (imap.br_startblock == HOLESTARTBLOCK) 455 return 0; 456 457 zero_len = mp->m_sb.sb_blocksize - zero_offset; 458 if (isize + zero_len > offset) 459 zero_len = offset - isize; 460 *did_zeroing = true; 461 return xfs_iozero(ip, isize, zero_len); 462 } 463 464 /* 465 * Zero any on disk space between the current EOF and the new, larger EOF. 466 * 467 * This handles the normal case of zeroing the remainder of the last block in 468 * the file and the unusual case of zeroing blocks out beyond the size of the 469 * file. This second case only happens with fixed size extents and when the 470 * system crashes before the inode size was updated but after blocks were 471 * allocated. 472 * 473 * Expects the iolock to be held exclusive, and will take the ilock internally. 474 */ 475 int /* error (positive) */ 476 xfs_zero_eof( 477 struct xfs_inode *ip, 478 xfs_off_t offset, /* starting I/O offset */ 479 xfs_fsize_t isize, /* current inode size */ 480 bool *did_zeroing) 481 { 482 struct xfs_mount *mp = ip->i_mount; 483 xfs_fileoff_t start_zero_fsb; 484 xfs_fileoff_t end_zero_fsb; 485 xfs_fileoff_t zero_count_fsb; 486 xfs_fileoff_t last_fsb; 487 xfs_fileoff_t zero_off; 488 xfs_fsize_t zero_len; 489 int nimaps; 490 int error = 0; 491 struct xfs_bmbt_irec imap; 492 493 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 494 ASSERT(offset > isize); 495 496 trace_xfs_zero_eof(ip, isize, offset - isize); 497 498 /* 499 * First handle zeroing the block on which isize resides. 500 * 501 * We only zero a part of that block so it is handled specially. 502 */ 503 if (XFS_B_FSB_OFFSET(mp, isize) != 0) { 504 error = xfs_zero_last_block(ip, offset, isize, did_zeroing); 505 if (error) 506 return error; 507 } 508 509 /* 510 * Calculate the range between the new size and the old where blocks 511 * needing to be zeroed may exist. 512 * 513 * To get the block where the last byte in the file currently resides, 514 * we need to subtract one from the size and truncate back to a block 515 * boundary. We subtract 1 in case the size is exactly on a block 516 * boundary. 517 */ 518 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1; 519 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); 520 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1); 521 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb); 522 if (last_fsb == end_zero_fsb) { 523 /* 524 * The size was only incremented on its last block. 525 * We took care of that above, so just return. 526 */ 527 return 0; 528 } 529 530 ASSERT(start_zero_fsb <= end_zero_fsb); 531 while (start_zero_fsb <= end_zero_fsb) { 532 nimaps = 1; 533 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1; 534 535 xfs_ilock(ip, XFS_ILOCK_EXCL); 536 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb, 537 &imap, &nimaps, 0); 538 xfs_iunlock(ip, XFS_ILOCK_EXCL); 539 if (error) 540 return error; 541 542 ASSERT(nimaps > 0); 543 544 if (imap.br_state == XFS_EXT_UNWRITTEN || 545 imap.br_startblock == HOLESTARTBLOCK) { 546 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 547 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 548 continue; 549 } 550 551 /* 552 * There are blocks we need to zero. 553 */ 554 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb); 555 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount); 556 557 if ((zero_off + zero_len) > offset) 558 zero_len = offset - zero_off; 559 560 error = xfs_iozero(ip, zero_off, zero_len); 561 if (error) 562 return error; 563 564 *did_zeroing = true; 565 start_zero_fsb = imap.br_startoff + imap.br_blockcount; 566 ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); 567 } 568 569 return 0; 570 } 571 572 /* 573 * Common pre-write limit and setup checks. 574 * 575 * Called with the iolocked held either shared and exclusive according to 576 * @iolock, and returns with it held. Might upgrade the iolock to exclusive 577 * if called for a direct write beyond i_size. 578 */ 579 STATIC ssize_t 580 xfs_file_aio_write_checks( 581 struct kiocb *iocb, 582 struct iov_iter *from, 583 int *iolock) 584 { 585 struct file *file = iocb->ki_filp; 586 struct inode *inode = file->f_mapping->host; 587 struct xfs_inode *ip = XFS_I(inode); 588 ssize_t error = 0; 589 size_t count = iov_iter_count(from); 590 bool drained_dio = false; 591 592 restart: 593 error = generic_write_checks(iocb, from); 594 if (error <= 0) 595 return error; 596 597 error = xfs_break_layouts(inode, iolock, true); 598 if (error) 599 return error; 600 601 /* For changing security info in file_remove_privs() we need i_mutex */ 602 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { 603 xfs_rw_iunlock(ip, *iolock); 604 *iolock = XFS_IOLOCK_EXCL; 605 xfs_rw_ilock(ip, *iolock); 606 goto restart; 607 } 608 /* 609 * If the offset is beyond the size of the file, we need to zero any 610 * blocks that fall between the existing EOF and the start of this 611 * write. If zeroing is needed and we are currently holding the 612 * iolock shared, we need to update it to exclusive which implies 613 * having to redo all checks before. 614 * 615 * We need to serialise against EOF updates that occur in IO 616 * completions here. We want to make sure that nobody is changing the 617 * size while we do this check until we have placed an IO barrier (i.e. 618 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. 619 * The spinlock effectively forms a memory barrier once we have the 620 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value 621 * and hence be able to correctly determine if we need to run zeroing. 622 */ 623 spin_lock(&ip->i_flags_lock); 624 if (iocb->ki_pos > i_size_read(inode)) { 625 bool zero = false; 626 627 spin_unlock(&ip->i_flags_lock); 628 if (!drained_dio) { 629 if (*iolock == XFS_IOLOCK_SHARED) { 630 xfs_rw_iunlock(ip, *iolock); 631 *iolock = XFS_IOLOCK_EXCL; 632 xfs_rw_ilock(ip, *iolock); 633 iov_iter_reexpand(from, count); 634 } 635 /* 636 * We now have an IO submission barrier in place, but 637 * AIO can do EOF updates during IO completion and hence 638 * we now need to wait for all of them to drain. Non-AIO 639 * DIO will have drained before we are given the 640 * XFS_IOLOCK_EXCL, and so for most cases this wait is a 641 * no-op. 642 */ 643 inode_dio_wait(inode); 644 drained_dio = true; 645 goto restart; 646 } 647 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero); 648 if (error) 649 return error; 650 } else 651 spin_unlock(&ip->i_flags_lock); 652 653 /* 654 * Updating the timestamps will grab the ilock again from 655 * xfs_fs_dirty_inode, so we have to call it after dropping the 656 * lock above. Eventually we should look into a way to avoid 657 * the pointless lock roundtrip. 658 */ 659 if (likely(!(file->f_mode & FMODE_NOCMTIME))) { 660 error = file_update_time(file); 661 if (error) 662 return error; 663 } 664 665 /* 666 * If we're writing the file then make sure to clear the setuid and 667 * setgid bits if the process is not being run by root. This keeps 668 * people from modifying setuid and setgid binaries. 669 */ 670 if (!IS_NOSEC(inode)) 671 return file_remove_privs(file); 672 return 0; 673 } 674 675 /* 676 * xfs_file_dio_aio_write - handle direct IO writes 677 * 678 * Lock the inode appropriately to prepare for and issue a direct IO write. 679 * By separating it from the buffered write path we remove all the tricky to 680 * follow locking changes and looping. 681 * 682 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL 683 * until we're sure the bytes at the new EOF have been zeroed and/or the cached 684 * pages are flushed out. 685 * 686 * In most cases the direct IO writes will be done holding IOLOCK_SHARED 687 * allowing them to be done in parallel with reads and other direct IO writes. 688 * However, if the IO is not aligned to filesystem blocks, the direct IO layer 689 * needs to do sub-block zeroing and that requires serialisation against other 690 * direct IOs to the same block. In this case we need to serialise the 691 * submission of the unaligned IOs so that we don't get racing block zeroing in 692 * the dio layer. To avoid the problem with aio, we also need to wait for 693 * outstanding IOs to complete so that unwritten extent conversion is completed 694 * before we try to map the overlapping block. This is currently implemented by 695 * hitting it with a big hammer (i.e. inode_dio_wait()). 696 * 697 * Returns with locks held indicated by @iolock and errors indicated by 698 * negative return values. 699 */ 700 STATIC ssize_t 701 xfs_file_dio_aio_write( 702 struct kiocb *iocb, 703 struct iov_iter *from) 704 { 705 struct file *file = iocb->ki_filp; 706 struct address_space *mapping = file->f_mapping; 707 struct inode *inode = mapping->host; 708 struct xfs_inode *ip = XFS_I(inode); 709 struct xfs_mount *mp = ip->i_mount; 710 ssize_t ret = 0; 711 int unaligned_io = 0; 712 int iolock; 713 size_t count = iov_iter_count(from); 714 loff_t pos = iocb->ki_pos; 715 loff_t end; 716 struct iov_iter data; 717 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? 718 mp->m_rtdev_targp : mp->m_ddev_targp; 719 720 /* DIO must be aligned to device logical sector size */ 721 if (!IS_DAX(inode) && ((pos | count) & target->bt_logical_sectormask)) 722 return -EINVAL; 723 724 /* "unaligned" here means not aligned to a filesystem block */ 725 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask)) 726 unaligned_io = 1; 727 728 /* 729 * We don't need to take an exclusive lock unless there page cache needs 730 * to be invalidated or unaligned IO is being executed. We don't need to 731 * consider the EOF extension case here because 732 * xfs_file_aio_write_checks() will relock the inode as necessary for 733 * EOF zeroing cases and fill out the new inode size as appropriate. 734 */ 735 if (unaligned_io || mapping->nrpages) 736 iolock = XFS_IOLOCK_EXCL; 737 else 738 iolock = XFS_IOLOCK_SHARED; 739 xfs_rw_ilock(ip, iolock); 740 741 /* 742 * Recheck if there are cached pages that need invalidate after we got 743 * the iolock to protect against other threads adding new pages while 744 * we were waiting for the iolock. 745 */ 746 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) { 747 xfs_rw_iunlock(ip, iolock); 748 iolock = XFS_IOLOCK_EXCL; 749 xfs_rw_ilock(ip, iolock); 750 } 751 752 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 753 if (ret) 754 goto out; 755 count = iov_iter_count(from); 756 pos = iocb->ki_pos; 757 end = pos + count - 1; 758 759 /* 760 * See xfs_file_read_iter() for why we do a full-file flush here. 761 */ 762 if (mapping->nrpages) { 763 ret = filemap_write_and_wait(VFS_I(ip)->i_mapping); 764 if (ret) 765 goto out; 766 /* 767 * Invalidate whole pages. This can return an error if we fail 768 * to invalidate a page, but this should never happen on XFS. 769 * Warn if it does fail. 770 */ 771 ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping); 772 WARN_ON_ONCE(ret); 773 ret = 0; 774 } 775 776 /* 777 * If we are doing unaligned IO, wait for all other IO to drain, 778 * otherwise demote the lock if we had to flush cached pages 779 */ 780 if (unaligned_io) 781 inode_dio_wait(inode); 782 else if (iolock == XFS_IOLOCK_EXCL) { 783 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); 784 iolock = XFS_IOLOCK_SHARED; 785 } 786 787 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0); 788 789 data = *from; 790 ret = mapping->a_ops->direct_IO(iocb, &data, pos); 791 792 /* see generic_file_direct_write() for why this is necessary */ 793 if (mapping->nrpages) { 794 invalidate_inode_pages2_range(mapping, 795 pos >> PAGE_CACHE_SHIFT, 796 end >> PAGE_CACHE_SHIFT); 797 } 798 799 if (ret > 0) { 800 pos += ret; 801 iov_iter_advance(from, ret); 802 iocb->ki_pos = pos; 803 } 804 out: 805 xfs_rw_iunlock(ip, iolock); 806 807 /* 808 * No fallback to buffered IO on errors for XFS. DAX can result in 809 * partial writes, but direct IO will either complete fully or fail. 810 */ 811 ASSERT(ret < 0 || ret == count || IS_DAX(VFS_I(ip))); 812 return ret; 813 } 814 815 STATIC ssize_t 816 xfs_file_buffered_aio_write( 817 struct kiocb *iocb, 818 struct iov_iter *from) 819 { 820 struct file *file = iocb->ki_filp; 821 struct address_space *mapping = file->f_mapping; 822 struct inode *inode = mapping->host; 823 struct xfs_inode *ip = XFS_I(inode); 824 ssize_t ret; 825 int enospc = 0; 826 int iolock = XFS_IOLOCK_EXCL; 827 828 xfs_rw_ilock(ip, iolock); 829 830 ret = xfs_file_aio_write_checks(iocb, from, &iolock); 831 if (ret) 832 goto out; 833 834 /* We can write back this queue in page reclaim */ 835 current->backing_dev_info = inode_to_bdi(inode); 836 837 write_retry: 838 trace_xfs_file_buffered_write(ip, iov_iter_count(from), 839 iocb->ki_pos, 0); 840 ret = generic_perform_write(file, from, iocb->ki_pos); 841 if (likely(ret >= 0)) 842 iocb->ki_pos += ret; 843 844 /* 845 * If we hit a space limit, try to free up some lingering preallocated 846 * space before returning an error. In the case of ENOSPC, first try to 847 * write back all dirty inodes to free up some of the excess reserved 848 * metadata space. This reduces the chances that the eofblocks scan 849 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this 850 * also behaves as a filter to prevent too many eofblocks scans from 851 * running at the same time. 852 */ 853 if (ret == -EDQUOT && !enospc) { 854 enospc = xfs_inode_free_quota_eofblocks(ip); 855 if (enospc) 856 goto write_retry; 857 } else if (ret == -ENOSPC && !enospc) { 858 struct xfs_eofblocks eofb = {0}; 859 860 enospc = 1; 861 xfs_flush_inodes(ip->i_mount); 862 eofb.eof_scan_owner = ip->i_ino; /* for locking */ 863 eofb.eof_flags = XFS_EOF_FLAGS_SYNC; 864 xfs_icache_free_eofblocks(ip->i_mount, &eofb); 865 goto write_retry; 866 } 867 868 current->backing_dev_info = NULL; 869 out: 870 xfs_rw_iunlock(ip, iolock); 871 return ret; 872 } 873 874 STATIC ssize_t 875 xfs_file_write_iter( 876 struct kiocb *iocb, 877 struct iov_iter *from) 878 { 879 struct file *file = iocb->ki_filp; 880 struct address_space *mapping = file->f_mapping; 881 struct inode *inode = mapping->host; 882 struct xfs_inode *ip = XFS_I(inode); 883 ssize_t ret; 884 size_t ocount = iov_iter_count(from); 885 886 XFS_STATS_INC(ip->i_mount, xs_write_calls); 887 888 if (ocount == 0) 889 return 0; 890 891 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 892 return -EIO; 893 894 if ((iocb->ki_flags & IOCB_DIRECT) || IS_DAX(inode)) 895 ret = xfs_file_dio_aio_write(iocb, from); 896 else 897 ret = xfs_file_buffered_aio_write(iocb, from); 898 899 if (ret > 0) { 900 ssize_t err; 901 902 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); 903 904 /* Handle various SYNC-type writes */ 905 err = generic_write_sync(file, iocb->ki_pos - ret, ret); 906 if (err < 0) 907 ret = err; 908 } 909 return ret; 910 } 911 912 #define XFS_FALLOC_FL_SUPPORTED \ 913 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 914 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ 915 FALLOC_FL_INSERT_RANGE) 916 917 STATIC long 918 xfs_file_fallocate( 919 struct file *file, 920 int mode, 921 loff_t offset, 922 loff_t len) 923 { 924 struct inode *inode = file_inode(file); 925 struct xfs_inode *ip = XFS_I(inode); 926 long error; 927 enum xfs_prealloc_flags flags = 0; 928 uint iolock = XFS_IOLOCK_EXCL; 929 loff_t new_size = 0; 930 bool do_file_insert = 0; 931 932 if (!S_ISREG(inode->i_mode)) 933 return -EINVAL; 934 if (mode & ~XFS_FALLOC_FL_SUPPORTED) 935 return -EOPNOTSUPP; 936 937 xfs_ilock(ip, iolock); 938 error = xfs_break_layouts(inode, &iolock, false); 939 if (error) 940 goto out_unlock; 941 942 xfs_ilock(ip, XFS_MMAPLOCK_EXCL); 943 iolock |= XFS_MMAPLOCK_EXCL; 944 945 if (mode & FALLOC_FL_PUNCH_HOLE) { 946 error = xfs_free_file_space(ip, offset, len); 947 if (error) 948 goto out_unlock; 949 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 950 unsigned blksize_mask = (1 << inode->i_blkbits) - 1; 951 952 if (offset & blksize_mask || len & blksize_mask) { 953 error = -EINVAL; 954 goto out_unlock; 955 } 956 957 /* 958 * There is no need to overlap collapse range with EOF, 959 * in which case it is effectively a truncate operation 960 */ 961 if (offset + len >= i_size_read(inode)) { 962 error = -EINVAL; 963 goto out_unlock; 964 } 965 966 new_size = i_size_read(inode) - len; 967 968 error = xfs_collapse_file_space(ip, offset, len); 969 if (error) 970 goto out_unlock; 971 } else if (mode & FALLOC_FL_INSERT_RANGE) { 972 unsigned blksize_mask = (1 << inode->i_blkbits) - 1; 973 974 new_size = i_size_read(inode) + len; 975 if (offset & blksize_mask || len & blksize_mask) { 976 error = -EINVAL; 977 goto out_unlock; 978 } 979 980 /* check the new inode size does not wrap through zero */ 981 if (new_size > inode->i_sb->s_maxbytes) { 982 error = -EFBIG; 983 goto out_unlock; 984 } 985 986 /* Offset should be less than i_size */ 987 if (offset >= i_size_read(inode)) { 988 error = -EINVAL; 989 goto out_unlock; 990 } 991 do_file_insert = 1; 992 } else { 993 flags |= XFS_PREALLOC_SET; 994 995 if (!(mode & FALLOC_FL_KEEP_SIZE) && 996 offset + len > i_size_read(inode)) { 997 new_size = offset + len; 998 error = inode_newsize_ok(inode, new_size); 999 if (error) 1000 goto out_unlock; 1001 } 1002 1003 if (mode & FALLOC_FL_ZERO_RANGE) 1004 error = xfs_zero_file_space(ip, offset, len); 1005 else 1006 error = xfs_alloc_file_space(ip, offset, len, 1007 XFS_BMAPI_PREALLOC); 1008 if (error) 1009 goto out_unlock; 1010 } 1011 1012 if (file->f_flags & O_DSYNC) 1013 flags |= XFS_PREALLOC_SYNC; 1014 1015 error = xfs_update_prealloc_flags(ip, flags); 1016 if (error) 1017 goto out_unlock; 1018 1019 /* Change file size if needed */ 1020 if (new_size) { 1021 struct iattr iattr; 1022 1023 iattr.ia_valid = ATTR_SIZE; 1024 iattr.ia_size = new_size; 1025 error = xfs_setattr_size(ip, &iattr); 1026 if (error) 1027 goto out_unlock; 1028 } 1029 1030 /* 1031 * Perform hole insertion now that the file size has been 1032 * updated so that if we crash during the operation we don't 1033 * leave shifted extents past EOF and hence losing access to 1034 * the data that is contained within them. 1035 */ 1036 if (do_file_insert) 1037 error = xfs_insert_file_space(ip, offset, len); 1038 1039 out_unlock: 1040 xfs_iunlock(ip, iolock); 1041 return error; 1042 } 1043 1044 1045 STATIC int 1046 xfs_file_open( 1047 struct inode *inode, 1048 struct file *file) 1049 { 1050 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) 1051 return -EFBIG; 1052 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) 1053 return -EIO; 1054 return 0; 1055 } 1056 1057 STATIC int 1058 xfs_dir_open( 1059 struct inode *inode, 1060 struct file *file) 1061 { 1062 struct xfs_inode *ip = XFS_I(inode); 1063 int mode; 1064 int error; 1065 1066 error = xfs_file_open(inode, file); 1067 if (error) 1068 return error; 1069 1070 /* 1071 * If there are any blocks, read-ahead block 0 as we're almost 1072 * certain to have the next operation be a read there. 1073 */ 1074 mode = xfs_ilock_data_map_shared(ip); 1075 if (ip->i_d.di_nextents > 0) 1076 xfs_dir3_data_readahead(ip, 0, -1); 1077 xfs_iunlock(ip, mode); 1078 return 0; 1079 } 1080 1081 STATIC int 1082 xfs_file_release( 1083 struct inode *inode, 1084 struct file *filp) 1085 { 1086 return xfs_release(XFS_I(inode)); 1087 } 1088 1089 STATIC int 1090 xfs_file_readdir( 1091 struct file *file, 1092 struct dir_context *ctx) 1093 { 1094 struct inode *inode = file_inode(file); 1095 xfs_inode_t *ip = XFS_I(inode); 1096 size_t bufsize; 1097 1098 /* 1099 * The Linux API doesn't pass down the total size of the buffer 1100 * we read into down to the filesystem. With the filldir concept 1101 * it's not needed for correct information, but the XFS dir2 leaf 1102 * code wants an estimate of the buffer size to calculate it's 1103 * readahead window and size the buffers used for mapping to 1104 * physical blocks. 1105 * 1106 * Try to give it an estimate that's good enough, maybe at some 1107 * point we can change the ->readdir prototype to include the 1108 * buffer size. For now we use the current glibc buffer size. 1109 */ 1110 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); 1111 1112 return xfs_readdir(ip, ctx, bufsize); 1113 } 1114 1115 /* 1116 * This type is designed to indicate the type of offset we would like 1117 * to search from page cache for xfs_seek_hole_data(). 1118 */ 1119 enum { 1120 HOLE_OFF = 0, 1121 DATA_OFF, 1122 }; 1123 1124 /* 1125 * Lookup the desired type of offset from the given page. 1126 * 1127 * On success, return true and the offset argument will point to the 1128 * start of the region that was found. Otherwise this function will 1129 * return false and keep the offset argument unchanged. 1130 */ 1131 STATIC bool 1132 xfs_lookup_buffer_offset( 1133 struct page *page, 1134 loff_t *offset, 1135 unsigned int type) 1136 { 1137 loff_t lastoff = page_offset(page); 1138 bool found = false; 1139 struct buffer_head *bh, *head; 1140 1141 bh = head = page_buffers(page); 1142 do { 1143 /* 1144 * Unwritten extents that have data in the page 1145 * cache covering them can be identified by the 1146 * BH_Unwritten state flag. Pages with multiple 1147 * buffers might have a mix of holes, data and 1148 * unwritten extents - any buffer with valid 1149 * data in it should have BH_Uptodate flag set 1150 * on it. 1151 */ 1152 if (buffer_unwritten(bh) || 1153 buffer_uptodate(bh)) { 1154 if (type == DATA_OFF) 1155 found = true; 1156 } else { 1157 if (type == HOLE_OFF) 1158 found = true; 1159 } 1160 1161 if (found) { 1162 *offset = lastoff; 1163 break; 1164 } 1165 lastoff += bh->b_size; 1166 } while ((bh = bh->b_this_page) != head); 1167 1168 return found; 1169 } 1170 1171 /* 1172 * This routine is called to find out and return a data or hole offset 1173 * from the page cache for unwritten extents according to the desired 1174 * type for xfs_seek_hole_data(). 1175 * 1176 * The argument offset is used to tell where we start to search from the 1177 * page cache. Map is used to figure out the end points of the range to 1178 * lookup pages. 1179 * 1180 * Return true if the desired type of offset was found, and the argument 1181 * offset is filled with that address. Otherwise, return false and keep 1182 * offset unchanged. 1183 */ 1184 STATIC bool 1185 xfs_find_get_desired_pgoff( 1186 struct inode *inode, 1187 struct xfs_bmbt_irec *map, 1188 unsigned int type, 1189 loff_t *offset) 1190 { 1191 struct xfs_inode *ip = XFS_I(inode); 1192 struct xfs_mount *mp = ip->i_mount; 1193 struct pagevec pvec; 1194 pgoff_t index; 1195 pgoff_t end; 1196 loff_t endoff; 1197 loff_t startoff = *offset; 1198 loff_t lastoff = startoff; 1199 bool found = false; 1200 1201 pagevec_init(&pvec, 0); 1202 1203 index = startoff >> PAGE_CACHE_SHIFT; 1204 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount); 1205 end = endoff >> PAGE_CACHE_SHIFT; 1206 do { 1207 int want; 1208 unsigned nr_pages; 1209 unsigned int i; 1210 1211 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE); 1212 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, 1213 want); 1214 /* 1215 * No page mapped into given range. If we are searching holes 1216 * and if this is the first time we got into the loop, it means 1217 * that the given offset is landed in a hole, return it. 1218 * 1219 * If we have already stepped through some block buffers to find 1220 * holes but they all contains data. In this case, the last 1221 * offset is already updated and pointed to the end of the last 1222 * mapped page, if it does not reach the endpoint to search, 1223 * that means there should be a hole between them. 1224 */ 1225 if (nr_pages == 0) { 1226 /* Data search found nothing */ 1227 if (type == DATA_OFF) 1228 break; 1229 1230 ASSERT(type == HOLE_OFF); 1231 if (lastoff == startoff || lastoff < endoff) { 1232 found = true; 1233 *offset = lastoff; 1234 } 1235 break; 1236 } 1237 1238 /* 1239 * At lease we found one page. If this is the first time we 1240 * step into the loop, and if the first page index offset is 1241 * greater than the given search offset, a hole was found. 1242 */ 1243 if (type == HOLE_OFF && lastoff == startoff && 1244 lastoff < page_offset(pvec.pages[0])) { 1245 found = true; 1246 break; 1247 } 1248 1249 for (i = 0; i < nr_pages; i++) { 1250 struct page *page = pvec.pages[i]; 1251 loff_t b_offset; 1252 1253 /* 1254 * At this point, the page may be truncated or 1255 * invalidated (changing page->mapping to NULL), 1256 * or even swizzled back from swapper_space to tmpfs 1257 * file mapping. However, page->index will not change 1258 * because we have a reference on the page. 1259 * 1260 * Searching done if the page index is out of range. 1261 * If the current offset is not reaches the end of 1262 * the specified search range, there should be a hole 1263 * between them. 1264 */ 1265 if (page->index > end) { 1266 if (type == HOLE_OFF && lastoff < endoff) { 1267 *offset = lastoff; 1268 found = true; 1269 } 1270 goto out; 1271 } 1272 1273 lock_page(page); 1274 /* 1275 * Page truncated or invalidated(page->mapping == NULL). 1276 * We can freely skip it and proceed to check the next 1277 * page. 1278 */ 1279 if (unlikely(page->mapping != inode->i_mapping)) { 1280 unlock_page(page); 1281 continue; 1282 } 1283 1284 if (!page_has_buffers(page)) { 1285 unlock_page(page); 1286 continue; 1287 } 1288 1289 found = xfs_lookup_buffer_offset(page, &b_offset, type); 1290 if (found) { 1291 /* 1292 * The found offset may be less than the start 1293 * point to search if this is the first time to 1294 * come here. 1295 */ 1296 *offset = max_t(loff_t, startoff, b_offset); 1297 unlock_page(page); 1298 goto out; 1299 } 1300 1301 /* 1302 * We either searching data but nothing was found, or 1303 * searching hole but found a data buffer. In either 1304 * case, probably the next page contains the desired 1305 * things, update the last offset to it so. 1306 */ 1307 lastoff = page_offset(page) + PAGE_SIZE; 1308 unlock_page(page); 1309 } 1310 1311 /* 1312 * The number of returned pages less than our desired, search 1313 * done. In this case, nothing was found for searching data, 1314 * but we found a hole behind the last offset. 1315 */ 1316 if (nr_pages < want) { 1317 if (type == HOLE_OFF) { 1318 *offset = lastoff; 1319 found = true; 1320 } 1321 break; 1322 } 1323 1324 index = pvec.pages[i - 1]->index + 1; 1325 pagevec_release(&pvec); 1326 } while (index <= end); 1327 1328 out: 1329 pagevec_release(&pvec); 1330 return found; 1331 } 1332 1333 STATIC loff_t 1334 xfs_seek_hole_data( 1335 struct file *file, 1336 loff_t start, 1337 int whence) 1338 { 1339 struct inode *inode = file->f_mapping->host; 1340 struct xfs_inode *ip = XFS_I(inode); 1341 struct xfs_mount *mp = ip->i_mount; 1342 loff_t uninitialized_var(offset); 1343 xfs_fsize_t isize; 1344 xfs_fileoff_t fsbno; 1345 xfs_filblks_t end; 1346 uint lock; 1347 int error; 1348 1349 if (XFS_FORCED_SHUTDOWN(mp)) 1350 return -EIO; 1351 1352 lock = xfs_ilock_data_map_shared(ip); 1353 1354 isize = i_size_read(inode); 1355 if (start >= isize) { 1356 error = -ENXIO; 1357 goto out_unlock; 1358 } 1359 1360 /* 1361 * Try to read extents from the first block indicated 1362 * by fsbno to the end block of the file. 1363 */ 1364 fsbno = XFS_B_TO_FSBT(mp, start); 1365 end = XFS_B_TO_FSB(mp, isize); 1366 1367 for (;;) { 1368 struct xfs_bmbt_irec map[2]; 1369 int nmap = 2; 1370 unsigned int i; 1371 1372 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap, 1373 XFS_BMAPI_ENTIRE); 1374 if (error) 1375 goto out_unlock; 1376 1377 /* No extents at given offset, must be beyond EOF */ 1378 if (nmap == 0) { 1379 error = -ENXIO; 1380 goto out_unlock; 1381 } 1382 1383 for (i = 0; i < nmap; i++) { 1384 offset = max_t(loff_t, start, 1385 XFS_FSB_TO_B(mp, map[i].br_startoff)); 1386 1387 /* Landed in the hole we wanted? */ 1388 if (whence == SEEK_HOLE && 1389 map[i].br_startblock == HOLESTARTBLOCK) 1390 goto out; 1391 1392 /* Landed in the data extent we wanted? */ 1393 if (whence == SEEK_DATA && 1394 (map[i].br_startblock == DELAYSTARTBLOCK || 1395 (map[i].br_state == XFS_EXT_NORM && 1396 !isnullstartblock(map[i].br_startblock)))) 1397 goto out; 1398 1399 /* 1400 * Landed in an unwritten extent, try to search 1401 * for hole or data from page cache. 1402 */ 1403 if (map[i].br_state == XFS_EXT_UNWRITTEN) { 1404 if (xfs_find_get_desired_pgoff(inode, &map[i], 1405 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF, 1406 &offset)) 1407 goto out; 1408 } 1409 } 1410 1411 /* 1412 * We only received one extent out of the two requested. This 1413 * means we've hit EOF and didn't find what we are looking for. 1414 */ 1415 if (nmap == 1) { 1416 /* 1417 * If we were looking for a hole, set offset to 1418 * the end of the file (i.e., there is an implicit 1419 * hole at the end of any file). 1420 */ 1421 if (whence == SEEK_HOLE) { 1422 offset = isize; 1423 break; 1424 } 1425 /* 1426 * If we were looking for data, it's nowhere to be found 1427 */ 1428 ASSERT(whence == SEEK_DATA); 1429 error = -ENXIO; 1430 goto out_unlock; 1431 } 1432 1433 ASSERT(i > 1); 1434 1435 /* 1436 * Nothing was found, proceed to the next round of search 1437 * if the next reading offset is not at or beyond EOF. 1438 */ 1439 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount; 1440 start = XFS_FSB_TO_B(mp, fsbno); 1441 if (start >= isize) { 1442 if (whence == SEEK_HOLE) { 1443 offset = isize; 1444 break; 1445 } 1446 ASSERT(whence == SEEK_DATA); 1447 error = -ENXIO; 1448 goto out_unlock; 1449 } 1450 } 1451 1452 out: 1453 /* 1454 * If at this point we have found the hole we wanted, the returned 1455 * offset may be bigger than the file size as it may be aligned to 1456 * page boundary for unwritten extents. We need to deal with this 1457 * situation in particular. 1458 */ 1459 if (whence == SEEK_HOLE) 1460 offset = min_t(loff_t, offset, isize); 1461 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 1462 1463 out_unlock: 1464 xfs_iunlock(ip, lock); 1465 1466 if (error) 1467 return error; 1468 return offset; 1469 } 1470 1471 STATIC loff_t 1472 xfs_file_llseek( 1473 struct file *file, 1474 loff_t offset, 1475 int whence) 1476 { 1477 switch (whence) { 1478 case SEEK_END: 1479 case SEEK_CUR: 1480 case SEEK_SET: 1481 return generic_file_llseek(file, offset, whence); 1482 case SEEK_HOLE: 1483 case SEEK_DATA: 1484 return xfs_seek_hole_data(file, offset, whence); 1485 default: 1486 return -EINVAL; 1487 } 1488 } 1489 1490 /* 1491 * Locking for serialisation of IO during page faults. This results in a lock 1492 * ordering of: 1493 * 1494 * mmap_sem (MM) 1495 * sb_start_pagefault(vfs, freeze) 1496 * i_mmaplock (XFS - truncate serialisation) 1497 * page_lock (MM) 1498 * i_lock (XFS - extent map serialisation) 1499 */ 1500 1501 /* 1502 * mmap()d file has taken write protection fault and is being made writable. We 1503 * can set the page state up correctly for a writable page, which means we can 1504 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent 1505 * mapping. 1506 */ 1507 STATIC int 1508 xfs_filemap_page_mkwrite( 1509 struct vm_area_struct *vma, 1510 struct vm_fault *vmf) 1511 { 1512 struct inode *inode = file_inode(vma->vm_file); 1513 int ret; 1514 1515 trace_xfs_filemap_page_mkwrite(XFS_I(inode)); 1516 1517 sb_start_pagefault(inode->i_sb); 1518 file_update_time(vma->vm_file); 1519 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1520 1521 if (IS_DAX(inode)) { 1522 ret = __dax_mkwrite(vma, vmf, xfs_get_blocks_dax_fault, NULL); 1523 } else { 1524 ret = block_page_mkwrite(vma, vmf, xfs_get_blocks); 1525 ret = block_page_mkwrite_return(ret); 1526 } 1527 1528 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1529 sb_end_pagefault(inode->i_sb); 1530 1531 return ret; 1532 } 1533 1534 STATIC int 1535 xfs_filemap_fault( 1536 struct vm_area_struct *vma, 1537 struct vm_fault *vmf) 1538 { 1539 struct inode *inode = file_inode(vma->vm_file); 1540 int ret; 1541 1542 trace_xfs_filemap_fault(XFS_I(inode)); 1543 1544 /* DAX can shortcut the normal fault path on write faults! */ 1545 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode)) 1546 return xfs_filemap_page_mkwrite(vma, vmf); 1547 1548 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1549 if (IS_DAX(inode)) { 1550 /* 1551 * we do not want to trigger unwritten extent conversion on read 1552 * faults - that is unnecessary overhead and would also require 1553 * changes to xfs_get_blocks_direct() to map unwritten extent 1554 * ioend for conversion on read-only mappings. 1555 */ 1556 ret = __dax_fault(vma, vmf, xfs_get_blocks_dax_fault, NULL); 1557 } else 1558 ret = filemap_fault(vma, vmf); 1559 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1560 1561 return ret; 1562 } 1563 1564 /* 1565 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on 1566 * both read and write faults. Hence we need to handle both cases. There is no 1567 * ->pmd_mkwrite callout for huge pages, so we have a single function here to 1568 * handle both cases here. @flags carries the information on the type of fault 1569 * occuring. 1570 */ 1571 STATIC int 1572 xfs_filemap_pmd_fault( 1573 struct vm_area_struct *vma, 1574 unsigned long addr, 1575 pmd_t *pmd, 1576 unsigned int flags) 1577 { 1578 struct inode *inode = file_inode(vma->vm_file); 1579 struct xfs_inode *ip = XFS_I(inode); 1580 int ret; 1581 1582 if (!IS_DAX(inode)) 1583 return VM_FAULT_FALLBACK; 1584 1585 trace_xfs_filemap_pmd_fault(ip); 1586 1587 if (flags & FAULT_FLAG_WRITE) { 1588 sb_start_pagefault(inode->i_sb); 1589 file_update_time(vma->vm_file); 1590 } 1591 1592 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1593 ret = __dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault, 1594 NULL); 1595 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); 1596 1597 if (flags & FAULT_FLAG_WRITE) 1598 sb_end_pagefault(inode->i_sb); 1599 1600 return ret; 1601 } 1602 1603 /* 1604 * pfn_mkwrite was originally inteneded to ensure we capture time stamp 1605 * updates on write faults. In reality, it's need to serialise against 1606 * truncate similar to page_mkwrite. Hence we open-code dax_pfn_mkwrite() 1607 * here and cycle the XFS_MMAPLOCK_SHARED to ensure we serialise the fault 1608 * barrier in place. 1609 */ 1610 static int 1611 xfs_filemap_pfn_mkwrite( 1612 struct vm_area_struct *vma, 1613 struct vm_fault *vmf) 1614 { 1615 1616 struct inode *inode = file_inode(vma->vm_file); 1617 struct xfs_inode *ip = XFS_I(inode); 1618 int ret = VM_FAULT_NOPAGE; 1619 loff_t size; 1620 1621 trace_xfs_filemap_pfn_mkwrite(ip); 1622 1623 sb_start_pagefault(inode->i_sb); 1624 file_update_time(vma->vm_file); 1625 1626 /* check if the faulting page hasn't raced with truncate */ 1627 xfs_ilock(ip, XFS_MMAPLOCK_SHARED); 1628 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; 1629 if (vmf->pgoff >= size) 1630 ret = VM_FAULT_SIGBUS; 1631 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED); 1632 sb_end_pagefault(inode->i_sb); 1633 return ret; 1634 1635 } 1636 1637 static const struct vm_operations_struct xfs_file_vm_ops = { 1638 .fault = xfs_filemap_fault, 1639 .pmd_fault = xfs_filemap_pmd_fault, 1640 .map_pages = filemap_map_pages, 1641 .page_mkwrite = xfs_filemap_page_mkwrite, 1642 .pfn_mkwrite = xfs_filemap_pfn_mkwrite, 1643 }; 1644 1645 STATIC int 1646 xfs_file_mmap( 1647 struct file *filp, 1648 struct vm_area_struct *vma) 1649 { 1650 file_accessed(filp); 1651 vma->vm_ops = &xfs_file_vm_ops; 1652 if (IS_DAX(file_inode(filp))) 1653 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE; 1654 return 0; 1655 } 1656 1657 const struct file_operations xfs_file_operations = { 1658 .llseek = xfs_file_llseek, 1659 .read_iter = xfs_file_read_iter, 1660 .write_iter = xfs_file_write_iter, 1661 .splice_read = xfs_file_splice_read, 1662 .splice_write = iter_file_splice_write, 1663 .unlocked_ioctl = xfs_file_ioctl, 1664 #ifdef CONFIG_COMPAT 1665 .compat_ioctl = xfs_file_compat_ioctl, 1666 #endif 1667 .mmap = xfs_file_mmap, 1668 .open = xfs_file_open, 1669 .release = xfs_file_release, 1670 .fsync = xfs_file_fsync, 1671 .fallocate = xfs_file_fallocate, 1672 }; 1673 1674 const struct file_operations xfs_dir_file_operations = { 1675 .open = xfs_dir_open, 1676 .read = generic_read_dir, 1677 .iterate = xfs_file_readdir, 1678 .llseek = generic_file_llseek, 1679 .unlocked_ioctl = xfs_file_ioctl, 1680 #ifdef CONFIG_COMPAT 1681 .compat_ioctl = xfs_file_compat_ioctl, 1682 #endif 1683 .fsync = xfs_dir_fsync, 1684 }; 1685