xref: /openbmc/linux/fs/xfs/xfs_extfree_item.c (revision f9834f18)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_shared.h"
13 #include "xfs_mount.h"
14 #include "xfs_defer.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_extfree_item.h"
18 #include "xfs_log.h"
19 #include "xfs_btree.h"
20 #include "xfs_rmap.h"
21 #include "xfs_alloc.h"
22 #include "xfs_bmap.h"
23 #include "xfs_trace.h"
24 #include "xfs_error.h"
25 
26 kmem_zone_t	*xfs_efi_zone;
27 kmem_zone_t	*xfs_efd_zone;
28 
29 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
30 {
31 	return container_of(lip, struct xfs_efi_log_item, efi_item);
32 }
33 
34 void
35 xfs_efi_item_free(
36 	struct xfs_efi_log_item	*efip)
37 {
38 	kmem_free(efip->efi_item.li_lv_shadow);
39 	if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
40 		kmem_free(efip);
41 	else
42 		kmem_cache_free(xfs_efi_zone, efip);
43 }
44 
45 /*
46  * Freeing the efi requires that we remove it from the AIL if it has already
47  * been placed there. However, the EFI may not yet have been placed in the AIL
48  * when called by xfs_efi_release() from EFD processing due to the ordering of
49  * committed vs unpin operations in bulk insert operations. Hence the reference
50  * count to ensure only the last caller frees the EFI.
51  */
52 void
53 xfs_efi_release(
54 	struct xfs_efi_log_item	*efip)
55 {
56 	ASSERT(atomic_read(&efip->efi_refcount) > 0);
57 	if (atomic_dec_and_test(&efip->efi_refcount)) {
58 		xfs_trans_ail_remove(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR);
59 		xfs_efi_item_free(efip);
60 	}
61 }
62 
63 /*
64  * This returns the number of iovecs needed to log the given efi item.
65  * We only need 1 iovec for an efi item.  It just logs the efi_log_format
66  * structure.
67  */
68 static inline int
69 xfs_efi_item_sizeof(
70 	struct xfs_efi_log_item *efip)
71 {
72 	return sizeof(struct xfs_efi_log_format) +
73 	       (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
74 }
75 
76 STATIC void
77 xfs_efi_item_size(
78 	struct xfs_log_item	*lip,
79 	int			*nvecs,
80 	int			*nbytes)
81 {
82 	*nvecs += 1;
83 	*nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
84 }
85 
86 /*
87  * This is called to fill in the vector of log iovecs for the
88  * given efi log item. We use only 1 iovec, and we point that
89  * at the efi_log_format structure embedded in the efi item.
90  * It is at this point that we assert that all of the extent
91  * slots in the efi item have been filled.
92  */
93 STATIC void
94 xfs_efi_item_format(
95 	struct xfs_log_item	*lip,
96 	struct xfs_log_vec	*lv)
97 {
98 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
99 	struct xfs_log_iovec	*vecp = NULL;
100 
101 	ASSERT(atomic_read(&efip->efi_next_extent) ==
102 				efip->efi_format.efi_nextents);
103 
104 	efip->efi_format.efi_type = XFS_LI_EFI;
105 	efip->efi_format.efi_size = 1;
106 
107 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
108 			&efip->efi_format,
109 			xfs_efi_item_sizeof(efip));
110 }
111 
112 
113 /*
114  * The unpin operation is the last place an EFI is manipulated in the log. It is
115  * either inserted in the AIL or aborted in the event of a log I/O error. In
116  * either case, the EFI transaction has been successfully committed to make it
117  * this far. Therefore, we expect whoever committed the EFI to either construct
118  * and commit the EFD or drop the EFD's reference in the event of error. Simply
119  * drop the log's EFI reference now that the log is done with it.
120  */
121 STATIC void
122 xfs_efi_item_unpin(
123 	struct xfs_log_item	*lip,
124 	int			remove)
125 {
126 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
127 	xfs_efi_release(efip);
128 }
129 
130 /*
131  * The EFI has been either committed or aborted if the transaction has been
132  * cancelled. If the transaction was cancelled, an EFD isn't going to be
133  * constructed and thus we free the EFI here directly.
134  */
135 STATIC void
136 xfs_efi_item_release(
137 	struct xfs_log_item	*lip)
138 {
139 	xfs_efi_release(EFI_ITEM(lip));
140 }
141 
142 static const struct xfs_item_ops xfs_efi_item_ops = {
143 	.iop_size	= xfs_efi_item_size,
144 	.iop_format	= xfs_efi_item_format,
145 	.iop_unpin	= xfs_efi_item_unpin,
146 	.iop_release	= xfs_efi_item_release,
147 };
148 
149 
150 /*
151  * Allocate and initialize an efi item with the given number of extents.
152  */
153 struct xfs_efi_log_item *
154 xfs_efi_init(
155 	struct xfs_mount	*mp,
156 	uint			nextents)
157 
158 {
159 	struct xfs_efi_log_item	*efip;
160 	uint			size;
161 
162 	ASSERT(nextents > 0);
163 	if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
164 		size = (uint)(sizeof(xfs_efi_log_item_t) +
165 			((nextents - 1) * sizeof(xfs_extent_t)));
166 		efip = kmem_zalloc(size, 0);
167 	} else {
168 		efip = kmem_zone_zalloc(xfs_efi_zone, 0);
169 	}
170 
171 	xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
172 	efip->efi_format.efi_nextents = nextents;
173 	efip->efi_format.efi_id = (uintptr_t)(void *)efip;
174 	atomic_set(&efip->efi_next_extent, 0);
175 	atomic_set(&efip->efi_refcount, 2);
176 
177 	return efip;
178 }
179 
180 /*
181  * Copy an EFI format buffer from the given buf, and into the destination
182  * EFI format structure.
183  * The given buffer can be in 32 bit or 64 bit form (which has different padding),
184  * one of which will be the native format for this kernel.
185  * It will handle the conversion of formats if necessary.
186  */
187 int
188 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
189 {
190 	xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
191 	uint i;
192 	uint len = sizeof(xfs_efi_log_format_t) +
193 		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
194 	uint len32 = sizeof(xfs_efi_log_format_32_t) +
195 		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
196 	uint len64 = sizeof(xfs_efi_log_format_64_t) +
197 		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
198 
199 	if (buf->i_len == len) {
200 		memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
201 		return 0;
202 	} else if (buf->i_len == len32) {
203 		xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
204 
205 		dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type;
206 		dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size;
207 		dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
208 		dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id;
209 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
210 			dst_efi_fmt->efi_extents[i].ext_start =
211 				src_efi_fmt_32->efi_extents[i].ext_start;
212 			dst_efi_fmt->efi_extents[i].ext_len =
213 				src_efi_fmt_32->efi_extents[i].ext_len;
214 		}
215 		return 0;
216 	} else if (buf->i_len == len64) {
217 		xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
218 
219 		dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type;
220 		dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size;
221 		dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
222 		dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id;
223 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
224 			dst_efi_fmt->efi_extents[i].ext_start =
225 				src_efi_fmt_64->efi_extents[i].ext_start;
226 			dst_efi_fmt->efi_extents[i].ext_len =
227 				src_efi_fmt_64->efi_extents[i].ext_len;
228 		}
229 		return 0;
230 	}
231 	XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
232 	return -EFSCORRUPTED;
233 }
234 
235 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
236 {
237 	return container_of(lip, struct xfs_efd_log_item, efd_item);
238 }
239 
240 STATIC void
241 xfs_efd_item_free(struct xfs_efd_log_item *efdp)
242 {
243 	kmem_free(efdp->efd_item.li_lv_shadow);
244 	if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
245 		kmem_free(efdp);
246 	else
247 		kmem_cache_free(xfs_efd_zone, efdp);
248 }
249 
250 /*
251  * This returns the number of iovecs needed to log the given efd item.
252  * We only need 1 iovec for an efd item.  It just logs the efd_log_format
253  * structure.
254  */
255 static inline int
256 xfs_efd_item_sizeof(
257 	struct xfs_efd_log_item *efdp)
258 {
259 	return sizeof(xfs_efd_log_format_t) +
260 	       (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
261 }
262 
263 STATIC void
264 xfs_efd_item_size(
265 	struct xfs_log_item	*lip,
266 	int			*nvecs,
267 	int			*nbytes)
268 {
269 	*nvecs += 1;
270 	*nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
271 }
272 
273 /*
274  * This is called to fill in the vector of log iovecs for the
275  * given efd log item. We use only 1 iovec, and we point that
276  * at the efd_log_format structure embedded in the efd item.
277  * It is at this point that we assert that all of the extent
278  * slots in the efd item have been filled.
279  */
280 STATIC void
281 xfs_efd_item_format(
282 	struct xfs_log_item	*lip,
283 	struct xfs_log_vec	*lv)
284 {
285 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
286 	struct xfs_log_iovec	*vecp = NULL;
287 
288 	ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
289 
290 	efdp->efd_format.efd_type = XFS_LI_EFD;
291 	efdp->efd_format.efd_size = 1;
292 
293 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
294 			&efdp->efd_format,
295 			xfs_efd_item_sizeof(efdp));
296 }
297 
298 /*
299  * The EFD is either committed or aborted if the transaction is cancelled. If
300  * the transaction is cancelled, drop our reference to the EFI and free the EFD.
301  */
302 STATIC void
303 xfs_efd_item_release(
304 	struct xfs_log_item	*lip)
305 {
306 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
307 
308 	xfs_efi_release(efdp->efd_efip);
309 	xfs_efd_item_free(efdp);
310 }
311 
312 static const struct xfs_item_ops xfs_efd_item_ops = {
313 	.flags		= XFS_ITEM_RELEASE_WHEN_COMMITTED,
314 	.iop_size	= xfs_efd_item_size,
315 	.iop_format	= xfs_efd_item_format,
316 	.iop_release	= xfs_efd_item_release,
317 };
318 
319 /*
320  * Allocate an "extent free done" log item that will hold nextents worth of
321  * extents.  The caller must use all nextents extents, because we are not
322  * flexible about this at all.
323  */
324 static struct xfs_efd_log_item *
325 xfs_trans_get_efd(
326 	struct xfs_trans		*tp,
327 	struct xfs_efi_log_item		*efip,
328 	unsigned int			nextents)
329 {
330 	struct xfs_efd_log_item		*efdp;
331 
332 	ASSERT(nextents > 0);
333 
334 	if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
335 		efdp = kmem_zalloc(sizeof(struct xfs_efd_log_item) +
336 				(nextents - 1) * sizeof(struct xfs_extent),
337 				0);
338 	} else {
339 		efdp = kmem_zone_zalloc(xfs_efd_zone, 0);
340 	}
341 
342 	xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD,
343 			  &xfs_efd_item_ops);
344 	efdp->efd_efip = efip;
345 	efdp->efd_format.efd_nextents = nextents;
346 	efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
347 
348 	xfs_trans_add_item(tp, &efdp->efd_item);
349 	return efdp;
350 }
351 
352 /*
353  * Free an extent and log it to the EFD. Note that the transaction is marked
354  * dirty regardless of whether the extent free succeeds or fails to support the
355  * EFI/EFD lifecycle rules.
356  */
357 static int
358 xfs_trans_free_extent(
359 	struct xfs_trans		*tp,
360 	struct xfs_efd_log_item		*efdp,
361 	xfs_fsblock_t			start_block,
362 	xfs_extlen_t			ext_len,
363 	const struct xfs_owner_info	*oinfo,
364 	bool				skip_discard)
365 {
366 	struct xfs_mount		*mp = tp->t_mountp;
367 	struct xfs_extent		*extp;
368 	uint				next_extent;
369 	xfs_agnumber_t			agno = XFS_FSB_TO_AGNO(mp, start_block);
370 	xfs_agblock_t			agbno = XFS_FSB_TO_AGBNO(mp,
371 								start_block);
372 	int				error;
373 
374 	trace_xfs_bmap_free_deferred(tp->t_mountp, agno, 0, agbno, ext_len);
375 
376 	error = __xfs_free_extent(tp, start_block, ext_len,
377 				  oinfo, XFS_AG_RESV_NONE, skip_discard);
378 	/*
379 	 * Mark the transaction dirty, even on error. This ensures the
380 	 * transaction is aborted, which:
381 	 *
382 	 * 1.) releases the EFI and frees the EFD
383 	 * 2.) shuts down the filesystem
384 	 */
385 	tp->t_flags |= XFS_TRANS_DIRTY;
386 	set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
387 
388 	next_extent = efdp->efd_next_extent;
389 	ASSERT(next_extent < efdp->efd_format.efd_nextents);
390 	extp = &(efdp->efd_format.efd_extents[next_extent]);
391 	extp->ext_start = start_block;
392 	extp->ext_len = ext_len;
393 	efdp->efd_next_extent++;
394 
395 	return error;
396 }
397 
398 /* Sort bmap items by AG. */
399 static int
400 xfs_extent_free_diff_items(
401 	void				*priv,
402 	struct list_head		*a,
403 	struct list_head		*b)
404 {
405 	struct xfs_mount		*mp = priv;
406 	struct xfs_extent_free_item	*ra;
407 	struct xfs_extent_free_item	*rb;
408 
409 	ra = container_of(a, struct xfs_extent_free_item, xefi_list);
410 	rb = container_of(b, struct xfs_extent_free_item, xefi_list);
411 	return  XFS_FSB_TO_AGNO(mp, ra->xefi_startblock) -
412 		XFS_FSB_TO_AGNO(mp, rb->xefi_startblock);
413 }
414 
415 /* Get an EFI. */
416 STATIC void *
417 xfs_extent_free_create_intent(
418 	struct xfs_trans		*tp,
419 	unsigned int			count)
420 {
421 	struct xfs_efi_log_item		*efip;
422 
423 	ASSERT(tp != NULL);
424 	ASSERT(count > 0);
425 
426 	efip = xfs_efi_init(tp->t_mountp, count);
427 	ASSERT(efip != NULL);
428 
429 	/*
430 	 * Get a log_item_desc to point at the new item.
431 	 */
432 	xfs_trans_add_item(tp, &efip->efi_item);
433 	return efip;
434 }
435 
436 /* Log a free extent to the intent item. */
437 STATIC void
438 xfs_extent_free_log_item(
439 	struct xfs_trans		*tp,
440 	void				*intent,
441 	struct list_head		*item)
442 {
443 	struct xfs_efi_log_item		*efip = intent;
444 	struct xfs_extent_free_item	*free;
445 	uint				next_extent;
446 	struct xfs_extent		*extp;
447 
448 	free = container_of(item, struct xfs_extent_free_item, xefi_list);
449 
450 	tp->t_flags |= XFS_TRANS_DIRTY;
451 	set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags);
452 
453 	/*
454 	 * atomic_inc_return gives us the value after the increment;
455 	 * we want to use it as an array index so we need to subtract 1 from
456 	 * it.
457 	 */
458 	next_extent = atomic_inc_return(&efip->efi_next_extent) - 1;
459 	ASSERT(next_extent < efip->efi_format.efi_nextents);
460 	extp = &efip->efi_format.efi_extents[next_extent];
461 	extp->ext_start = free->xefi_startblock;
462 	extp->ext_len = free->xefi_blockcount;
463 }
464 
465 /* Get an EFD so we can process all the free extents. */
466 STATIC void *
467 xfs_extent_free_create_done(
468 	struct xfs_trans		*tp,
469 	void				*intent,
470 	unsigned int			count)
471 {
472 	return xfs_trans_get_efd(tp, intent, count);
473 }
474 
475 /* Process a free extent. */
476 STATIC int
477 xfs_extent_free_finish_item(
478 	struct xfs_trans		*tp,
479 	struct list_head		*item,
480 	void				*done_item,
481 	void				**state)
482 {
483 	struct xfs_extent_free_item	*free;
484 	int				error;
485 
486 	free = container_of(item, struct xfs_extent_free_item, xefi_list);
487 	error = xfs_trans_free_extent(tp, done_item,
488 			free->xefi_startblock,
489 			free->xefi_blockcount,
490 			&free->xefi_oinfo, free->xefi_skip_discard);
491 	kmem_free(free);
492 	return error;
493 }
494 
495 /* Abort all pending EFIs. */
496 STATIC void
497 xfs_extent_free_abort_intent(
498 	void				*intent)
499 {
500 	xfs_efi_release(intent);
501 }
502 
503 /* Cancel a free extent. */
504 STATIC void
505 xfs_extent_free_cancel_item(
506 	struct list_head		*item)
507 {
508 	struct xfs_extent_free_item	*free;
509 
510 	free = container_of(item, struct xfs_extent_free_item, xefi_list);
511 	kmem_free(free);
512 }
513 
514 const struct xfs_defer_op_type xfs_extent_free_defer_type = {
515 	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
516 	.diff_items	= xfs_extent_free_diff_items,
517 	.create_intent	= xfs_extent_free_create_intent,
518 	.abort_intent	= xfs_extent_free_abort_intent,
519 	.log_item	= xfs_extent_free_log_item,
520 	.create_done	= xfs_extent_free_create_done,
521 	.finish_item	= xfs_extent_free_finish_item,
522 	.cancel_item	= xfs_extent_free_cancel_item,
523 };
524 
525 /*
526  * AGFL blocks are accounted differently in the reserve pools and are not
527  * inserted into the busy extent list.
528  */
529 STATIC int
530 xfs_agfl_free_finish_item(
531 	struct xfs_trans		*tp,
532 	struct list_head		*item,
533 	void				*done_item,
534 	void				**state)
535 {
536 	struct xfs_mount		*mp = tp->t_mountp;
537 	struct xfs_efd_log_item		*efdp = done_item;
538 	struct xfs_extent_free_item	*free;
539 	struct xfs_extent		*extp;
540 	struct xfs_buf			*agbp;
541 	int				error;
542 	xfs_agnumber_t			agno;
543 	xfs_agblock_t			agbno;
544 	uint				next_extent;
545 
546 	free = container_of(item, struct xfs_extent_free_item, xefi_list);
547 	ASSERT(free->xefi_blockcount == 1);
548 	agno = XFS_FSB_TO_AGNO(mp, free->xefi_startblock);
549 	agbno = XFS_FSB_TO_AGBNO(mp, free->xefi_startblock);
550 
551 	trace_xfs_agfl_free_deferred(mp, agno, 0, agbno, free->xefi_blockcount);
552 
553 	error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
554 	if (!error)
555 		error = xfs_free_agfl_block(tp, agno, agbno, agbp,
556 					    &free->xefi_oinfo);
557 
558 	/*
559 	 * Mark the transaction dirty, even on error. This ensures the
560 	 * transaction is aborted, which:
561 	 *
562 	 * 1.) releases the EFI and frees the EFD
563 	 * 2.) shuts down the filesystem
564 	 */
565 	tp->t_flags |= XFS_TRANS_DIRTY;
566 	set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
567 
568 	next_extent = efdp->efd_next_extent;
569 	ASSERT(next_extent < efdp->efd_format.efd_nextents);
570 	extp = &(efdp->efd_format.efd_extents[next_extent]);
571 	extp->ext_start = free->xefi_startblock;
572 	extp->ext_len = free->xefi_blockcount;
573 	efdp->efd_next_extent++;
574 
575 	kmem_free(free);
576 	return error;
577 }
578 
579 /* sub-type with special handling for AGFL deferred frees */
580 const struct xfs_defer_op_type xfs_agfl_free_defer_type = {
581 	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
582 	.diff_items	= xfs_extent_free_diff_items,
583 	.create_intent	= xfs_extent_free_create_intent,
584 	.abort_intent	= xfs_extent_free_abort_intent,
585 	.log_item	= xfs_extent_free_log_item,
586 	.create_done	= xfs_extent_free_create_done,
587 	.finish_item	= xfs_agfl_free_finish_item,
588 	.cancel_item	= xfs_extent_free_cancel_item,
589 };
590 
591 /*
592  * Process an extent free intent item that was recovered from
593  * the log.  We need to free the extents that it describes.
594  */
595 int
596 xfs_efi_recover(
597 	struct xfs_mount	*mp,
598 	struct xfs_efi_log_item	*efip)
599 {
600 	struct xfs_efd_log_item	*efdp;
601 	struct xfs_trans	*tp;
602 	int			i;
603 	int			error = 0;
604 	xfs_extent_t		*extp;
605 	xfs_fsblock_t		startblock_fsb;
606 
607 	ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
608 
609 	/*
610 	 * First check the validity of the extents described by the
611 	 * EFI.  If any are bad, then assume that all are bad and
612 	 * just toss the EFI.
613 	 */
614 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
615 		extp = &efip->efi_format.efi_extents[i];
616 		startblock_fsb = XFS_BB_TO_FSB(mp,
617 				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
618 		if (startblock_fsb == 0 ||
619 		    extp->ext_len == 0 ||
620 		    startblock_fsb >= mp->m_sb.sb_dblocks ||
621 		    extp->ext_len >= mp->m_sb.sb_agblocks) {
622 			/*
623 			 * This will pull the EFI from the AIL and
624 			 * free the memory associated with it.
625 			 */
626 			set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
627 			xfs_efi_release(efip);
628 			return -EFSCORRUPTED;
629 		}
630 	}
631 
632 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
633 	if (error)
634 		return error;
635 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
636 
637 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
638 		extp = &efip->efi_format.efi_extents[i];
639 		error = xfs_trans_free_extent(tp, efdp, extp->ext_start,
640 					      extp->ext_len,
641 					      &XFS_RMAP_OINFO_ANY_OWNER, false);
642 		if (error)
643 			goto abort_error;
644 
645 	}
646 
647 	set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
648 	error = xfs_trans_commit(tp);
649 	return error;
650 
651 abort_error:
652 	xfs_trans_cancel(tp);
653 	return error;
654 }
655