1 /* 2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_format.h" 21 #include "xfs_log_format.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_bit.h" 24 #include "xfs_mount.h" 25 #include "xfs_trans.h" 26 #include "xfs_trans_priv.h" 27 #include "xfs_buf_item.h" 28 #include "xfs_extfree_item.h" 29 #include "xfs_log.h" 30 #include "xfs_btree.h" 31 #include "xfs_rmap.h" 32 33 34 kmem_zone_t *xfs_efi_zone; 35 kmem_zone_t *xfs_efd_zone; 36 37 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip) 38 { 39 return container_of(lip, struct xfs_efi_log_item, efi_item); 40 } 41 42 void 43 xfs_efi_item_free( 44 struct xfs_efi_log_item *efip) 45 { 46 kmem_free(efip->efi_item.li_lv_shadow); 47 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS) 48 kmem_free(efip); 49 else 50 kmem_zone_free(xfs_efi_zone, efip); 51 } 52 53 /* 54 * This returns the number of iovecs needed to log the given efi item. 55 * We only need 1 iovec for an efi item. It just logs the efi_log_format 56 * structure. 57 */ 58 static inline int 59 xfs_efi_item_sizeof( 60 struct xfs_efi_log_item *efip) 61 { 62 return sizeof(struct xfs_efi_log_format) + 63 (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t); 64 } 65 66 STATIC void 67 xfs_efi_item_size( 68 struct xfs_log_item *lip, 69 int *nvecs, 70 int *nbytes) 71 { 72 *nvecs += 1; 73 *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip)); 74 } 75 76 /* 77 * This is called to fill in the vector of log iovecs for the 78 * given efi log item. We use only 1 iovec, and we point that 79 * at the efi_log_format structure embedded in the efi item. 80 * It is at this point that we assert that all of the extent 81 * slots in the efi item have been filled. 82 */ 83 STATIC void 84 xfs_efi_item_format( 85 struct xfs_log_item *lip, 86 struct xfs_log_vec *lv) 87 { 88 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 89 struct xfs_log_iovec *vecp = NULL; 90 91 ASSERT(atomic_read(&efip->efi_next_extent) == 92 efip->efi_format.efi_nextents); 93 94 efip->efi_format.efi_type = XFS_LI_EFI; 95 efip->efi_format.efi_size = 1; 96 97 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT, 98 &efip->efi_format, 99 xfs_efi_item_sizeof(efip)); 100 } 101 102 103 /* 104 * Pinning has no meaning for an efi item, so just return. 105 */ 106 STATIC void 107 xfs_efi_item_pin( 108 struct xfs_log_item *lip) 109 { 110 } 111 112 /* 113 * The unpin operation is the last place an EFI is manipulated in the log. It is 114 * either inserted in the AIL or aborted in the event of a log I/O error. In 115 * either case, the EFI transaction has been successfully committed to make it 116 * this far. Therefore, we expect whoever committed the EFI to either construct 117 * and commit the EFD or drop the EFD's reference in the event of error. Simply 118 * drop the log's EFI reference now that the log is done with it. 119 */ 120 STATIC void 121 xfs_efi_item_unpin( 122 struct xfs_log_item *lip, 123 int remove) 124 { 125 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 126 xfs_efi_release(efip); 127 } 128 129 /* 130 * Efi items have no locking or pushing. However, since EFIs are pulled from 131 * the AIL when their corresponding EFDs are committed to disk, their situation 132 * is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller 133 * will eventually flush the log. This should help in getting the EFI out of 134 * the AIL. 135 */ 136 STATIC uint 137 xfs_efi_item_push( 138 struct xfs_log_item *lip, 139 struct list_head *buffer_list) 140 { 141 return XFS_ITEM_PINNED; 142 } 143 144 /* 145 * The EFI has been either committed or aborted if the transaction has been 146 * cancelled. If the transaction was cancelled, an EFD isn't going to be 147 * constructed and thus we free the EFI here directly. 148 */ 149 STATIC void 150 xfs_efi_item_unlock( 151 struct xfs_log_item *lip) 152 { 153 if (lip->li_flags & XFS_LI_ABORTED) 154 xfs_efi_item_free(EFI_ITEM(lip)); 155 } 156 157 /* 158 * The EFI is logged only once and cannot be moved in the log, so simply return 159 * the lsn at which it's been logged. 160 */ 161 STATIC xfs_lsn_t 162 xfs_efi_item_committed( 163 struct xfs_log_item *lip, 164 xfs_lsn_t lsn) 165 { 166 return lsn; 167 } 168 169 /* 170 * The EFI dependency tracking op doesn't do squat. It can't because 171 * it doesn't know where the free extent is coming from. The dependency 172 * tracking has to be handled by the "enclosing" metadata object. For 173 * example, for inodes, the inode is locked throughout the extent freeing 174 * so the dependency should be recorded there. 175 */ 176 STATIC void 177 xfs_efi_item_committing( 178 struct xfs_log_item *lip, 179 xfs_lsn_t lsn) 180 { 181 } 182 183 /* 184 * This is the ops vector shared by all efi log items. 185 */ 186 static const struct xfs_item_ops xfs_efi_item_ops = { 187 .iop_size = xfs_efi_item_size, 188 .iop_format = xfs_efi_item_format, 189 .iop_pin = xfs_efi_item_pin, 190 .iop_unpin = xfs_efi_item_unpin, 191 .iop_unlock = xfs_efi_item_unlock, 192 .iop_committed = xfs_efi_item_committed, 193 .iop_push = xfs_efi_item_push, 194 .iop_committing = xfs_efi_item_committing 195 }; 196 197 198 /* 199 * Allocate and initialize an efi item with the given number of extents. 200 */ 201 struct xfs_efi_log_item * 202 xfs_efi_init( 203 struct xfs_mount *mp, 204 uint nextents) 205 206 { 207 struct xfs_efi_log_item *efip; 208 uint size; 209 210 ASSERT(nextents > 0); 211 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { 212 size = (uint)(sizeof(xfs_efi_log_item_t) + 213 ((nextents - 1) * sizeof(xfs_extent_t))); 214 efip = kmem_zalloc(size, KM_SLEEP); 215 } else { 216 efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP); 217 } 218 219 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops); 220 efip->efi_format.efi_nextents = nextents; 221 efip->efi_format.efi_id = (uintptr_t)(void *)efip; 222 atomic_set(&efip->efi_next_extent, 0); 223 atomic_set(&efip->efi_refcount, 2); 224 225 return efip; 226 } 227 228 /* 229 * Copy an EFI format buffer from the given buf, and into the destination 230 * EFI format structure. 231 * The given buffer can be in 32 bit or 64 bit form (which has different padding), 232 * one of which will be the native format for this kernel. 233 * It will handle the conversion of formats if necessary. 234 */ 235 int 236 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt) 237 { 238 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr; 239 uint i; 240 uint len = sizeof(xfs_efi_log_format_t) + 241 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t); 242 uint len32 = sizeof(xfs_efi_log_format_32_t) + 243 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t); 244 uint len64 = sizeof(xfs_efi_log_format_64_t) + 245 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t); 246 247 if (buf->i_len == len) { 248 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len); 249 return 0; 250 } else if (buf->i_len == len32) { 251 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr; 252 253 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type; 254 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size; 255 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents; 256 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id; 257 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { 258 dst_efi_fmt->efi_extents[i].ext_start = 259 src_efi_fmt_32->efi_extents[i].ext_start; 260 dst_efi_fmt->efi_extents[i].ext_len = 261 src_efi_fmt_32->efi_extents[i].ext_len; 262 } 263 return 0; 264 } else if (buf->i_len == len64) { 265 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr; 266 267 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type; 268 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size; 269 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents; 270 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id; 271 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { 272 dst_efi_fmt->efi_extents[i].ext_start = 273 src_efi_fmt_64->efi_extents[i].ext_start; 274 dst_efi_fmt->efi_extents[i].ext_len = 275 src_efi_fmt_64->efi_extents[i].ext_len; 276 } 277 return 0; 278 } 279 return -EFSCORRUPTED; 280 } 281 282 /* 283 * Freeing the efi requires that we remove it from the AIL if it has already 284 * been placed there. However, the EFI may not yet have been placed in the AIL 285 * when called by xfs_efi_release() from EFD processing due to the ordering of 286 * committed vs unpin operations in bulk insert operations. Hence the reference 287 * count to ensure only the last caller frees the EFI. 288 */ 289 void 290 xfs_efi_release( 291 struct xfs_efi_log_item *efip) 292 { 293 ASSERT(atomic_read(&efip->efi_refcount) > 0); 294 if (atomic_dec_and_test(&efip->efi_refcount)) { 295 xfs_trans_ail_remove(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR); 296 xfs_efi_item_free(efip); 297 } 298 } 299 300 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip) 301 { 302 return container_of(lip, struct xfs_efd_log_item, efd_item); 303 } 304 305 STATIC void 306 xfs_efd_item_free(struct xfs_efd_log_item *efdp) 307 { 308 kmem_free(efdp->efd_item.li_lv_shadow); 309 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS) 310 kmem_free(efdp); 311 else 312 kmem_zone_free(xfs_efd_zone, efdp); 313 } 314 315 /* 316 * This returns the number of iovecs needed to log the given efd item. 317 * We only need 1 iovec for an efd item. It just logs the efd_log_format 318 * structure. 319 */ 320 static inline int 321 xfs_efd_item_sizeof( 322 struct xfs_efd_log_item *efdp) 323 { 324 return sizeof(xfs_efd_log_format_t) + 325 (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t); 326 } 327 328 STATIC void 329 xfs_efd_item_size( 330 struct xfs_log_item *lip, 331 int *nvecs, 332 int *nbytes) 333 { 334 *nvecs += 1; 335 *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip)); 336 } 337 338 /* 339 * This is called to fill in the vector of log iovecs for the 340 * given efd log item. We use only 1 iovec, and we point that 341 * at the efd_log_format structure embedded in the efd item. 342 * It is at this point that we assert that all of the extent 343 * slots in the efd item have been filled. 344 */ 345 STATIC void 346 xfs_efd_item_format( 347 struct xfs_log_item *lip, 348 struct xfs_log_vec *lv) 349 { 350 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 351 struct xfs_log_iovec *vecp = NULL; 352 353 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); 354 355 efdp->efd_format.efd_type = XFS_LI_EFD; 356 efdp->efd_format.efd_size = 1; 357 358 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT, 359 &efdp->efd_format, 360 xfs_efd_item_sizeof(efdp)); 361 } 362 363 /* 364 * Pinning has no meaning for an efd item, so just return. 365 */ 366 STATIC void 367 xfs_efd_item_pin( 368 struct xfs_log_item *lip) 369 { 370 } 371 372 /* 373 * Since pinning has no meaning for an efd item, unpinning does 374 * not either. 375 */ 376 STATIC void 377 xfs_efd_item_unpin( 378 struct xfs_log_item *lip, 379 int remove) 380 { 381 } 382 383 /* 384 * There isn't much you can do to push on an efd item. It is simply stuck 385 * waiting for the log to be flushed to disk. 386 */ 387 STATIC uint 388 xfs_efd_item_push( 389 struct xfs_log_item *lip, 390 struct list_head *buffer_list) 391 { 392 return XFS_ITEM_PINNED; 393 } 394 395 /* 396 * The EFD is either committed or aborted if the transaction is cancelled. If 397 * the transaction is cancelled, drop our reference to the EFI and free the EFD. 398 */ 399 STATIC void 400 xfs_efd_item_unlock( 401 struct xfs_log_item *lip) 402 { 403 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 404 405 if (lip->li_flags & XFS_LI_ABORTED) { 406 xfs_efi_release(efdp->efd_efip); 407 xfs_efd_item_free(efdp); 408 } 409 } 410 411 /* 412 * When the efd item is committed to disk, all we need to do is delete our 413 * reference to our partner efi item and then free ourselves. Since we're 414 * freeing ourselves we must return -1 to keep the transaction code from further 415 * referencing this item. 416 */ 417 STATIC xfs_lsn_t 418 xfs_efd_item_committed( 419 struct xfs_log_item *lip, 420 xfs_lsn_t lsn) 421 { 422 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 423 424 /* 425 * Drop the EFI reference regardless of whether the EFD has been 426 * aborted. Once the EFD transaction is constructed, it is the sole 427 * responsibility of the EFD to release the EFI (even if the EFI is 428 * aborted due to log I/O error). 429 */ 430 xfs_efi_release(efdp->efd_efip); 431 xfs_efd_item_free(efdp); 432 433 return (xfs_lsn_t)-1; 434 } 435 436 /* 437 * The EFD dependency tracking op doesn't do squat. It can't because 438 * it doesn't know where the free extent is coming from. The dependency 439 * tracking has to be handled by the "enclosing" metadata object. For 440 * example, for inodes, the inode is locked throughout the extent freeing 441 * so the dependency should be recorded there. 442 */ 443 STATIC void 444 xfs_efd_item_committing( 445 struct xfs_log_item *lip, 446 xfs_lsn_t lsn) 447 { 448 } 449 450 /* 451 * This is the ops vector shared by all efd log items. 452 */ 453 static const struct xfs_item_ops xfs_efd_item_ops = { 454 .iop_size = xfs_efd_item_size, 455 .iop_format = xfs_efd_item_format, 456 .iop_pin = xfs_efd_item_pin, 457 .iop_unpin = xfs_efd_item_unpin, 458 .iop_unlock = xfs_efd_item_unlock, 459 .iop_committed = xfs_efd_item_committed, 460 .iop_push = xfs_efd_item_push, 461 .iop_committing = xfs_efd_item_committing 462 }; 463 464 /* 465 * Allocate and initialize an efd item with the given number of extents. 466 */ 467 struct xfs_efd_log_item * 468 xfs_efd_init( 469 struct xfs_mount *mp, 470 struct xfs_efi_log_item *efip, 471 uint nextents) 472 473 { 474 struct xfs_efd_log_item *efdp; 475 uint size; 476 477 ASSERT(nextents > 0); 478 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) { 479 size = (uint)(sizeof(xfs_efd_log_item_t) + 480 ((nextents - 1) * sizeof(xfs_extent_t))); 481 efdp = kmem_zalloc(size, KM_SLEEP); 482 } else { 483 efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP); 484 } 485 486 xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops); 487 efdp->efd_efip = efip; 488 efdp->efd_format.efd_nextents = nextents; 489 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; 490 491 return efdp; 492 } 493 494 /* 495 * Process an extent free intent item that was recovered from 496 * the log. We need to free the extents that it describes. 497 */ 498 int 499 xfs_efi_recover( 500 struct xfs_mount *mp, 501 struct xfs_efi_log_item *efip) 502 { 503 struct xfs_efd_log_item *efdp; 504 struct xfs_trans *tp; 505 int i; 506 int error = 0; 507 xfs_extent_t *extp; 508 xfs_fsblock_t startblock_fsb; 509 struct xfs_owner_info oinfo; 510 511 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)); 512 513 /* 514 * First check the validity of the extents described by the 515 * EFI. If any are bad, then assume that all are bad and 516 * just toss the EFI. 517 */ 518 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 519 extp = &efip->efi_format.efi_extents[i]; 520 startblock_fsb = XFS_BB_TO_FSB(mp, 521 XFS_FSB_TO_DADDR(mp, extp->ext_start)); 522 if (startblock_fsb == 0 || 523 extp->ext_len == 0 || 524 startblock_fsb >= mp->m_sb.sb_dblocks || 525 extp->ext_len >= mp->m_sb.sb_agblocks) { 526 /* 527 * This will pull the EFI from the AIL and 528 * free the memory associated with it. 529 */ 530 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); 531 xfs_efi_release(efip); 532 return -EIO; 533 } 534 } 535 536 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 537 if (error) 538 return error; 539 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 540 541 xfs_rmap_any_owner_update(&oinfo); 542 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 543 extp = &efip->efi_format.efi_extents[i]; 544 error = xfs_trans_free_extent(tp, efdp, extp->ext_start, 545 extp->ext_len, &oinfo); 546 if (error) 547 goto abort_error; 548 549 } 550 551 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); 552 error = xfs_trans_commit(tp); 553 return error; 554 555 abort_error: 556 xfs_trans_cancel(tp); 557 return error; 558 } 559