1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_bit.h" 12 #include "xfs_shared.h" 13 #include "xfs_mount.h" 14 #include "xfs_defer.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_extfree_item.h" 18 #include "xfs_log.h" 19 #include "xfs_btree.h" 20 #include "xfs_rmap.h" 21 #include "xfs_alloc.h" 22 #include "xfs_bmap.h" 23 #include "xfs_trace.h" 24 #include "xfs_error.h" 25 #include "xfs_log_priv.h" 26 #include "xfs_log_recover.h" 27 28 struct kmem_cache *xfs_efi_cache; 29 struct kmem_cache *xfs_efd_cache; 30 31 static const struct xfs_item_ops xfs_efi_item_ops; 32 33 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip) 34 { 35 return container_of(lip, struct xfs_efi_log_item, efi_item); 36 } 37 38 STATIC void 39 xfs_efi_item_free( 40 struct xfs_efi_log_item *efip) 41 { 42 kmem_free(efip->efi_item.li_lv_shadow); 43 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS) 44 kmem_free(efip); 45 else 46 kmem_cache_free(xfs_efi_cache, efip); 47 } 48 49 /* 50 * Freeing the efi requires that we remove it from the AIL if it has already 51 * been placed there. However, the EFI may not yet have been placed in the AIL 52 * when called by xfs_efi_release() from EFD processing due to the ordering of 53 * committed vs unpin operations in bulk insert operations. Hence the reference 54 * count to ensure only the last caller frees the EFI. 55 */ 56 STATIC void 57 xfs_efi_release( 58 struct xfs_efi_log_item *efip) 59 { 60 ASSERT(atomic_read(&efip->efi_refcount) > 0); 61 if (!atomic_dec_and_test(&efip->efi_refcount)) 62 return; 63 64 xfs_trans_ail_delete(&efip->efi_item, 0); 65 xfs_efi_item_free(efip); 66 } 67 68 /* 69 * This returns the number of iovecs needed to log the given efi item. 70 * We only need 1 iovec for an efi item. It just logs the efi_log_format 71 * structure. 72 */ 73 static inline int 74 xfs_efi_item_sizeof( 75 struct xfs_efi_log_item *efip) 76 { 77 return sizeof(struct xfs_efi_log_format) + 78 (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t); 79 } 80 81 STATIC void 82 xfs_efi_item_size( 83 struct xfs_log_item *lip, 84 int *nvecs, 85 int *nbytes) 86 { 87 *nvecs += 1; 88 *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip)); 89 } 90 91 /* 92 * This is called to fill in the vector of log iovecs for the 93 * given efi log item. We use only 1 iovec, and we point that 94 * at the efi_log_format structure embedded in the efi item. 95 * It is at this point that we assert that all of the extent 96 * slots in the efi item have been filled. 97 */ 98 STATIC void 99 xfs_efi_item_format( 100 struct xfs_log_item *lip, 101 struct xfs_log_vec *lv) 102 { 103 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 104 struct xfs_log_iovec *vecp = NULL; 105 106 ASSERT(atomic_read(&efip->efi_next_extent) == 107 efip->efi_format.efi_nextents); 108 109 efip->efi_format.efi_type = XFS_LI_EFI; 110 efip->efi_format.efi_size = 1; 111 112 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT, 113 &efip->efi_format, 114 xfs_efi_item_sizeof(efip)); 115 } 116 117 118 /* 119 * The unpin operation is the last place an EFI is manipulated in the log. It is 120 * either inserted in the AIL or aborted in the event of a log I/O error. In 121 * either case, the EFI transaction has been successfully committed to make it 122 * this far. Therefore, we expect whoever committed the EFI to either construct 123 * and commit the EFD or drop the EFD's reference in the event of error. Simply 124 * drop the log's EFI reference now that the log is done with it. 125 */ 126 STATIC void 127 xfs_efi_item_unpin( 128 struct xfs_log_item *lip, 129 int remove) 130 { 131 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 132 xfs_efi_release(efip); 133 } 134 135 /* 136 * The EFI has been either committed or aborted if the transaction has been 137 * cancelled. If the transaction was cancelled, an EFD isn't going to be 138 * constructed and thus we free the EFI here directly. 139 */ 140 STATIC void 141 xfs_efi_item_release( 142 struct xfs_log_item *lip) 143 { 144 xfs_efi_release(EFI_ITEM(lip)); 145 } 146 147 /* 148 * Allocate and initialize an efi item with the given number of extents. 149 */ 150 STATIC struct xfs_efi_log_item * 151 xfs_efi_init( 152 struct xfs_mount *mp, 153 uint nextents) 154 155 { 156 struct xfs_efi_log_item *efip; 157 uint size; 158 159 ASSERT(nextents > 0); 160 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { 161 size = (uint)(sizeof(struct xfs_efi_log_item) + 162 ((nextents - 1) * sizeof(xfs_extent_t))); 163 efip = kmem_zalloc(size, 0); 164 } else { 165 efip = kmem_cache_zalloc(xfs_efi_cache, 166 GFP_KERNEL | __GFP_NOFAIL); 167 } 168 169 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops); 170 efip->efi_format.efi_nextents = nextents; 171 efip->efi_format.efi_id = (uintptr_t)(void *)efip; 172 atomic_set(&efip->efi_next_extent, 0); 173 atomic_set(&efip->efi_refcount, 2); 174 175 return efip; 176 } 177 178 /* 179 * Copy an EFI format buffer from the given buf, and into the destination 180 * EFI format structure. 181 * The given buffer can be in 32 bit or 64 bit form (which has different padding), 182 * one of which will be the native format for this kernel. 183 * It will handle the conversion of formats if necessary. 184 */ 185 STATIC int 186 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt) 187 { 188 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr; 189 uint i; 190 uint len = sizeof(xfs_efi_log_format_t) + 191 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t); 192 uint len32 = sizeof(xfs_efi_log_format_32_t) + 193 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t); 194 uint len64 = sizeof(xfs_efi_log_format_64_t) + 195 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t); 196 197 if (buf->i_len == len) { 198 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len); 199 return 0; 200 } else if (buf->i_len == len32) { 201 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr; 202 203 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type; 204 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size; 205 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents; 206 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id; 207 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { 208 dst_efi_fmt->efi_extents[i].ext_start = 209 src_efi_fmt_32->efi_extents[i].ext_start; 210 dst_efi_fmt->efi_extents[i].ext_len = 211 src_efi_fmt_32->efi_extents[i].ext_len; 212 } 213 return 0; 214 } else if (buf->i_len == len64) { 215 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr; 216 217 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type; 218 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size; 219 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents; 220 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id; 221 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { 222 dst_efi_fmt->efi_extents[i].ext_start = 223 src_efi_fmt_64->efi_extents[i].ext_start; 224 dst_efi_fmt->efi_extents[i].ext_len = 225 src_efi_fmt_64->efi_extents[i].ext_len; 226 } 227 return 0; 228 } 229 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); 230 return -EFSCORRUPTED; 231 } 232 233 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip) 234 { 235 return container_of(lip, struct xfs_efd_log_item, efd_item); 236 } 237 238 STATIC void 239 xfs_efd_item_free(struct xfs_efd_log_item *efdp) 240 { 241 kmem_free(efdp->efd_item.li_lv_shadow); 242 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS) 243 kmem_free(efdp); 244 else 245 kmem_cache_free(xfs_efd_cache, efdp); 246 } 247 248 /* 249 * This returns the number of iovecs needed to log the given efd item. 250 * We only need 1 iovec for an efd item. It just logs the efd_log_format 251 * structure. 252 */ 253 static inline int 254 xfs_efd_item_sizeof( 255 struct xfs_efd_log_item *efdp) 256 { 257 return sizeof(xfs_efd_log_format_t) + 258 (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t); 259 } 260 261 STATIC void 262 xfs_efd_item_size( 263 struct xfs_log_item *lip, 264 int *nvecs, 265 int *nbytes) 266 { 267 *nvecs += 1; 268 *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip)); 269 } 270 271 /* 272 * This is called to fill in the vector of log iovecs for the 273 * given efd log item. We use only 1 iovec, and we point that 274 * at the efd_log_format structure embedded in the efd item. 275 * It is at this point that we assert that all of the extent 276 * slots in the efd item have been filled. 277 */ 278 STATIC void 279 xfs_efd_item_format( 280 struct xfs_log_item *lip, 281 struct xfs_log_vec *lv) 282 { 283 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 284 struct xfs_log_iovec *vecp = NULL; 285 286 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); 287 288 efdp->efd_format.efd_type = XFS_LI_EFD; 289 efdp->efd_format.efd_size = 1; 290 291 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT, 292 &efdp->efd_format, 293 xfs_efd_item_sizeof(efdp)); 294 } 295 296 /* 297 * The EFD is either committed or aborted if the transaction is cancelled. If 298 * the transaction is cancelled, drop our reference to the EFI and free the EFD. 299 */ 300 STATIC void 301 xfs_efd_item_release( 302 struct xfs_log_item *lip) 303 { 304 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 305 306 xfs_efi_release(efdp->efd_efip); 307 xfs_efd_item_free(efdp); 308 } 309 310 static struct xfs_log_item * 311 xfs_efd_item_intent( 312 struct xfs_log_item *lip) 313 { 314 return &EFD_ITEM(lip)->efd_efip->efi_item; 315 } 316 317 static const struct xfs_item_ops xfs_efd_item_ops = { 318 .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED | 319 XFS_ITEM_INTENT_DONE, 320 .iop_size = xfs_efd_item_size, 321 .iop_format = xfs_efd_item_format, 322 .iop_release = xfs_efd_item_release, 323 .iop_intent = xfs_efd_item_intent, 324 }; 325 326 /* 327 * Allocate an "extent free done" log item that will hold nextents worth of 328 * extents. The caller must use all nextents extents, because we are not 329 * flexible about this at all. 330 */ 331 static struct xfs_efd_log_item * 332 xfs_trans_get_efd( 333 struct xfs_trans *tp, 334 struct xfs_efi_log_item *efip, 335 unsigned int nextents) 336 { 337 struct xfs_efd_log_item *efdp; 338 339 ASSERT(nextents > 0); 340 341 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) { 342 efdp = kmem_zalloc(sizeof(struct xfs_efd_log_item) + 343 (nextents - 1) * sizeof(struct xfs_extent), 344 0); 345 } else { 346 efdp = kmem_cache_zalloc(xfs_efd_cache, 347 GFP_KERNEL | __GFP_NOFAIL); 348 } 349 350 xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD, 351 &xfs_efd_item_ops); 352 efdp->efd_efip = efip; 353 efdp->efd_format.efd_nextents = nextents; 354 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; 355 356 xfs_trans_add_item(tp, &efdp->efd_item); 357 return efdp; 358 } 359 360 /* 361 * Free an extent and log it to the EFD. Note that the transaction is marked 362 * dirty regardless of whether the extent free succeeds or fails to support the 363 * EFI/EFD lifecycle rules. 364 */ 365 static int 366 xfs_trans_free_extent( 367 struct xfs_trans *tp, 368 struct xfs_efd_log_item *efdp, 369 xfs_fsblock_t start_block, 370 xfs_extlen_t ext_len, 371 const struct xfs_owner_info *oinfo, 372 bool skip_discard) 373 { 374 struct xfs_mount *mp = tp->t_mountp; 375 struct xfs_extent *extp; 376 uint next_extent; 377 xfs_agnumber_t agno = XFS_FSB_TO_AGNO(mp, start_block); 378 xfs_agblock_t agbno = XFS_FSB_TO_AGBNO(mp, 379 start_block); 380 int error; 381 382 trace_xfs_bmap_free_deferred(tp->t_mountp, agno, 0, agbno, ext_len); 383 384 error = __xfs_free_extent(tp, start_block, ext_len, 385 oinfo, XFS_AG_RESV_NONE, skip_discard); 386 /* 387 * Mark the transaction dirty, even on error. This ensures the 388 * transaction is aborted, which: 389 * 390 * 1.) releases the EFI and frees the EFD 391 * 2.) shuts down the filesystem 392 */ 393 tp->t_flags |= XFS_TRANS_DIRTY | XFS_TRANS_HAS_INTENT_DONE; 394 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); 395 396 next_extent = efdp->efd_next_extent; 397 ASSERT(next_extent < efdp->efd_format.efd_nextents); 398 extp = &(efdp->efd_format.efd_extents[next_extent]); 399 extp->ext_start = start_block; 400 extp->ext_len = ext_len; 401 efdp->efd_next_extent++; 402 403 return error; 404 } 405 406 /* Sort bmap items by AG. */ 407 static int 408 xfs_extent_free_diff_items( 409 void *priv, 410 const struct list_head *a, 411 const struct list_head *b) 412 { 413 struct xfs_mount *mp = priv; 414 struct xfs_extent_free_item *ra; 415 struct xfs_extent_free_item *rb; 416 417 ra = container_of(a, struct xfs_extent_free_item, xefi_list); 418 rb = container_of(b, struct xfs_extent_free_item, xefi_list); 419 return XFS_FSB_TO_AGNO(mp, ra->xefi_startblock) - 420 XFS_FSB_TO_AGNO(mp, rb->xefi_startblock); 421 } 422 423 /* Log a free extent to the intent item. */ 424 STATIC void 425 xfs_extent_free_log_item( 426 struct xfs_trans *tp, 427 struct xfs_efi_log_item *efip, 428 struct xfs_extent_free_item *free) 429 { 430 uint next_extent; 431 struct xfs_extent *extp; 432 433 tp->t_flags |= XFS_TRANS_DIRTY; 434 set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags); 435 436 /* 437 * atomic_inc_return gives us the value after the increment; 438 * we want to use it as an array index so we need to subtract 1 from 439 * it. 440 */ 441 next_extent = atomic_inc_return(&efip->efi_next_extent) - 1; 442 ASSERT(next_extent < efip->efi_format.efi_nextents); 443 extp = &efip->efi_format.efi_extents[next_extent]; 444 extp->ext_start = free->xefi_startblock; 445 extp->ext_len = free->xefi_blockcount; 446 } 447 448 static struct xfs_log_item * 449 xfs_extent_free_create_intent( 450 struct xfs_trans *tp, 451 struct list_head *items, 452 unsigned int count, 453 bool sort) 454 { 455 struct xfs_mount *mp = tp->t_mountp; 456 struct xfs_efi_log_item *efip = xfs_efi_init(mp, count); 457 struct xfs_extent_free_item *free; 458 459 ASSERT(count > 0); 460 461 xfs_trans_add_item(tp, &efip->efi_item); 462 if (sort) 463 list_sort(mp, items, xfs_extent_free_diff_items); 464 list_for_each_entry(free, items, xefi_list) 465 xfs_extent_free_log_item(tp, efip, free); 466 return &efip->efi_item; 467 } 468 469 /* Get an EFD so we can process all the free extents. */ 470 static struct xfs_log_item * 471 xfs_extent_free_create_done( 472 struct xfs_trans *tp, 473 struct xfs_log_item *intent, 474 unsigned int count) 475 { 476 return &xfs_trans_get_efd(tp, EFI_ITEM(intent), count)->efd_item; 477 } 478 479 /* Process a free extent. */ 480 STATIC int 481 xfs_extent_free_finish_item( 482 struct xfs_trans *tp, 483 struct xfs_log_item *done, 484 struct list_head *item, 485 struct xfs_btree_cur **state) 486 { 487 struct xfs_owner_info oinfo = { }; 488 struct xfs_extent_free_item *free; 489 int error; 490 491 free = container_of(item, struct xfs_extent_free_item, xefi_list); 492 oinfo.oi_owner = free->xefi_owner; 493 if (free->xefi_flags & XFS_EFI_ATTR_FORK) 494 oinfo.oi_flags |= XFS_OWNER_INFO_ATTR_FORK; 495 if (free->xefi_flags & XFS_EFI_BMBT_BLOCK) 496 oinfo.oi_flags |= XFS_OWNER_INFO_BMBT_BLOCK; 497 error = xfs_trans_free_extent(tp, EFD_ITEM(done), 498 free->xefi_startblock, 499 free->xefi_blockcount, 500 &oinfo, free->xefi_flags & XFS_EFI_SKIP_DISCARD); 501 kmem_cache_free(xfs_extfree_item_cache, free); 502 return error; 503 } 504 505 /* Abort all pending EFIs. */ 506 STATIC void 507 xfs_extent_free_abort_intent( 508 struct xfs_log_item *intent) 509 { 510 xfs_efi_release(EFI_ITEM(intent)); 511 } 512 513 /* Cancel a free extent. */ 514 STATIC void 515 xfs_extent_free_cancel_item( 516 struct list_head *item) 517 { 518 struct xfs_extent_free_item *free; 519 520 free = container_of(item, struct xfs_extent_free_item, xefi_list); 521 kmem_cache_free(xfs_extfree_item_cache, free); 522 } 523 524 const struct xfs_defer_op_type xfs_extent_free_defer_type = { 525 .max_items = XFS_EFI_MAX_FAST_EXTENTS, 526 .create_intent = xfs_extent_free_create_intent, 527 .abort_intent = xfs_extent_free_abort_intent, 528 .create_done = xfs_extent_free_create_done, 529 .finish_item = xfs_extent_free_finish_item, 530 .cancel_item = xfs_extent_free_cancel_item, 531 }; 532 533 /* 534 * AGFL blocks are accounted differently in the reserve pools and are not 535 * inserted into the busy extent list. 536 */ 537 STATIC int 538 xfs_agfl_free_finish_item( 539 struct xfs_trans *tp, 540 struct xfs_log_item *done, 541 struct list_head *item, 542 struct xfs_btree_cur **state) 543 { 544 struct xfs_owner_info oinfo = { }; 545 struct xfs_mount *mp = tp->t_mountp; 546 struct xfs_efd_log_item *efdp = EFD_ITEM(done); 547 struct xfs_extent_free_item *free; 548 struct xfs_extent *extp; 549 struct xfs_buf *agbp; 550 int error; 551 xfs_agnumber_t agno; 552 xfs_agblock_t agbno; 553 uint next_extent; 554 555 free = container_of(item, struct xfs_extent_free_item, xefi_list); 556 ASSERT(free->xefi_blockcount == 1); 557 agno = XFS_FSB_TO_AGNO(mp, free->xefi_startblock); 558 agbno = XFS_FSB_TO_AGBNO(mp, free->xefi_startblock); 559 oinfo.oi_owner = free->xefi_owner; 560 561 trace_xfs_agfl_free_deferred(mp, agno, 0, agbno, free->xefi_blockcount); 562 563 error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp); 564 if (!error) 565 error = xfs_free_agfl_block(tp, agno, agbno, agbp, &oinfo); 566 567 /* 568 * Mark the transaction dirty, even on error. This ensures the 569 * transaction is aborted, which: 570 * 571 * 1.) releases the EFI and frees the EFD 572 * 2.) shuts down the filesystem 573 */ 574 tp->t_flags |= XFS_TRANS_DIRTY; 575 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); 576 577 next_extent = efdp->efd_next_extent; 578 ASSERT(next_extent < efdp->efd_format.efd_nextents); 579 extp = &(efdp->efd_format.efd_extents[next_extent]); 580 extp->ext_start = free->xefi_startblock; 581 extp->ext_len = free->xefi_blockcount; 582 efdp->efd_next_extent++; 583 584 kmem_cache_free(xfs_extfree_item_cache, free); 585 return error; 586 } 587 588 /* sub-type with special handling for AGFL deferred frees */ 589 const struct xfs_defer_op_type xfs_agfl_free_defer_type = { 590 .max_items = XFS_EFI_MAX_FAST_EXTENTS, 591 .create_intent = xfs_extent_free_create_intent, 592 .abort_intent = xfs_extent_free_abort_intent, 593 .create_done = xfs_extent_free_create_done, 594 .finish_item = xfs_agfl_free_finish_item, 595 .cancel_item = xfs_extent_free_cancel_item, 596 }; 597 598 /* Is this recovered EFI ok? */ 599 static inline bool 600 xfs_efi_validate_ext( 601 struct xfs_mount *mp, 602 struct xfs_extent *extp) 603 { 604 return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len); 605 } 606 607 /* 608 * Process an extent free intent item that was recovered from 609 * the log. We need to free the extents that it describes. 610 */ 611 STATIC int 612 xfs_efi_item_recover( 613 struct xfs_log_item *lip, 614 struct list_head *capture_list) 615 { 616 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 617 struct xfs_mount *mp = lip->li_log->l_mp; 618 struct xfs_efd_log_item *efdp; 619 struct xfs_trans *tp; 620 struct xfs_extent *extp; 621 int i; 622 int error = 0; 623 624 /* 625 * First check the validity of the extents described by the 626 * EFI. If any are bad, then assume that all are bad and 627 * just toss the EFI. 628 */ 629 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 630 if (!xfs_efi_validate_ext(mp, 631 &efip->efi_format.efi_extents[i])) { 632 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 633 &efip->efi_format, 634 sizeof(efip->efi_format)); 635 return -EFSCORRUPTED; 636 } 637 } 638 639 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 640 if (error) 641 return error; 642 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 643 644 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 645 extp = &efip->efi_format.efi_extents[i]; 646 error = xfs_trans_free_extent(tp, efdp, extp->ext_start, 647 extp->ext_len, 648 &XFS_RMAP_OINFO_ANY_OWNER, false); 649 if (error == -EFSCORRUPTED) 650 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 651 extp, sizeof(*extp)); 652 if (error) 653 goto abort_error; 654 655 } 656 657 return xfs_defer_ops_capture_and_commit(tp, capture_list); 658 659 abort_error: 660 xfs_trans_cancel(tp); 661 return error; 662 } 663 664 STATIC bool 665 xfs_efi_item_match( 666 struct xfs_log_item *lip, 667 uint64_t intent_id) 668 { 669 return EFI_ITEM(lip)->efi_format.efi_id == intent_id; 670 } 671 672 /* Relog an intent item to push the log tail forward. */ 673 static struct xfs_log_item * 674 xfs_efi_item_relog( 675 struct xfs_log_item *intent, 676 struct xfs_trans *tp) 677 { 678 struct xfs_efd_log_item *efdp; 679 struct xfs_efi_log_item *efip; 680 struct xfs_extent *extp; 681 unsigned int count; 682 683 count = EFI_ITEM(intent)->efi_format.efi_nextents; 684 extp = EFI_ITEM(intent)->efi_format.efi_extents; 685 686 tp->t_flags |= XFS_TRANS_DIRTY; 687 efdp = xfs_trans_get_efd(tp, EFI_ITEM(intent), count); 688 efdp->efd_next_extent = count; 689 memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp)); 690 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); 691 692 efip = xfs_efi_init(tp->t_mountp, count); 693 memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp)); 694 atomic_set(&efip->efi_next_extent, count); 695 xfs_trans_add_item(tp, &efip->efi_item); 696 set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags); 697 return &efip->efi_item; 698 } 699 700 static const struct xfs_item_ops xfs_efi_item_ops = { 701 .flags = XFS_ITEM_INTENT, 702 .iop_size = xfs_efi_item_size, 703 .iop_format = xfs_efi_item_format, 704 .iop_unpin = xfs_efi_item_unpin, 705 .iop_release = xfs_efi_item_release, 706 .iop_recover = xfs_efi_item_recover, 707 .iop_match = xfs_efi_item_match, 708 .iop_relog = xfs_efi_item_relog, 709 }; 710 711 /* 712 * This routine is called to create an in-core extent free intent 713 * item from the efi format structure which was logged on disk. 714 * It allocates an in-core efi, copies the extents from the format 715 * structure into it, and adds the efi to the AIL with the given 716 * LSN. 717 */ 718 STATIC int 719 xlog_recover_efi_commit_pass2( 720 struct xlog *log, 721 struct list_head *buffer_list, 722 struct xlog_recover_item *item, 723 xfs_lsn_t lsn) 724 { 725 struct xfs_mount *mp = log->l_mp; 726 struct xfs_efi_log_item *efip; 727 struct xfs_efi_log_format *efi_formatp; 728 int error; 729 730 efi_formatp = item->ri_buf[0].i_addr; 731 732 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 733 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format); 734 if (error) { 735 xfs_efi_item_free(efip); 736 return error; 737 } 738 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 739 /* 740 * Insert the intent into the AIL directly and drop one reference so 741 * that finishing or canceling the work will drop the other. 742 */ 743 xfs_trans_ail_insert(log->l_ailp, &efip->efi_item, lsn); 744 xfs_efi_release(efip); 745 return 0; 746 } 747 748 const struct xlog_recover_item_ops xlog_efi_item_ops = { 749 .item_type = XFS_LI_EFI, 750 .commit_pass2 = xlog_recover_efi_commit_pass2, 751 }; 752 753 /* 754 * This routine is called when an EFD format structure is found in a committed 755 * transaction in the log. Its purpose is to cancel the corresponding EFI if it 756 * was still in the log. To do this it searches the AIL for the EFI with an id 757 * equal to that in the EFD format structure. If we find it we drop the EFD 758 * reference, which removes the EFI from the AIL and frees it. 759 */ 760 STATIC int 761 xlog_recover_efd_commit_pass2( 762 struct xlog *log, 763 struct list_head *buffer_list, 764 struct xlog_recover_item *item, 765 xfs_lsn_t lsn) 766 { 767 struct xfs_efd_log_format *efd_formatp; 768 769 efd_formatp = item->ri_buf[0].i_addr; 770 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 771 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 772 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 773 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 774 775 xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id); 776 return 0; 777 } 778 779 const struct xlog_recover_item_ops xlog_efd_item_ops = { 780 .item_type = XFS_LI_EFD, 781 .commit_pass2 = xlog_recover_efd_commit_pass2, 782 }; 783