xref: /openbmc/linux/fs/xfs/xfs_extfree_item.c (revision f71a261a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_shared.h"
13 #include "xfs_mount.h"
14 #include "xfs_defer.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_extfree_item.h"
18 #include "xfs_log.h"
19 #include "xfs_btree.h"
20 #include "xfs_rmap.h"
21 #include "xfs_alloc.h"
22 #include "xfs_bmap.h"
23 #include "xfs_trace.h"
24 #include "xfs_error.h"
25 #include "xfs_log_priv.h"
26 #include "xfs_log_recover.h"
27 
28 struct kmem_cache	*xfs_efi_cache;
29 struct kmem_cache	*xfs_efd_cache;
30 
31 static const struct xfs_item_ops xfs_efi_item_ops;
32 
33 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
34 {
35 	return container_of(lip, struct xfs_efi_log_item, efi_item);
36 }
37 
38 STATIC void
39 xfs_efi_item_free(
40 	struct xfs_efi_log_item	*efip)
41 {
42 	kmem_free(efip->efi_item.li_lv_shadow);
43 	if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
44 		kmem_free(efip);
45 	else
46 		kmem_cache_free(xfs_efi_cache, efip);
47 }
48 
49 /*
50  * Freeing the efi requires that we remove it from the AIL if it has already
51  * been placed there. However, the EFI may not yet have been placed in the AIL
52  * when called by xfs_efi_release() from EFD processing due to the ordering of
53  * committed vs unpin operations in bulk insert operations. Hence the reference
54  * count to ensure only the last caller frees the EFI.
55  */
56 STATIC void
57 xfs_efi_release(
58 	struct xfs_efi_log_item	*efip)
59 {
60 	ASSERT(atomic_read(&efip->efi_refcount) > 0);
61 	if (!atomic_dec_and_test(&efip->efi_refcount))
62 		return;
63 
64 	xfs_trans_ail_delete(&efip->efi_item, 0);
65 	xfs_efi_item_free(efip);
66 }
67 
68 /*
69  * This returns the number of iovecs needed to log the given efi item.
70  * We only need 1 iovec for an efi item.  It just logs the efi_log_format
71  * structure.
72  */
73 static inline int
74 xfs_efi_item_sizeof(
75 	struct xfs_efi_log_item *efip)
76 {
77 	return sizeof(struct xfs_efi_log_format) +
78 	       (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
79 }
80 
81 STATIC void
82 xfs_efi_item_size(
83 	struct xfs_log_item	*lip,
84 	int			*nvecs,
85 	int			*nbytes)
86 {
87 	*nvecs += 1;
88 	*nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
89 }
90 
91 /*
92  * This is called to fill in the vector of log iovecs for the
93  * given efi log item. We use only 1 iovec, and we point that
94  * at the efi_log_format structure embedded in the efi item.
95  * It is at this point that we assert that all of the extent
96  * slots in the efi item have been filled.
97  */
98 STATIC void
99 xfs_efi_item_format(
100 	struct xfs_log_item	*lip,
101 	struct xfs_log_vec	*lv)
102 {
103 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
104 	struct xfs_log_iovec	*vecp = NULL;
105 
106 	ASSERT(atomic_read(&efip->efi_next_extent) ==
107 				efip->efi_format.efi_nextents);
108 
109 	efip->efi_format.efi_type = XFS_LI_EFI;
110 	efip->efi_format.efi_size = 1;
111 
112 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
113 			&efip->efi_format,
114 			xfs_efi_item_sizeof(efip));
115 }
116 
117 
118 /*
119  * The unpin operation is the last place an EFI is manipulated in the log. It is
120  * either inserted in the AIL or aborted in the event of a log I/O error. In
121  * either case, the EFI transaction has been successfully committed to make it
122  * this far. Therefore, we expect whoever committed the EFI to either construct
123  * and commit the EFD or drop the EFD's reference in the event of error. Simply
124  * drop the log's EFI reference now that the log is done with it.
125  */
126 STATIC void
127 xfs_efi_item_unpin(
128 	struct xfs_log_item	*lip,
129 	int			remove)
130 {
131 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
132 	xfs_efi_release(efip);
133 }
134 
135 /*
136  * The EFI has been either committed or aborted if the transaction has been
137  * cancelled. If the transaction was cancelled, an EFD isn't going to be
138  * constructed and thus we free the EFI here directly.
139  */
140 STATIC void
141 xfs_efi_item_release(
142 	struct xfs_log_item	*lip)
143 {
144 	xfs_efi_release(EFI_ITEM(lip));
145 }
146 
147 /*
148  * Allocate and initialize an efi item with the given number of extents.
149  */
150 STATIC struct xfs_efi_log_item *
151 xfs_efi_init(
152 	struct xfs_mount	*mp,
153 	uint			nextents)
154 
155 {
156 	struct xfs_efi_log_item	*efip;
157 	uint			size;
158 
159 	ASSERT(nextents > 0);
160 	if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
161 		size = (uint)(sizeof(struct xfs_efi_log_item) +
162 			((nextents - 1) * sizeof(xfs_extent_t)));
163 		efip = kmem_zalloc(size, 0);
164 	} else {
165 		efip = kmem_cache_zalloc(xfs_efi_cache,
166 					 GFP_KERNEL | __GFP_NOFAIL);
167 	}
168 
169 	xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
170 	efip->efi_format.efi_nextents = nextents;
171 	efip->efi_format.efi_id = (uintptr_t)(void *)efip;
172 	atomic_set(&efip->efi_next_extent, 0);
173 	atomic_set(&efip->efi_refcount, 2);
174 
175 	return efip;
176 }
177 
178 /*
179  * Copy an EFI format buffer from the given buf, and into the destination
180  * EFI format structure.
181  * The given buffer can be in 32 bit or 64 bit form (which has different padding),
182  * one of which will be the native format for this kernel.
183  * It will handle the conversion of formats if necessary.
184  */
185 STATIC int
186 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
187 {
188 	xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
189 	uint i;
190 	uint len = sizeof(xfs_efi_log_format_t) +
191 		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
192 	uint len32 = sizeof(xfs_efi_log_format_32_t) +
193 		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
194 	uint len64 = sizeof(xfs_efi_log_format_64_t) +
195 		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
196 
197 	if (buf->i_len == len) {
198 		memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
199 		return 0;
200 	} else if (buf->i_len == len32) {
201 		xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
202 
203 		dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type;
204 		dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size;
205 		dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
206 		dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id;
207 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
208 			dst_efi_fmt->efi_extents[i].ext_start =
209 				src_efi_fmt_32->efi_extents[i].ext_start;
210 			dst_efi_fmt->efi_extents[i].ext_len =
211 				src_efi_fmt_32->efi_extents[i].ext_len;
212 		}
213 		return 0;
214 	} else if (buf->i_len == len64) {
215 		xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
216 
217 		dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type;
218 		dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size;
219 		dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
220 		dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id;
221 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
222 			dst_efi_fmt->efi_extents[i].ext_start =
223 				src_efi_fmt_64->efi_extents[i].ext_start;
224 			dst_efi_fmt->efi_extents[i].ext_len =
225 				src_efi_fmt_64->efi_extents[i].ext_len;
226 		}
227 		return 0;
228 	}
229 	XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
230 	return -EFSCORRUPTED;
231 }
232 
233 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
234 {
235 	return container_of(lip, struct xfs_efd_log_item, efd_item);
236 }
237 
238 STATIC void
239 xfs_efd_item_free(struct xfs_efd_log_item *efdp)
240 {
241 	kmem_free(efdp->efd_item.li_lv_shadow);
242 	if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
243 		kmem_free(efdp);
244 	else
245 		kmem_cache_free(xfs_efd_cache, efdp);
246 }
247 
248 /*
249  * This returns the number of iovecs needed to log the given efd item.
250  * We only need 1 iovec for an efd item.  It just logs the efd_log_format
251  * structure.
252  */
253 static inline int
254 xfs_efd_item_sizeof(
255 	struct xfs_efd_log_item *efdp)
256 {
257 	return sizeof(xfs_efd_log_format_t) +
258 	       (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
259 }
260 
261 STATIC void
262 xfs_efd_item_size(
263 	struct xfs_log_item	*lip,
264 	int			*nvecs,
265 	int			*nbytes)
266 {
267 	*nvecs += 1;
268 	*nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
269 }
270 
271 /*
272  * This is called to fill in the vector of log iovecs for the
273  * given efd log item. We use only 1 iovec, and we point that
274  * at the efd_log_format structure embedded in the efd item.
275  * It is at this point that we assert that all of the extent
276  * slots in the efd item have been filled.
277  */
278 STATIC void
279 xfs_efd_item_format(
280 	struct xfs_log_item	*lip,
281 	struct xfs_log_vec	*lv)
282 {
283 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
284 	struct xfs_log_iovec	*vecp = NULL;
285 
286 	ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
287 
288 	efdp->efd_format.efd_type = XFS_LI_EFD;
289 	efdp->efd_format.efd_size = 1;
290 
291 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
292 			&efdp->efd_format,
293 			xfs_efd_item_sizeof(efdp));
294 }
295 
296 /*
297  * The EFD is either committed or aborted if the transaction is cancelled. If
298  * the transaction is cancelled, drop our reference to the EFI and free the EFD.
299  */
300 STATIC void
301 xfs_efd_item_release(
302 	struct xfs_log_item	*lip)
303 {
304 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
305 
306 	xfs_efi_release(efdp->efd_efip);
307 	xfs_efd_item_free(efdp);
308 }
309 
310 static struct xfs_log_item *
311 xfs_efd_item_intent(
312 	struct xfs_log_item	*lip)
313 {
314 	return &EFD_ITEM(lip)->efd_efip->efi_item;
315 }
316 
317 static const struct xfs_item_ops xfs_efd_item_ops = {
318 	.flags		= XFS_ITEM_RELEASE_WHEN_COMMITTED |
319 			  XFS_ITEM_INTENT_DONE,
320 	.iop_size	= xfs_efd_item_size,
321 	.iop_format	= xfs_efd_item_format,
322 	.iop_release	= xfs_efd_item_release,
323 	.iop_intent	= xfs_efd_item_intent,
324 };
325 
326 /*
327  * Allocate an "extent free done" log item that will hold nextents worth of
328  * extents.  The caller must use all nextents extents, because we are not
329  * flexible about this at all.
330  */
331 static struct xfs_efd_log_item *
332 xfs_trans_get_efd(
333 	struct xfs_trans		*tp,
334 	struct xfs_efi_log_item		*efip,
335 	unsigned int			nextents)
336 {
337 	struct xfs_efd_log_item		*efdp;
338 
339 	ASSERT(nextents > 0);
340 
341 	if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
342 		efdp = kmem_zalloc(sizeof(struct xfs_efd_log_item) +
343 				(nextents - 1) * sizeof(struct xfs_extent),
344 				0);
345 	} else {
346 		efdp = kmem_cache_zalloc(xfs_efd_cache,
347 					GFP_KERNEL | __GFP_NOFAIL);
348 	}
349 
350 	xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD,
351 			  &xfs_efd_item_ops);
352 	efdp->efd_efip = efip;
353 	efdp->efd_format.efd_nextents = nextents;
354 	efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
355 
356 	xfs_trans_add_item(tp, &efdp->efd_item);
357 	return efdp;
358 }
359 
360 /*
361  * Free an extent and log it to the EFD. Note that the transaction is marked
362  * dirty regardless of whether the extent free succeeds or fails to support the
363  * EFI/EFD lifecycle rules.
364  */
365 static int
366 xfs_trans_free_extent(
367 	struct xfs_trans		*tp,
368 	struct xfs_efd_log_item		*efdp,
369 	xfs_fsblock_t			start_block,
370 	xfs_extlen_t			ext_len,
371 	const struct xfs_owner_info	*oinfo,
372 	bool				skip_discard)
373 {
374 	struct xfs_mount		*mp = tp->t_mountp;
375 	struct xfs_extent		*extp;
376 	uint				next_extent;
377 	xfs_agnumber_t			agno = XFS_FSB_TO_AGNO(mp, start_block);
378 	xfs_agblock_t			agbno = XFS_FSB_TO_AGBNO(mp,
379 								start_block);
380 	int				error;
381 
382 	trace_xfs_bmap_free_deferred(tp->t_mountp, agno, 0, agbno, ext_len);
383 
384 	error = __xfs_free_extent(tp, start_block, ext_len,
385 				  oinfo, XFS_AG_RESV_NONE, skip_discard);
386 	/*
387 	 * Mark the transaction dirty, even on error. This ensures the
388 	 * transaction is aborted, which:
389 	 *
390 	 * 1.) releases the EFI and frees the EFD
391 	 * 2.) shuts down the filesystem
392 	 */
393 	tp->t_flags |= XFS_TRANS_DIRTY | XFS_TRANS_HAS_INTENT_DONE;
394 	set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
395 
396 	next_extent = efdp->efd_next_extent;
397 	ASSERT(next_extent < efdp->efd_format.efd_nextents);
398 	extp = &(efdp->efd_format.efd_extents[next_extent]);
399 	extp->ext_start = start_block;
400 	extp->ext_len = ext_len;
401 	efdp->efd_next_extent++;
402 
403 	return error;
404 }
405 
406 /* Sort bmap items by AG. */
407 static int
408 xfs_extent_free_diff_items(
409 	void				*priv,
410 	const struct list_head		*a,
411 	const struct list_head		*b)
412 {
413 	struct xfs_mount		*mp = priv;
414 	struct xfs_extent_free_item	*ra;
415 	struct xfs_extent_free_item	*rb;
416 
417 	ra = container_of(a, struct xfs_extent_free_item, xefi_list);
418 	rb = container_of(b, struct xfs_extent_free_item, xefi_list);
419 	return  XFS_FSB_TO_AGNO(mp, ra->xefi_startblock) -
420 		XFS_FSB_TO_AGNO(mp, rb->xefi_startblock);
421 }
422 
423 /* Log a free extent to the intent item. */
424 STATIC void
425 xfs_extent_free_log_item(
426 	struct xfs_trans		*tp,
427 	struct xfs_efi_log_item		*efip,
428 	struct xfs_extent_free_item	*free)
429 {
430 	uint				next_extent;
431 	struct xfs_extent		*extp;
432 
433 	tp->t_flags |= XFS_TRANS_DIRTY;
434 	set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags);
435 
436 	/*
437 	 * atomic_inc_return gives us the value after the increment;
438 	 * we want to use it as an array index so we need to subtract 1 from
439 	 * it.
440 	 */
441 	next_extent = atomic_inc_return(&efip->efi_next_extent) - 1;
442 	ASSERT(next_extent < efip->efi_format.efi_nextents);
443 	extp = &efip->efi_format.efi_extents[next_extent];
444 	extp->ext_start = free->xefi_startblock;
445 	extp->ext_len = free->xefi_blockcount;
446 }
447 
448 static struct xfs_log_item *
449 xfs_extent_free_create_intent(
450 	struct xfs_trans		*tp,
451 	struct list_head		*items,
452 	unsigned int			count,
453 	bool				sort)
454 {
455 	struct xfs_mount		*mp = tp->t_mountp;
456 	struct xfs_efi_log_item		*efip = xfs_efi_init(mp, count);
457 	struct xfs_extent_free_item	*free;
458 
459 	ASSERT(count > 0);
460 
461 	xfs_trans_add_item(tp, &efip->efi_item);
462 	if (sort)
463 		list_sort(mp, items, xfs_extent_free_diff_items);
464 	list_for_each_entry(free, items, xefi_list)
465 		xfs_extent_free_log_item(tp, efip, free);
466 	return &efip->efi_item;
467 }
468 
469 /* Get an EFD so we can process all the free extents. */
470 static struct xfs_log_item *
471 xfs_extent_free_create_done(
472 	struct xfs_trans		*tp,
473 	struct xfs_log_item		*intent,
474 	unsigned int			count)
475 {
476 	return &xfs_trans_get_efd(tp, EFI_ITEM(intent), count)->efd_item;
477 }
478 
479 /* Process a free extent. */
480 STATIC int
481 xfs_extent_free_finish_item(
482 	struct xfs_trans		*tp,
483 	struct xfs_log_item		*done,
484 	struct list_head		*item,
485 	struct xfs_btree_cur		**state)
486 {
487 	struct xfs_owner_info		oinfo = { };
488 	struct xfs_extent_free_item	*free;
489 	int				error;
490 
491 	free = container_of(item, struct xfs_extent_free_item, xefi_list);
492 	oinfo.oi_owner = free->xefi_owner;
493 	if (free->xefi_flags & XFS_EFI_ATTR_FORK)
494 		oinfo.oi_flags |= XFS_OWNER_INFO_ATTR_FORK;
495 	if (free->xefi_flags & XFS_EFI_BMBT_BLOCK)
496 		oinfo.oi_flags |= XFS_OWNER_INFO_BMBT_BLOCK;
497 	error = xfs_trans_free_extent(tp, EFD_ITEM(done),
498 			free->xefi_startblock,
499 			free->xefi_blockcount,
500 			&oinfo, free->xefi_flags & XFS_EFI_SKIP_DISCARD);
501 	kmem_cache_free(xfs_extfree_item_cache, free);
502 	return error;
503 }
504 
505 /* Abort all pending EFIs. */
506 STATIC void
507 xfs_extent_free_abort_intent(
508 	struct xfs_log_item		*intent)
509 {
510 	xfs_efi_release(EFI_ITEM(intent));
511 }
512 
513 /* Cancel a free extent. */
514 STATIC void
515 xfs_extent_free_cancel_item(
516 	struct list_head		*item)
517 {
518 	struct xfs_extent_free_item	*free;
519 
520 	free = container_of(item, struct xfs_extent_free_item, xefi_list);
521 	kmem_cache_free(xfs_extfree_item_cache, free);
522 }
523 
524 const struct xfs_defer_op_type xfs_extent_free_defer_type = {
525 	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
526 	.create_intent	= xfs_extent_free_create_intent,
527 	.abort_intent	= xfs_extent_free_abort_intent,
528 	.create_done	= xfs_extent_free_create_done,
529 	.finish_item	= xfs_extent_free_finish_item,
530 	.cancel_item	= xfs_extent_free_cancel_item,
531 };
532 
533 /*
534  * AGFL blocks are accounted differently in the reserve pools and are not
535  * inserted into the busy extent list.
536  */
537 STATIC int
538 xfs_agfl_free_finish_item(
539 	struct xfs_trans		*tp,
540 	struct xfs_log_item		*done,
541 	struct list_head		*item,
542 	struct xfs_btree_cur		**state)
543 {
544 	struct xfs_owner_info		oinfo = { };
545 	struct xfs_mount		*mp = tp->t_mountp;
546 	struct xfs_efd_log_item		*efdp = EFD_ITEM(done);
547 	struct xfs_extent_free_item	*free;
548 	struct xfs_extent		*extp;
549 	struct xfs_buf			*agbp;
550 	int				error;
551 	xfs_agnumber_t			agno;
552 	xfs_agblock_t			agbno;
553 	uint				next_extent;
554 
555 	free = container_of(item, struct xfs_extent_free_item, xefi_list);
556 	ASSERT(free->xefi_blockcount == 1);
557 	agno = XFS_FSB_TO_AGNO(mp, free->xefi_startblock);
558 	agbno = XFS_FSB_TO_AGBNO(mp, free->xefi_startblock);
559 	oinfo.oi_owner = free->xefi_owner;
560 
561 	trace_xfs_agfl_free_deferred(mp, agno, 0, agbno, free->xefi_blockcount);
562 
563 	error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
564 	if (!error)
565 		error = xfs_free_agfl_block(tp, agno, agbno, agbp, &oinfo);
566 
567 	/*
568 	 * Mark the transaction dirty, even on error. This ensures the
569 	 * transaction is aborted, which:
570 	 *
571 	 * 1.) releases the EFI and frees the EFD
572 	 * 2.) shuts down the filesystem
573 	 */
574 	tp->t_flags |= XFS_TRANS_DIRTY;
575 	set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
576 
577 	next_extent = efdp->efd_next_extent;
578 	ASSERT(next_extent < efdp->efd_format.efd_nextents);
579 	extp = &(efdp->efd_format.efd_extents[next_extent]);
580 	extp->ext_start = free->xefi_startblock;
581 	extp->ext_len = free->xefi_blockcount;
582 	efdp->efd_next_extent++;
583 
584 	kmem_cache_free(xfs_extfree_item_cache, free);
585 	return error;
586 }
587 
588 /* sub-type with special handling for AGFL deferred frees */
589 const struct xfs_defer_op_type xfs_agfl_free_defer_type = {
590 	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
591 	.create_intent	= xfs_extent_free_create_intent,
592 	.abort_intent	= xfs_extent_free_abort_intent,
593 	.create_done	= xfs_extent_free_create_done,
594 	.finish_item	= xfs_agfl_free_finish_item,
595 	.cancel_item	= xfs_extent_free_cancel_item,
596 };
597 
598 /* Is this recovered EFI ok? */
599 static inline bool
600 xfs_efi_validate_ext(
601 	struct xfs_mount		*mp,
602 	struct xfs_extent		*extp)
603 {
604 	return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len);
605 }
606 
607 /*
608  * Process an extent free intent item that was recovered from
609  * the log.  We need to free the extents that it describes.
610  */
611 STATIC int
612 xfs_efi_item_recover(
613 	struct xfs_log_item		*lip,
614 	struct list_head		*capture_list)
615 {
616 	struct xfs_efi_log_item		*efip = EFI_ITEM(lip);
617 	struct xfs_mount		*mp = lip->li_log->l_mp;
618 	struct xfs_efd_log_item		*efdp;
619 	struct xfs_trans		*tp;
620 	struct xfs_extent		*extp;
621 	int				i;
622 	int				error = 0;
623 
624 	/*
625 	 * First check the validity of the extents described by the
626 	 * EFI.  If any are bad, then assume that all are bad and
627 	 * just toss the EFI.
628 	 */
629 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
630 		if (!xfs_efi_validate_ext(mp,
631 					&efip->efi_format.efi_extents[i])) {
632 			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
633 					&efip->efi_format,
634 					sizeof(efip->efi_format));
635 			return -EFSCORRUPTED;
636 		}
637 	}
638 
639 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
640 	if (error)
641 		return error;
642 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
643 
644 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
645 		extp = &efip->efi_format.efi_extents[i];
646 		error = xfs_trans_free_extent(tp, efdp, extp->ext_start,
647 					      extp->ext_len,
648 					      &XFS_RMAP_OINFO_ANY_OWNER, false);
649 		if (error == -EFSCORRUPTED)
650 			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
651 					extp, sizeof(*extp));
652 		if (error)
653 			goto abort_error;
654 
655 	}
656 
657 	return xfs_defer_ops_capture_and_commit(tp, capture_list);
658 
659 abort_error:
660 	xfs_trans_cancel(tp);
661 	return error;
662 }
663 
664 STATIC bool
665 xfs_efi_item_match(
666 	struct xfs_log_item	*lip,
667 	uint64_t		intent_id)
668 {
669 	return EFI_ITEM(lip)->efi_format.efi_id == intent_id;
670 }
671 
672 /* Relog an intent item to push the log tail forward. */
673 static struct xfs_log_item *
674 xfs_efi_item_relog(
675 	struct xfs_log_item		*intent,
676 	struct xfs_trans		*tp)
677 {
678 	struct xfs_efd_log_item		*efdp;
679 	struct xfs_efi_log_item		*efip;
680 	struct xfs_extent		*extp;
681 	unsigned int			count;
682 
683 	count = EFI_ITEM(intent)->efi_format.efi_nextents;
684 	extp = EFI_ITEM(intent)->efi_format.efi_extents;
685 
686 	tp->t_flags |= XFS_TRANS_DIRTY;
687 	efdp = xfs_trans_get_efd(tp, EFI_ITEM(intent), count);
688 	efdp->efd_next_extent = count;
689 	memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp));
690 	set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
691 
692 	efip = xfs_efi_init(tp->t_mountp, count);
693 	memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp));
694 	atomic_set(&efip->efi_next_extent, count);
695 	xfs_trans_add_item(tp, &efip->efi_item);
696 	set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags);
697 	return &efip->efi_item;
698 }
699 
700 static const struct xfs_item_ops xfs_efi_item_ops = {
701 	.flags		= XFS_ITEM_INTENT,
702 	.iop_size	= xfs_efi_item_size,
703 	.iop_format	= xfs_efi_item_format,
704 	.iop_unpin	= xfs_efi_item_unpin,
705 	.iop_release	= xfs_efi_item_release,
706 	.iop_recover	= xfs_efi_item_recover,
707 	.iop_match	= xfs_efi_item_match,
708 	.iop_relog	= xfs_efi_item_relog,
709 };
710 
711 /*
712  * This routine is called to create an in-core extent free intent
713  * item from the efi format structure which was logged on disk.
714  * It allocates an in-core efi, copies the extents from the format
715  * structure into it, and adds the efi to the AIL with the given
716  * LSN.
717  */
718 STATIC int
719 xlog_recover_efi_commit_pass2(
720 	struct xlog			*log,
721 	struct list_head		*buffer_list,
722 	struct xlog_recover_item	*item,
723 	xfs_lsn_t			lsn)
724 {
725 	struct xfs_mount		*mp = log->l_mp;
726 	struct xfs_efi_log_item		*efip;
727 	struct xfs_efi_log_format	*efi_formatp;
728 	int				error;
729 
730 	efi_formatp = item->ri_buf[0].i_addr;
731 
732 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
733 	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
734 	if (error) {
735 		xfs_efi_item_free(efip);
736 		return error;
737 	}
738 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
739 	/*
740 	 * Insert the intent into the AIL directly and drop one reference so
741 	 * that finishing or canceling the work will drop the other.
742 	 */
743 	xfs_trans_ail_insert(log->l_ailp, &efip->efi_item, lsn);
744 	xfs_efi_release(efip);
745 	return 0;
746 }
747 
748 const struct xlog_recover_item_ops xlog_efi_item_ops = {
749 	.item_type		= XFS_LI_EFI,
750 	.commit_pass2		= xlog_recover_efi_commit_pass2,
751 };
752 
753 /*
754  * This routine is called when an EFD format structure is found in a committed
755  * transaction in the log. Its purpose is to cancel the corresponding EFI if it
756  * was still in the log. To do this it searches the AIL for the EFI with an id
757  * equal to that in the EFD format structure. If we find it we drop the EFD
758  * reference, which removes the EFI from the AIL and frees it.
759  */
760 STATIC int
761 xlog_recover_efd_commit_pass2(
762 	struct xlog			*log,
763 	struct list_head		*buffer_list,
764 	struct xlog_recover_item	*item,
765 	xfs_lsn_t			lsn)
766 {
767 	struct xfs_efd_log_format	*efd_formatp;
768 
769 	efd_formatp = item->ri_buf[0].i_addr;
770 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
771 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
772 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
773 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
774 
775 	xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id);
776 	return 0;
777 }
778 
779 const struct xlog_recover_item_ops xlog_efd_item_ops = {
780 	.item_type		= XFS_LI_EFD,
781 	.commit_pass2		= xlog_recover_efd_commit_pass2,
782 };
783