xref: /openbmc/linux/fs/xfs/xfs_extfree_item.c (revision f29119b301d598f245154edc797c69c712a8b7fe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_shared.h"
13 #include "xfs_mount.h"
14 #include "xfs_ag.h"
15 #include "xfs_defer.h"
16 #include "xfs_trans.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_extfree_item.h"
19 #include "xfs_log.h"
20 #include "xfs_btree.h"
21 #include "xfs_rmap.h"
22 #include "xfs_alloc.h"
23 #include "xfs_bmap.h"
24 #include "xfs_trace.h"
25 #include "xfs_error.h"
26 #include "xfs_log_priv.h"
27 #include "xfs_log_recover.h"
28 
29 struct kmem_cache	*xfs_efi_cache;
30 struct kmem_cache	*xfs_efd_cache;
31 
32 static const struct xfs_item_ops xfs_efi_item_ops;
33 
34 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
35 {
36 	return container_of(lip, struct xfs_efi_log_item, efi_item);
37 }
38 
39 STATIC void
40 xfs_efi_item_free(
41 	struct xfs_efi_log_item	*efip)
42 {
43 	kmem_free(efip->efi_item.li_lv_shadow);
44 	if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
45 		kmem_free(efip);
46 	else
47 		kmem_cache_free(xfs_efi_cache, efip);
48 }
49 
50 /*
51  * Freeing the efi requires that we remove it from the AIL if it has already
52  * been placed there. However, the EFI may not yet have been placed in the AIL
53  * when called by xfs_efi_release() from EFD processing due to the ordering of
54  * committed vs unpin operations in bulk insert operations. Hence the reference
55  * count to ensure only the last caller frees the EFI.
56  */
57 STATIC void
58 xfs_efi_release(
59 	struct xfs_efi_log_item	*efip)
60 {
61 	ASSERT(atomic_read(&efip->efi_refcount) > 0);
62 	if (!atomic_dec_and_test(&efip->efi_refcount))
63 		return;
64 
65 	xfs_trans_ail_delete(&efip->efi_item, 0);
66 	xfs_efi_item_free(efip);
67 }
68 
69 STATIC void
70 xfs_efi_item_size(
71 	struct xfs_log_item	*lip,
72 	int			*nvecs,
73 	int			*nbytes)
74 {
75 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
76 
77 	*nvecs += 1;
78 	*nbytes += xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents);
79 }
80 
81 /*
82  * This is called to fill in the vector of log iovecs for the
83  * given efi log item. We use only 1 iovec, and we point that
84  * at the efi_log_format structure embedded in the efi item.
85  * It is at this point that we assert that all of the extent
86  * slots in the efi item have been filled.
87  */
88 STATIC void
89 xfs_efi_item_format(
90 	struct xfs_log_item	*lip,
91 	struct xfs_log_vec	*lv)
92 {
93 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
94 	struct xfs_log_iovec	*vecp = NULL;
95 
96 	ASSERT(atomic_read(&efip->efi_next_extent) ==
97 				efip->efi_format.efi_nextents);
98 
99 	efip->efi_format.efi_type = XFS_LI_EFI;
100 	efip->efi_format.efi_size = 1;
101 
102 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
103 			&efip->efi_format,
104 			xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents));
105 }
106 
107 
108 /*
109  * The unpin operation is the last place an EFI is manipulated in the log. It is
110  * either inserted in the AIL or aborted in the event of a log I/O error. In
111  * either case, the EFI transaction has been successfully committed to make it
112  * this far. Therefore, we expect whoever committed the EFI to either construct
113  * and commit the EFD or drop the EFD's reference in the event of error. Simply
114  * drop the log's EFI reference now that the log is done with it.
115  */
116 STATIC void
117 xfs_efi_item_unpin(
118 	struct xfs_log_item	*lip,
119 	int			remove)
120 {
121 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
122 	xfs_efi_release(efip);
123 }
124 
125 /*
126  * The EFI has been either committed or aborted if the transaction has been
127  * cancelled. If the transaction was cancelled, an EFD isn't going to be
128  * constructed and thus we free the EFI here directly.
129  */
130 STATIC void
131 xfs_efi_item_release(
132 	struct xfs_log_item	*lip)
133 {
134 	xfs_efi_release(EFI_ITEM(lip));
135 }
136 
137 /*
138  * Allocate and initialize an efi item with the given number of extents.
139  */
140 STATIC struct xfs_efi_log_item *
141 xfs_efi_init(
142 	struct xfs_mount	*mp,
143 	uint			nextents)
144 
145 {
146 	struct xfs_efi_log_item	*efip;
147 
148 	ASSERT(nextents > 0);
149 	if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
150 		efip = kzalloc(xfs_efi_log_item_sizeof(nextents),
151 				GFP_KERNEL | __GFP_NOFAIL);
152 	} else {
153 		efip = kmem_cache_zalloc(xfs_efi_cache,
154 					 GFP_KERNEL | __GFP_NOFAIL);
155 	}
156 
157 	xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
158 	efip->efi_format.efi_nextents = nextents;
159 	efip->efi_format.efi_id = (uintptr_t)(void *)efip;
160 	atomic_set(&efip->efi_next_extent, 0);
161 	atomic_set(&efip->efi_refcount, 2);
162 
163 	return efip;
164 }
165 
166 /*
167  * Copy an EFI format buffer from the given buf, and into the destination
168  * EFI format structure.
169  * The given buffer can be in 32 bit or 64 bit form (which has different padding),
170  * one of which will be the native format for this kernel.
171  * It will handle the conversion of formats if necessary.
172  */
173 STATIC int
174 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
175 {
176 	xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
177 	uint i;
178 	uint len = xfs_efi_log_format_sizeof(src_efi_fmt->efi_nextents);
179 	uint len32 = xfs_efi_log_format32_sizeof(src_efi_fmt->efi_nextents);
180 	uint len64 = xfs_efi_log_format64_sizeof(src_efi_fmt->efi_nextents);
181 
182 	if (buf->i_len == len) {
183 		memcpy(dst_efi_fmt, src_efi_fmt,
184 		       offsetof(struct xfs_efi_log_format, efi_extents));
185 		for (i = 0; i < src_efi_fmt->efi_nextents; i++)
186 			memcpy(&dst_efi_fmt->efi_extents[i],
187 			       &src_efi_fmt->efi_extents[i],
188 			       sizeof(struct xfs_extent));
189 		return 0;
190 	} else if (buf->i_len == len32) {
191 		xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
192 
193 		dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type;
194 		dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size;
195 		dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
196 		dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id;
197 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
198 			dst_efi_fmt->efi_extents[i].ext_start =
199 				src_efi_fmt_32->efi_extents[i].ext_start;
200 			dst_efi_fmt->efi_extents[i].ext_len =
201 				src_efi_fmt_32->efi_extents[i].ext_len;
202 		}
203 		return 0;
204 	} else if (buf->i_len == len64) {
205 		xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
206 
207 		dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type;
208 		dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size;
209 		dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
210 		dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id;
211 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
212 			dst_efi_fmt->efi_extents[i].ext_start =
213 				src_efi_fmt_64->efi_extents[i].ext_start;
214 			dst_efi_fmt->efi_extents[i].ext_len =
215 				src_efi_fmt_64->efi_extents[i].ext_len;
216 		}
217 		return 0;
218 	}
219 	XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, NULL, buf->i_addr,
220 			buf->i_len);
221 	return -EFSCORRUPTED;
222 }
223 
224 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
225 {
226 	return container_of(lip, struct xfs_efd_log_item, efd_item);
227 }
228 
229 STATIC void
230 xfs_efd_item_free(struct xfs_efd_log_item *efdp)
231 {
232 	kmem_free(efdp->efd_item.li_lv_shadow);
233 	if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
234 		kmem_free(efdp);
235 	else
236 		kmem_cache_free(xfs_efd_cache, efdp);
237 }
238 
239 STATIC void
240 xfs_efd_item_size(
241 	struct xfs_log_item	*lip,
242 	int			*nvecs,
243 	int			*nbytes)
244 {
245 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
246 
247 	*nvecs += 1;
248 	*nbytes += xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents);
249 }
250 
251 /*
252  * This is called to fill in the vector of log iovecs for the
253  * given efd log item. We use only 1 iovec, and we point that
254  * at the efd_log_format structure embedded in the efd item.
255  * It is at this point that we assert that all of the extent
256  * slots in the efd item have been filled.
257  */
258 STATIC void
259 xfs_efd_item_format(
260 	struct xfs_log_item	*lip,
261 	struct xfs_log_vec	*lv)
262 {
263 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
264 	struct xfs_log_iovec	*vecp = NULL;
265 
266 	ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
267 
268 	efdp->efd_format.efd_type = XFS_LI_EFD;
269 	efdp->efd_format.efd_size = 1;
270 
271 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
272 			&efdp->efd_format,
273 			xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents));
274 }
275 
276 /*
277  * The EFD is either committed or aborted if the transaction is cancelled. If
278  * the transaction is cancelled, drop our reference to the EFI and free the EFD.
279  */
280 STATIC void
281 xfs_efd_item_release(
282 	struct xfs_log_item	*lip)
283 {
284 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
285 
286 	xfs_efi_release(efdp->efd_efip);
287 	xfs_efd_item_free(efdp);
288 }
289 
290 static struct xfs_log_item *
291 xfs_efd_item_intent(
292 	struct xfs_log_item	*lip)
293 {
294 	return &EFD_ITEM(lip)->efd_efip->efi_item;
295 }
296 
297 static const struct xfs_item_ops xfs_efd_item_ops = {
298 	.flags		= XFS_ITEM_RELEASE_WHEN_COMMITTED |
299 			  XFS_ITEM_INTENT_DONE,
300 	.iop_size	= xfs_efd_item_size,
301 	.iop_format	= xfs_efd_item_format,
302 	.iop_release	= xfs_efd_item_release,
303 	.iop_intent	= xfs_efd_item_intent,
304 };
305 
306 /*
307  * Allocate an "extent free done" log item that will hold nextents worth of
308  * extents.  The caller must use all nextents extents, because we are not
309  * flexible about this at all.
310  */
311 static struct xfs_efd_log_item *
312 xfs_trans_get_efd(
313 	struct xfs_trans		*tp,
314 	struct xfs_efi_log_item		*efip,
315 	unsigned int			nextents)
316 {
317 	struct xfs_efd_log_item		*efdp;
318 
319 	ASSERT(nextents > 0);
320 
321 	if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
322 		efdp = kzalloc(xfs_efd_log_item_sizeof(nextents),
323 				GFP_KERNEL | __GFP_NOFAIL);
324 	} else {
325 		efdp = kmem_cache_zalloc(xfs_efd_cache,
326 					GFP_KERNEL | __GFP_NOFAIL);
327 	}
328 
329 	xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD,
330 			  &xfs_efd_item_ops);
331 	efdp->efd_efip = efip;
332 	efdp->efd_format.efd_nextents = nextents;
333 	efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
334 
335 	xfs_trans_add_item(tp, &efdp->efd_item);
336 	return efdp;
337 }
338 
339 /*
340  * Fill the EFD with all extents from the EFI when we need to roll the
341  * transaction and continue with a new EFI.
342  *
343  * This simply copies all the extents in the EFI to the EFD rather than make
344  * assumptions about which extents in the EFI have already been processed. We
345  * currently keep the xefi list in the same order as the EFI extent list, but
346  * that may not always be the case. Copying everything avoids leaving a landmine
347  * were we fail to cancel all the extents in an EFI if the xefi list is
348  * processed in a different order to the extents in the EFI.
349  */
350 static void
351 xfs_efd_from_efi(
352 	struct xfs_efd_log_item	*efdp)
353 {
354 	struct xfs_efi_log_item *efip = efdp->efd_efip;
355 	uint                    i;
356 
357 	ASSERT(efip->efi_format.efi_nextents > 0);
358 	ASSERT(efdp->efd_next_extent < efip->efi_format.efi_nextents);
359 
360 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
361 	       efdp->efd_format.efd_extents[i] =
362 		       efip->efi_format.efi_extents[i];
363 	}
364 	efdp->efd_next_extent = efip->efi_format.efi_nextents;
365 }
366 
367 /*
368  * Free an extent and log it to the EFD. Note that the transaction is marked
369  * dirty regardless of whether the extent free succeeds or fails to support the
370  * EFI/EFD lifecycle rules.
371  */
372 static int
373 xfs_trans_free_extent(
374 	struct xfs_trans		*tp,
375 	struct xfs_efd_log_item		*efdp,
376 	struct xfs_extent_free_item	*xefi)
377 {
378 	struct xfs_owner_info		oinfo = { };
379 	struct xfs_mount		*mp = tp->t_mountp;
380 	struct xfs_extent		*extp;
381 	uint				next_extent;
382 	xfs_agblock_t			agbno = XFS_FSB_TO_AGBNO(mp,
383 							xefi->xefi_startblock);
384 	int				error;
385 
386 	oinfo.oi_owner = xefi->xefi_owner;
387 	if (xefi->xefi_flags & XFS_EFI_ATTR_FORK)
388 		oinfo.oi_flags |= XFS_OWNER_INFO_ATTR_FORK;
389 	if (xefi->xefi_flags & XFS_EFI_BMBT_BLOCK)
390 		oinfo.oi_flags |= XFS_OWNER_INFO_BMBT_BLOCK;
391 
392 	trace_xfs_bmap_free_deferred(tp->t_mountp, xefi->xefi_pag->pag_agno, 0,
393 			agbno, xefi->xefi_blockcount);
394 
395 	error = __xfs_free_extent(tp, xefi->xefi_pag, agbno,
396 			xefi->xefi_blockcount, &oinfo, xefi->xefi_agresv,
397 			xefi->xefi_flags & XFS_EFI_SKIP_DISCARD);
398 
399 	/*
400 	 * Mark the transaction dirty, even on error. This ensures the
401 	 * transaction is aborted, which:
402 	 *
403 	 * 1.) releases the EFI and frees the EFD
404 	 * 2.) shuts down the filesystem
405 	 */
406 	tp->t_flags |= XFS_TRANS_DIRTY | XFS_TRANS_HAS_INTENT_DONE;
407 	set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
408 
409 	/*
410 	 * If we need a new transaction to make progress, the caller will log a
411 	 * new EFI with the current contents. It will also log an EFD to cancel
412 	 * the existing EFI, and so we need to copy all the unprocessed extents
413 	 * in this EFI to the EFD so this works correctly.
414 	 */
415 	if (error == -EAGAIN) {
416 		xfs_efd_from_efi(efdp);
417 		return error;
418 	}
419 
420 	next_extent = efdp->efd_next_extent;
421 	ASSERT(next_extent < efdp->efd_format.efd_nextents);
422 	extp = &(efdp->efd_format.efd_extents[next_extent]);
423 	extp->ext_start = xefi->xefi_startblock;
424 	extp->ext_len = xefi->xefi_blockcount;
425 	efdp->efd_next_extent++;
426 
427 	return error;
428 }
429 
430 /* Sort bmap items by AG. */
431 static int
432 xfs_extent_free_diff_items(
433 	void				*priv,
434 	const struct list_head		*a,
435 	const struct list_head		*b)
436 {
437 	struct xfs_extent_free_item	*ra;
438 	struct xfs_extent_free_item	*rb;
439 
440 	ra = container_of(a, struct xfs_extent_free_item, xefi_list);
441 	rb = container_of(b, struct xfs_extent_free_item, xefi_list);
442 
443 	return ra->xefi_pag->pag_agno - rb->xefi_pag->pag_agno;
444 }
445 
446 /* Log a free extent to the intent item. */
447 STATIC void
448 xfs_extent_free_log_item(
449 	struct xfs_trans		*tp,
450 	struct xfs_efi_log_item		*efip,
451 	struct xfs_extent_free_item	*xefi)
452 {
453 	uint				next_extent;
454 	struct xfs_extent		*extp;
455 
456 	tp->t_flags |= XFS_TRANS_DIRTY;
457 	set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags);
458 
459 	/*
460 	 * atomic_inc_return gives us the value after the increment;
461 	 * we want to use it as an array index so we need to subtract 1 from
462 	 * it.
463 	 */
464 	next_extent = atomic_inc_return(&efip->efi_next_extent) - 1;
465 	ASSERT(next_extent < efip->efi_format.efi_nextents);
466 	extp = &efip->efi_format.efi_extents[next_extent];
467 	extp->ext_start = xefi->xefi_startblock;
468 	extp->ext_len = xefi->xefi_blockcount;
469 }
470 
471 static struct xfs_log_item *
472 xfs_extent_free_create_intent(
473 	struct xfs_trans		*tp,
474 	struct list_head		*items,
475 	unsigned int			count,
476 	bool				sort)
477 {
478 	struct xfs_mount		*mp = tp->t_mountp;
479 	struct xfs_efi_log_item		*efip = xfs_efi_init(mp, count);
480 	struct xfs_extent_free_item	*xefi;
481 
482 	ASSERT(count > 0);
483 
484 	xfs_trans_add_item(tp, &efip->efi_item);
485 	if (sort)
486 		list_sort(mp, items, xfs_extent_free_diff_items);
487 	list_for_each_entry(xefi, items, xefi_list)
488 		xfs_extent_free_log_item(tp, efip, xefi);
489 	return &efip->efi_item;
490 }
491 
492 /* Get an EFD so we can process all the free extents. */
493 static struct xfs_log_item *
494 xfs_extent_free_create_done(
495 	struct xfs_trans		*tp,
496 	struct xfs_log_item		*intent,
497 	unsigned int			count)
498 {
499 	return &xfs_trans_get_efd(tp, EFI_ITEM(intent), count)->efd_item;
500 }
501 
502 /* Take a passive ref to the AG containing the space we're freeing. */
503 void
504 xfs_extent_free_get_group(
505 	struct xfs_mount		*mp,
506 	struct xfs_extent_free_item	*xefi)
507 {
508 	xfs_agnumber_t			agno;
509 
510 	agno = XFS_FSB_TO_AGNO(mp, xefi->xefi_startblock);
511 	xefi->xefi_pag = xfs_perag_intent_get(mp, agno);
512 }
513 
514 /* Release a passive AG ref after some freeing work. */
515 static inline void
516 xfs_extent_free_put_group(
517 	struct xfs_extent_free_item	*xefi)
518 {
519 	xfs_perag_intent_put(xefi->xefi_pag);
520 }
521 
522 /* Process a free extent. */
523 STATIC int
524 xfs_extent_free_finish_item(
525 	struct xfs_trans		*tp,
526 	struct xfs_log_item		*done,
527 	struct list_head		*item,
528 	struct xfs_btree_cur		**state)
529 {
530 	struct xfs_extent_free_item	*xefi;
531 	int				error;
532 
533 	xefi = container_of(item, struct xfs_extent_free_item, xefi_list);
534 
535 	error = xfs_trans_free_extent(tp, EFD_ITEM(done), xefi);
536 
537 	/*
538 	 * Don't free the XEFI if we need a new transaction to complete
539 	 * processing of it.
540 	 */
541 	if (error == -EAGAIN)
542 		return error;
543 
544 	xfs_extent_free_put_group(xefi);
545 	kmem_cache_free(xfs_extfree_item_cache, xefi);
546 	return error;
547 }
548 
549 /* Abort all pending EFIs. */
550 STATIC void
551 xfs_extent_free_abort_intent(
552 	struct xfs_log_item		*intent)
553 {
554 	xfs_efi_release(EFI_ITEM(intent));
555 }
556 
557 /* Cancel a free extent. */
558 STATIC void
559 xfs_extent_free_cancel_item(
560 	struct list_head		*item)
561 {
562 	struct xfs_extent_free_item	*xefi;
563 
564 	xefi = container_of(item, struct xfs_extent_free_item, xefi_list);
565 
566 	xfs_extent_free_put_group(xefi);
567 	kmem_cache_free(xfs_extfree_item_cache, xefi);
568 }
569 
570 const struct xfs_defer_op_type xfs_extent_free_defer_type = {
571 	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
572 	.create_intent	= xfs_extent_free_create_intent,
573 	.abort_intent	= xfs_extent_free_abort_intent,
574 	.create_done	= xfs_extent_free_create_done,
575 	.finish_item	= xfs_extent_free_finish_item,
576 	.cancel_item	= xfs_extent_free_cancel_item,
577 };
578 
579 /*
580  * AGFL blocks are accounted differently in the reserve pools and are not
581  * inserted into the busy extent list.
582  */
583 STATIC int
584 xfs_agfl_free_finish_item(
585 	struct xfs_trans		*tp,
586 	struct xfs_log_item		*done,
587 	struct list_head		*item,
588 	struct xfs_btree_cur		**state)
589 {
590 	struct xfs_owner_info		oinfo = { };
591 	struct xfs_mount		*mp = tp->t_mountp;
592 	struct xfs_efd_log_item		*efdp = EFD_ITEM(done);
593 	struct xfs_extent_free_item	*xefi;
594 	struct xfs_extent		*extp;
595 	struct xfs_buf			*agbp;
596 	int				error;
597 	xfs_agblock_t			agbno;
598 	uint				next_extent;
599 
600 	xefi = container_of(item, struct xfs_extent_free_item, xefi_list);
601 	ASSERT(xefi->xefi_blockcount == 1);
602 	agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock);
603 	oinfo.oi_owner = xefi->xefi_owner;
604 
605 	trace_xfs_agfl_free_deferred(mp, xefi->xefi_pag->pag_agno, 0, agbno,
606 			xefi->xefi_blockcount);
607 
608 	error = xfs_alloc_read_agf(xefi->xefi_pag, tp, 0, &agbp);
609 	if (!error)
610 		error = xfs_free_agfl_block(tp, xefi->xefi_pag->pag_agno,
611 				agbno, agbp, &oinfo);
612 
613 	/*
614 	 * Mark the transaction dirty, even on error. This ensures the
615 	 * transaction is aborted, which:
616 	 *
617 	 * 1.) releases the EFI and frees the EFD
618 	 * 2.) shuts down the filesystem
619 	 */
620 	tp->t_flags |= XFS_TRANS_DIRTY;
621 	set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
622 
623 	next_extent = efdp->efd_next_extent;
624 	ASSERT(next_extent < efdp->efd_format.efd_nextents);
625 	extp = &(efdp->efd_format.efd_extents[next_extent]);
626 	extp->ext_start = xefi->xefi_startblock;
627 	extp->ext_len = xefi->xefi_blockcount;
628 	efdp->efd_next_extent++;
629 
630 	xfs_extent_free_put_group(xefi);
631 	kmem_cache_free(xfs_extfree_item_cache, xefi);
632 	return error;
633 }
634 
635 /* sub-type with special handling for AGFL deferred frees */
636 const struct xfs_defer_op_type xfs_agfl_free_defer_type = {
637 	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
638 	.create_intent	= xfs_extent_free_create_intent,
639 	.abort_intent	= xfs_extent_free_abort_intent,
640 	.create_done	= xfs_extent_free_create_done,
641 	.finish_item	= xfs_agfl_free_finish_item,
642 	.cancel_item	= xfs_extent_free_cancel_item,
643 };
644 
645 /* Is this recovered EFI ok? */
646 static inline bool
647 xfs_efi_validate_ext(
648 	struct xfs_mount		*mp,
649 	struct xfs_extent		*extp)
650 {
651 	return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len);
652 }
653 
654 /*
655  * Process an extent free intent item that was recovered from
656  * the log.  We need to free the extents that it describes.
657  */
658 STATIC int
659 xfs_efi_item_recover(
660 	struct xfs_defer_pending	*dfp,
661 	struct list_head		*capture_list)
662 {
663 	struct xfs_trans_res		resv;
664 	struct xfs_log_item		*lip = dfp->dfp_intent;
665 	struct xfs_efi_log_item		*efip = EFI_ITEM(lip);
666 	struct xfs_mount		*mp = lip->li_log->l_mp;
667 	struct xfs_efd_log_item		*efdp;
668 	struct xfs_trans		*tp;
669 	int				i;
670 	int				error = 0;
671 	bool				requeue_only = false;
672 
673 	/*
674 	 * First check the validity of the extents described by the
675 	 * EFI.  If any are bad, then assume that all are bad and
676 	 * just toss the EFI.
677 	 */
678 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
679 		if (!xfs_efi_validate_ext(mp,
680 					&efip->efi_format.efi_extents[i])) {
681 			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
682 					&efip->efi_format,
683 					sizeof(efip->efi_format));
684 			return -EFSCORRUPTED;
685 		}
686 	}
687 
688 	resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate);
689 	error = xfs_trans_alloc(mp, &resv, 0, 0, 0, &tp);
690 	if (error)
691 		return error;
692 
693 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
694 	xlog_recover_transfer_intent(tp, dfp);
695 
696 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
697 		struct xfs_extent_free_item	fake = {
698 			.xefi_owner		= XFS_RMAP_OWN_UNKNOWN,
699 			.xefi_agresv		= XFS_AG_RESV_NONE,
700 		};
701 		struct xfs_extent		*extp;
702 
703 		extp = &efip->efi_format.efi_extents[i];
704 
705 		fake.xefi_startblock = extp->ext_start;
706 		fake.xefi_blockcount = extp->ext_len;
707 
708 		if (!requeue_only) {
709 			xfs_extent_free_get_group(mp, &fake);
710 			error = xfs_trans_free_extent(tp, efdp, &fake);
711 			xfs_extent_free_put_group(&fake);
712 		}
713 
714 		/*
715 		 * If we can't free the extent without potentially deadlocking,
716 		 * requeue the rest of the extents to a new so that they get
717 		 * run again later with a new transaction context.
718 		 */
719 		if (error == -EAGAIN || requeue_only) {
720 			error = xfs_free_extent_later(tp, fake.xefi_startblock,
721 					fake.xefi_blockcount,
722 					&XFS_RMAP_OINFO_ANY_OWNER,
723 					fake.xefi_agresv);
724 			if (!error) {
725 				requeue_only = true;
726 				continue;
727 			}
728 		}
729 
730 		if (error == -EFSCORRUPTED)
731 			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
732 					extp, sizeof(*extp));
733 		if (error)
734 			goto abort_error;
735 
736 	}
737 
738 	return xfs_defer_ops_capture_and_commit(tp, capture_list);
739 
740 abort_error:
741 	xfs_trans_cancel(tp);
742 	return error;
743 }
744 
745 STATIC bool
746 xfs_efi_item_match(
747 	struct xfs_log_item	*lip,
748 	uint64_t		intent_id)
749 {
750 	return EFI_ITEM(lip)->efi_format.efi_id == intent_id;
751 }
752 
753 /* Relog an intent item to push the log tail forward. */
754 static struct xfs_log_item *
755 xfs_efi_item_relog(
756 	struct xfs_log_item		*intent,
757 	struct xfs_trans		*tp)
758 {
759 	struct xfs_efd_log_item		*efdp;
760 	struct xfs_efi_log_item		*efip;
761 	struct xfs_extent		*extp;
762 	unsigned int			count;
763 
764 	count = EFI_ITEM(intent)->efi_format.efi_nextents;
765 	extp = EFI_ITEM(intent)->efi_format.efi_extents;
766 
767 	tp->t_flags |= XFS_TRANS_DIRTY;
768 	efdp = xfs_trans_get_efd(tp, EFI_ITEM(intent), count);
769 	efdp->efd_next_extent = count;
770 	memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp));
771 	set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
772 
773 	efip = xfs_efi_init(tp->t_mountp, count);
774 	memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp));
775 	atomic_set(&efip->efi_next_extent, count);
776 	xfs_trans_add_item(tp, &efip->efi_item);
777 	set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags);
778 	return &efip->efi_item;
779 }
780 
781 static const struct xfs_item_ops xfs_efi_item_ops = {
782 	.flags		= XFS_ITEM_INTENT,
783 	.iop_size	= xfs_efi_item_size,
784 	.iop_format	= xfs_efi_item_format,
785 	.iop_unpin	= xfs_efi_item_unpin,
786 	.iop_release	= xfs_efi_item_release,
787 	.iop_recover	= xfs_efi_item_recover,
788 	.iop_match	= xfs_efi_item_match,
789 	.iop_relog	= xfs_efi_item_relog,
790 };
791 
792 /*
793  * This routine is called to create an in-core extent free intent
794  * item from the efi format structure which was logged on disk.
795  * It allocates an in-core efi, copies the extents from the format
796  * structure into it, and adds the efi to the AIL with the given
797  * LSN.
798  */
799 STATIC int
800 xlog_recover_efi_commit_pass2(
801 	struct xlog			*log,
802 	struct list_head		*buffer_list,
803 	struct xlog_recover_item	*item,
804 	xfs_lsn_t			lsn)
805 {
806 	struct xfs_mount		*mp = log->l_mp;
807 	struct xfs_efi_log_item		*efip;
808 	struct xfs_efi_log_format	*efi_formatp;
809 	int				error;
810 
811 	efi_formatp = item->ri_buf[0].i_addr;
812 
813 	if (item->ri_buf[0].i_len < xfs_efi_log_format_sizeof(0)) {
814 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
815 				item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
816 		return -EFSCORRUPTED;
817 	}
818 
819 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
820 	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
821 	if (error) {
822 		xfs_efi_item_free(efip);
823 		return error;
824 	}
825 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
826 
827 	xlog_recover_intent_item(log, &efip->efi_item, lsn,
828 			XFS_DEFER_OPS_TYPE_FREE);
829 	return 0;
830 }
831 
832 const struct xlog_recover_item_ops xlog_efi_item_ops = {
833 	.item_type		= XFS_LI_EFI,
834 	.commit_pass2		= xlog_recover_efi_commit_pass2,
835 };
836 
837 /*
838  * This routine is called when an EFD format structure is found in a committed
839  * transaction in the log. Its purpose is to cancel the corresponding EFI if it
840  * was still in the log. To do this it searches the AIL for the EFI with an id
841  * equal to that in the EFD format structure. If we find it we drop the EFD
842  * reference, which removes the EFI from the AIL and frees it.
843  */
844 STATIC int
845 xlog_recover_efd_commit_pass2(
846 	struct xlog			*log,
847 	struct list_head		*buffer_list,
848 	struct xlog_recover_item	*item,
849 	xfs_lsn_t			lsn)
850 {
851 	struct xfs_efd_log_format	*efd_formatp;
852 	int				buflen = item->ri_buf[0].i_len;
853 
854 	efd_formatp = item->ri_buf[0].i_addr;
855 
856 	if (buflen < sizeof(struct xfs_efd_log_format)) {
857 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
858 				efd_formatp, buflen);
859 		return -EFSCORRUPTED;
860 	}
861 
862 	if (item->ri_buf[0].i_len != xfs_efd_log_format32_sizeof(
863 						efd_formatp->efd_nextents) &&
864 	    item->ri_buf[0].i_len != xfs_efd_log_format64_sizeof(
865 						efd_formatp->efd_nextents)) {
866 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
867 				efd_formatp, buflen);
868 		return -EFSCORRUPTED;
869 	}
870 
871 	xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id);
872 	return 0;
873 }
874 
875 const struct xlog_recover_item_ops xlog_efd_item_ops = {
876 	.item_type		= XFS_LI_EFD,
877 	.commit_pass2		= xlog_recover_efd_commit_pass2,
878 };
879