1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_bit.h" 12 #include "xfs_shared.h" 13 #include "xfs_mount.h" 14 #include "xfs_ag.h" 15 #include "xfs_defer.h" 16 #include "xfs_trans.h" 17 #include "xfs_trans_priv.h" 18 #include "xfs_extfree_item.h" 19 #include "xfs_log.h" 20 #include "xfs_btree.h" 21 #include "xfs_rmap.h" 22 #include "xfs_alloc.h" 23 #include "xfs_bmap.h" 24 #include "xfs_trace.h" 25 #include "xfs_error.h" 26 #include "xfs_log_priv.h" 27 #include "xfs_log_recover.h" 28 29 struct kmem_cache *xfs_efi_cache; 30 struct kmem_cache *xfs_efd_cache; 31 32 static const struct xfs_item_ops xfs_efi_item_ops; 33 34 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip) 35 { 36 return container_of(lip, struct xfs_efi_log_item, efi_item); 37 } 38 39 STATIC void 40 xfs_efi_item_free( 41 struct xfs_efi_log_item *efip) 42 { 43 kmem_free(efip->efi_item.li_lv_shadow); 44 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS) 45 kmem_free(efip); 46 else 47 kmem_cache_free(xfs_efi_cache, efip); 48 } 49 50 /* 51 * Freeing the efi requires that we remove it from the AIL if it has already 52 * been placed there. However, the EFI may not yet have been placed in the AIL 53 * when called by xfs_efi_release() from EFD processing due to the ordering of 54 * committed vs unpin operations in bulk insert operations. Hence the reference 55 * count to ensure only the last caller frees the EFI. 56 */ 57 STATIC void 58 xfs_efi_release( 59 struct xfs_efi_log_item *efip) 60 { 61 ASSERT(atomic_read(&efip->efi_refcount) > 0); 62 if (!atomic_dec_and_test(&efip->efi_refcount)) 63 return; 64 65 xfs_trans_ail_delete(&efip->efi_item, 0); 66 xfs_efi_item_free(efip); 67 } 68 69 STATIC void 70 xfs_efi_item_size( 71 struct xfs_log_item *lip, 72 int *nvecs, 73 int *nbytes) 74 { 75 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 76 77 *nvecs += 1; 78 *nbytes += xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents); 79 } 80 81 /* 82 * This is called to fill in the vector of log iovecs for the 83 * given efi log item. We use only 1 iovec, and we point that 84 * at the efi_log_format structure embedded in the efi item. 85 * It is at this point that we assert that all of the extent 86 * slots in the efi item have been filled. 87 */ 88 STATIC void 89 xfs_efi_item_format( 90 struct xfs_log_item *lip, 91 struct xfs_log_vec *lv) 92 { 93 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 94 struct xfs_log_iovec *vecp = NULL; 95 96 ASSERT(atomic_read(&efip->efi_next_extent) == 97 efip->efi_format.efi_nextents); 98 99 efip->efi_format.efi_type = XFS_LI_EFI; 100 efip->efi_format.efi_size = 1; 101 102 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT, 103 &efip->efi_format, 104 xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents)); 105 } 106 107 108 /* 109 * The unpin operation is the last place an EFI is manipulated in the log. It is 110 * either inserted in the AIL or aborted in the event of a log I/O error. In 111 * either case, the EFI transaction has been successfully committed to make it 112 * this far. Therefore, we expect whoever committed the EFI to either construct 113 * and commit the EFD or drop the EFD's reference in the event of error. Simply 114 * drop the log's EFI reference now that the log is done with it. 115 */ 116 STATIC void 117 xfs_efi_item_unpin( 118 struct xfs_log_item *lip, 119 int remove) 120 { 121 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 122 xfs_efi_release(efip); 123 } 124 125 /* 126 * The EFI has been either committed or aborted if the transaction has been 127 * cancelled. If the transaction was cancelled, an EFD isn't going to be 128 * constructed and thus we free the EFI here directly. 129 */ 130 STATIC void 131 xfs_efi_item_release( 132 struct xfs_log_item *lip) 133 { 134 xfs_efi_release(EFI_ITEM(lip)); 135 } 136 137 /* 138 * Allocate and initialize an efi item with the given number of extents. 139 */ 140 STATIC struct xfs_efi_log_item * 141 xfs_efi_init( 142 struct xfs_mount *mp, 143 uint nextents) 144 145 { 146 struct xfs_efi_log_item *efip; 147 148 ASSERT(nextents > 0); 149 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { 150 efip = kzalloc(xfs_efi_log_item_sizeof(nextents), 151 GFP_KERNEL | __GFP_NOFAIL); 152 } else { 153 efip = kmem_cache_zalloc(xfs_efi_cache, 154 GFP_KERNEL | __GFP_NOFAIL); 155 } 156 157 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops); 158 efip->efi_format.efi_nextents = nextents; 159 efip->efi_format.efi_id = (uintptr_t)(void *)efip; 160 atomic_set(&efip->efi_next_extent, 0); 161 atomic_set(&efip->efi_refcount, 2); 162 163 return efip; 164 } 165 166 /* 167 * Copy an EFI format buffer from the given buf, and into the destination 168 * EFI format structure. 169 * The given buffer can be in 32 bit or 64 bit form (which has different padding), 170 * one of which will be the native format for this kernel. 171 * It will handle the conversion of formats if necessary. 172 */ 173 STATIC int 174 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt) 175 { 176 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr; 177 uint i; 178 uint len = xfs_efi_log_format_sizeof(src_efi_fmt->efi_nextents); 179 uint len32 = xfs_efi_log_format32_sizeof(src_efi_fmt->efi_nextents); 180 uint len64 = xfs_efi_log_format64_sizeof(src_efi_fmt->efi_nextents); 181 182 if (buf->i_len == len) { 183 memcpy(dst_efi_fmt, src_efi_fmt, 184 offsetof(struct xfs_efi_log_format, efi_extents)); 185 for (i = 0; i < src_efi_fmt->efi_nextents; i++) 186 memcpy(&dst_efi_fmt->efi_extents[i], 187 &src_efi_fmt->efi_extents[i], 188 sizeof(struct xfs_extent)); 189 return 0; 190 } else if (buf->i_len == len32) { 191 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr; 192 193 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type; 194 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size; 195 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents; 196 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id; 197 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { 198 dst_efi_fmt->efi_extents[i].ext_start = 199 src_efi_fmt_32->efi_extents[i].ext_start; 200 dst_efi_fmt->efi_extents[i].ext_len = 201 src_efi_fmt_32->efi_extents[i].ext_len; 202 } 203 return 0; 204 } else if (buf->i_len == len64) { 205 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr; 206 207 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type; 208 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size; 209 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents; 210 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id; 211 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { 212 dst_efi_fmt->efi_extents[i].ext_start = 213 src_efi_fmt_64->efi_extents[i].ext_start; 214 dst_efi_fmt->efi_extents[i].ext_len = 215 src_efi_fmt_64->efi_extents[i].ext_len; 216 } 217 return 0; 218 } 219 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, NULL, buf->i_addr, 220 buf->i_len); 221 return -EFSCORRUPTED; 222 } 223 224 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip) 225 { 226 return container_of(lip, struct xfs_efd_log_item, efd_item); 227 } 228 229 STATIC void 230 xfs_efd_item_free(struct xfs_efd_log_item *efdp) 231 { 232 kmem_free(efdp->efd_item.li_lv_shadow); 233 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS) 234 kmem_free(efdp); 235 else 236 kmem_cache_free(xfs_efd_cache, efdp); 237 } 238 239 STATIC void 240 xfs_efd_item_size( 241 struct xfs_log_item *lip, 242 int *nvecs, 243 int *nbytes) 244 { 245 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 246 247 *nvecs += 1; 248 *nbytes += xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents); 249 } 250 251 /* 252 * This is called to fill in the vector of log iovecs for the 253 * given efd log item. We use only 1 iovec, and we point that 254 * at the efd_log_format structure embedded in the efd item. 255 * It is at this point that we assert that all of the extent 256 * slots in the efd item have been filled. 257 */ 258 STATIC void 259 xfs_efd_item_format( 260 struct xfs_log_item *lip, 261 struct xfs_log_vec *lv) 262 { 263 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 264 struct xfs_log_iovec *vecp = NULL; 265 266 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); 267 268 efdp->efd_format.efd_type = XFS_LI_EFD; 269 efdp->efd_format.efd_size = 1; 270 271 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT, 272 &efdp->efd_format, 273 xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents)); 274 } 275 276 /* 277 * The EFD is either committed or aborted if the transaction is cancelled. If 278 * the transaction is cancelled, drop our reference to the EFI and free the EFD. 279 */ 280 STATIC void 281 xfs_efd_item_release( 282 struct xfs_log_item *lip) 283 { 284 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 285 286 xfs_efi_release(efdp->efd_efip); 287 xfs_efd_item_free(efdp); 288 } 289 290 static struct xfs_log_item * 291 xfs_efd_item_intent( 292 struct xfs_log_item *lip) 293 { 294 return &EFD_ITEM(lip)->efd_efip->efi_item; 295 } 296 297 static const struct xfs_item_ops xfs_efd_item_ops = { 298 .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED | 299 XFS_ITEM_INTENT_DONE, 300 .iop_size = xfs_efd_item_size, 301 .iop_format = xfs_efd_item_format, 302 .iop_release = xfs_efd_item_release, 303 .iop_intent = xfs_efd_item_intent, 304 }; 305 306 /* 307 * Allocate an "extent free done" log item that will hold nextents worth of 308 * extents. The caller must use all nextents extents, because we are not 309 * flexible about this at all. 310 */ 311 static struct xfs_efd_log_item * 312 xfs_trans_get_efd( 313 struct xfs_trans *tp, 314 struct xfs_efi_log_item *efip, 315 unsigned int nextents) 316 { 317 struct xfs_efd_log_item *efdp; 318 319 ASSERT(nextents > 0); 320 321 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) { 322 efdp = kzalloc(xfs_efd_log_item_sizeof(nextents), 323 GFP_KERNEL | __GFP_NOFAIL); 324 } else { 325 efdp = kmem_cache_zalloc(xfs_efd_cache, 326 GFP_KERNEL | __GFP_NOFAIL); 327 } 328 329 xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD, 330 &xfs_efd_item_ops); 331 efdp->efd_efip = efip; 332 efdp->efd_format.efd_nextents = nextents; 333 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; 334 335 xfs_trans_add_item(tp, &efdp->efd_item); 336 return efdp; 337 } 338 339 /* 340 * Fill the EFD with all extents from the EFI when we need to roll the 341 * transaction and continue with a new EFI. 342 * 343 * This simply copies all the extents in the EFI to the EFD rather than make 344 * assumptions about which extents in the EFI have already been processed. We 345 * currently keep the xefi list in the same order as the EFI extent list, but 346 * that may not always be the case. Copying everything avoids leaving a landmine 347 * were we fail to cancel all the extents in an EFI if the xefi list is 348 * processed in a different order to the extents in the EFI. 349 */ 350 static void 351 xfs_efd_from_efi( 352 struct xfs_efd_log_item *efdp) 353 { 354 struct xfs_efi_log_item *efip = efdp->efd_efip; 355 uint i; 356 357 ASSERT(efip->efi_format.efi_nextents > 0); 358 ASSERT(efdp->efd_next_extent < efip->efi_format.efi_nextents); 359 360 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 361 efdp->efd_format.efd_extents[i] = 362 efip->efi_format.efi_extents[i]; 363 } 364 efdp->efd_next_extent = efip->efi_format.efi_nextents; 365 } 366 367 /* 368 * Free an extent and log it to the EFD. Note that the transaction is marked 369 * dirty regardless of whether the extent free succeeds or fails to support the 370 * EFI/EFD lifecycle rules. 371 */ 372 static int 373 xfs_trans_free_extent( 374 struct xfs_trans *tp, 375 struct xfs_efd_log_item *efdp, 376 struct xfs_extent_free_item *xefi) 377 { 378 struct xfs_owner_info oinfo = { }; 379 struct xfs_mount *mp = tp->t_mountp; 380 struct xfs_extent *extp; 381 uint next_extent; 382 xfs_agblock_t agbno = XFS_FSB_TO_AGBNO(mp, 383 xefi->xefi_startblock); 384 int error; 385 386 oinfo.oi_owner = xefi->xefi_owner; 387 if (xefi->xefi_flags & XFS_EFI_ATTR_FORK) 388 oinfo.oi_flags |= XFS_OWNER_INFO_ATTR_FORK; 389 if (xefi->xefi_flags & XFS_EFI_BMBT_BLOCK) 390 oinfo.oi_flags |= XFS_OWNER_INFO_BMBT_BLOCK; 391 392 trace_xfs_bmap_free_deferred(tp->t_mountp, xefi->xefi_pag->pag_agno, 0, 393 agbno, xefi->xefi_blockcount); 394 395 error = __xfs_free_extent(tp, xefi->xefi_pag, agbno, 396 xefi->xefi_blockcount, &oinfo, xefi->xefi_agresv, 397 xefi->xefi_flags & XFS_EFI_SKIP_DISCARD); 398 399 /* 400 * Mark the transaction dirty, even on error. This ensures the 401 * transaction is aborted, which: 402 * 403 * 1.) releases the EFI and frees the EFD 404 * 2.) shuts down the filesystem 405 */ 406 tp->t_flags |= XFS_TRANS_DIRTY | XFS_TRANS_HAS_INTENT_DONE; 407 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); 408 409 /* 410 * If we need a new transaction to make progress, the caller will log a 411 * new EFI with the current contents. It will also log an EFD to cancel 412 * the existing EFI, and so we need to copy all the unprocessed extents 413 * in this EFI to the EFD so this works correctly. 414 */ 415 if (error == -EAGAIN) { 416 xfs_efd_from_efi(efdp); 417 return error; 418 } 419 420 next_extent = efdp->efd_next_extent; 421 ASSERT(next_extent < efdp->efd_format.efd_nextents); 422 extp = &(efdp->efd_format.efd_extents[next_extent]); 423 extp->ext_start = xefi->xefi_startblock; 424 extp->ext_len = xefi->xefi_blockcount; 425 efdp->efd_next_extent++; 426 427 return error; 428 } 429 430 /* Sort bmap items by AG. */ 431 static int 432 xfs_extent_free_diff_items( 433 void *priv, 434 const struct list_head *a, 435 const struct list_head *b) 436 { 437 struct xfs_extent_free_item *ra; 438 struct xfs_extent_free_item *rb; 439 440 ra = container_of(a, struct xfs_extent_free_item, xefi_list); 441 rb = container_of(b, struct xfs_extent_free_item, xefi_list); 442 443 return ra->xefi_pag->pag_agno - rb->xefi_pag->pag_agno; 444 } 445 446 /* Log a free extent to the intent item. */ 447 STATIC void 448 xfs_extent_free_log_item( 449 struct xfs_trans *tp, 450 struct xfs_efi_log_item *efip, 451 struct xfs_extent_free_item *xefi) 452 { 453 uint next_extent; 454 struct xfs_extent *extp; 455 456 tp->t_flags |= XFS_TRANS_DIRTY; 457 set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags); 458 459 /* 460 * atomic_inc_return gives us the value after the increment; 461 * we want to use it as an array index so we need to subtract 1 from 462 * it. 463 */ 464 next_extent = atomic_inc_return(&efip->efi_next_extent) - 1; 465 ASSERT(next_extent < efip->efi_format.efi_nextents); 466 extp = &efip->efi_format.efi_extents[next_extent]; 467 extp->ext_start = xefi->xefi_startblock; 468 extp->ext_len = xefi->xefi_blockcount; 469 } 470 471 static struct xfs_log_item * 472 xfs_extent_free_create_intent( 473 struct xfs_trans *tp, 474 struct list_head *items, 475 unsigned int count, 476 bool sort) 477 { 478 struct xfs_mount *mp = tp->t_mountp; 479 struct xfs_efi_log_item *efip = xfs_efi_init(mp, count); 480 struct xfs_extent_free_item *xefi; 481 482 ASSERT(count > 0); 483 484 xfs_trans_add_item(tp, &efip->efi_item); 485 if (sort) 486 list_sort(mp, items, xfs_extent_free_diff_items); 487 list_for_each_entry(xefi, items, xefi_list) 488 xfs_extent_free_log_item(tp, efip, xefi); 489 return &efip->efi_item; 490 } 491 492 /* Get an EFD so we can process all the free extents. */ 493 static struct xfs_log_item * 494 xfs_extent_free_create_done( 495 struct xfs_trans *tp, 496 struct xfs_log_item *intent, 497 unsigned int count) 498 { 499 return &xfs_trans_get_efd(tp, EFI_ITEM(intent), count)->efd_item; 500 } 501 502 /* Take a passive ref to the AG containing the space we're freeing. */ 503 void 504 xfs_extent_free_get_group( 505 struct xfs_mount *mp, 506 struct xfs_extent_free_item *xefi) 507 { 508 xfs_agnumber_t agno; 509 510 agno = XFS_FSB_TO_AGNO(mp, xefi->xefi_startblock); 511 xefi->xefi_pag = xfs_perag_intent_get(mp, agno); 512 } 513 514 /* Release a passive AG ref after some freeing work. */ 515 static inline void 516 xfs_extent_free_put_group( 517 struct xfs_extent_free_item *xefi) 518 { 519 xfs_perag_intent_put(xefi->xefi_pag); 520 } 521 522 /* Process a free extent. */ 523 STATIC int 524 xfs_extent_free_finish_item( 525 struct xfs_trans *tp, 526 struct xfs_log_item *done, 527 struct list_head *item, 528 struct xfs_btree_cur **state) 529 { 530 struct xfs_extent_free_item *xefi; 531 int error; 532 533 xefi = container_of(item, struct xfs_extent_free_item, xefi_list); 534 535 error = xfs_trans_free_extent(tp, EFD_ITEM(done), xefi); 536 537 /* 538 * Don't free the XEFI if we need a new transaction to complete 539 * processing of it. 540 */ 541 if (error == -EAGAIN) 542 return error; 543 544 xfs_extent_free_put_group(xefi); 545 kmem_cache_free(xfs_extfree_item_cache, xefi); 546 return error; 547 } 548 549 /* Abort all pending EFIs. */ 550 STATIC void 551 xfs_extent_free_abort_intent( 552 struct xfs_log_item *intent) 553 { 554 xfs_efi_release(EFI_ITEM(intent)); 555 } 556 557 /* Cancel a free extent. */ 558 STATIC void 559 xfs_extent_free_cancel_item( 560 struct list_head *item) 561 { 562 struct xfs_extent_free_item *xefi; 563 564 xefi = container_of(item, struct xfs_extent_free_item, xefi_list); 565 566 xfs_extent_free_put_group(xefi); 567 kmem_cache_free(xfs_extfree_item_cache, xefi); 568 } 569 570 const struct xfs_defer_op_type xfs_extent_free_defer_type = { 571 .max_items = XFS_EFI_MAX_FAST_EXTENTS, 572 .create_intent = xfs_extent_free_create_intent, 573 .abort_intent = xfs_extent_free_abort_intent, 574 .create_done = xfs_extent_free_create_done, 575 .finish_item = xfs_extent_free_finish_item, 576 .cancel_item = xfs_extent_free_cancel_item, 577 }; 578 579 /* 580 * AGFL blocks are accounted differently in the reserve pools and are not 581 * inserted into the busy extent list. 582 */ 583 STATIC int 584 xfs_agfl_free_finish_item( 585 struct xfs_trans *tp, 586 struct xfs_log_item *done, 587 struct list_head *item, 588 struct xfs_btree_cur **state) 589 { 590 struct xfs_owner_info oinfo = { }; 591 struct xfs_mount *mp = tp->t_mountp; 592 struct xfs_efd_log_item *efdp = EFD_ITEM(done); 593 struct xfs_extent_free_item *xefi; 594 struct xfs_extent *extp; 595 struct xfs_buf *agbp; 596 int error; 597 xfs_agblock_t agbno; 598 uint next_extent; 599 600 xefi = container_of(item, struct xfs_extent_free_item, xefi_list); 601 ASSERT(xefi->xefi_blockcount == 1); 602 agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock); 603 oinfo.oi_owner = xefi->xefi_owner; 604 605 trace_xfs_agfl_free_deferred(mp, xefi->xefi_pag->pag_agno, 0, agbno, 606 xefi->xefi_blockcount); 607 608 error = xfs_alloc_read_agf(xefi->xefi_pag, tp, 0, &agbp); 609 if (!error) 610 error = xfs_free_agfl_block(tp, xefi->xefi_pag->pag_agno, 611 agbno, agbp, &oinfo); 612 613 /* 614 * Mark the transaction dirty, even on error. This ensures the 615 * transaction is aborted, which: 616 * 617 * 1.) releases the EFI and frees the EFD 618 * 2.) shuts down the filesystem 619 */ 620 tp->t_flags |= XFS_TRANS_DIRTY; 621 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); 622 623 next_extent = efdp->efd_next_extent; 624 ASSERT(next_extent < efdp->efd_format.efd_nextents); 625 extp = &(efdp->efd_format.efd_extents[next_extent]); 626 extp->ext_start = xefi->xefi_startblock; 627 extp->ext_len = xefi->xefi_blockcount; 628 efdp->efd_next_extent++; 629 630 xfs_extent_free_put_group(xefi); 631 kmem_cache_free(xfs_extfree_item_cache, xefi); 632 return error; 633 } 634 635 /* sub-type with special handling for AGFL deferred frees */ 636 const struct xfs_defer_op_type xfs_agfl_free_defer_type = { 637 .max_items = XFS_EFI_MAX_FAST_EXTENTS, 638 .create_intent = xfs_extent_free_create_intent, 639 .abort_intent = xfs_extent_free_abort_intent, 640 .create_done = xfs_extent_free_create_done, 641 .finish_item = xfs_agfl_free_finish_item, 642 .cancel_item = xfs_extent_free_cancel_item, 643 }; 644 645 /* Is this recovered EFI ok? */ 646 static inline bool 647 xfs_efi_validate_ext( 648 struct xfs_mount *mp, 649 struct xfs_extent *extp) 650 { 651 return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len); 652 } 653 654 /* 655 * Process an extent free intent item that was recovered from 656 * the log. We need to free the extents that it describes. 657 */ 658 STATIC int 659 xfs_efi_item_recover( 660 struct xfs_defer_pending *dfp, 661 struct list_head *capture_list) 662 { 663 struct xfs_trans_res resv; 664 struct xfs_log_item *lip = dfp->dfp_intent; 665 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 666 struct xfs_mount *mp = lip->li_log->l_mp; 667 struct xfs_efd_log_item *efdp; 668 struct xfs_trans *tp; 669 int i; 670 int error = 0; 671 bool requeue_only = false; 672 673 /* 674 * First check the validity of the extents described by the 675 * EFI. If any are bad, then assume that all are bad and 676 * just toss the EFI. 677 */ 678 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 679 if (!xfs_efi_validate_ext(mp, 680 &efip->efi_format.efi_extents[i])) { 681 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 682 &efip->efi_format, 683 sizeof(efip->efi_format)); 684 return -EFSCORRUPTED; 685 } 686 } 687 688 resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate); 689 error = xfs_trans_alloc(mp, &resv, 0, 0, 0, &tp); 690 if (error) 691 return error; 692 693 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 694 xlog_recover_transfer_intent(tp, dfp); 695 696 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 697 struct xfs_extent_free_item fake = { 698 .xefi_owner = XFS_RMAP_OWN_UNKNOWN, 699 .xefi_agresv = XFS_AG_RESV_NONE, 700 }; 701 struct xfs_extent *extp; 702 703 extp = &efip->efi_format.efi_extents[i]; 704 705 fake.xefi_startblock = extp->ext_start; 706 fake.xefi_blockcount = extp->ext_len; 707 708 if (!requeue_only) { 709 xfs_extent_free_get_group(mp, &fake); 710 error = xfs_trans_free_extent(tp, efdp, &fake); 711 xfs_extent_free_put_group(&fake); 712 } 713 714 /* 715 * If we can't free the extent without potentially deadlocking, 716 * requeue the rest of the extents to a new so that they get 717 * run again later with a new transaction context. 718 */ 719 if (error == -EAGAIN || requeue_only) { 720 error = xfs_free_extent_later(tp, fake.xefi_startblock, 721 fake.xefi_blockcount, 722 &XFS_RMAP_OINFO_ANY_OWNER, 723 fake.xefi_agresv); 724 if (!error) { 725 requeue_only = true; 726 continue; 727 } 728 } 729 730 if (error == -EFSCORRUPTED) 731 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 732 extp, sizeof(*extp)); 733 if (error) 734 goto abort_error; 735 736 } 737 738 return xfs_defer_ops_capture_and_commit(tp, capture_list); 739 740 abort_error: 741 xfs_trans_cancel(tp); 742 return error; 743 } 744 745 STATIC bool 746 xfs_efi_item_match( 747 struct xfs_log_item *lip, 748 uint64_t intent_id) 749 { 750 return EFI_ITEM(lip)->efi_format.efi_id == intent_id; 751 } 752 753 /* Relog an intent item to push the log tail forward. */ 754 static struct xfs_log_item * 755 xfs_efi_item_relog( 756 struct xfs_log_item *intent, 757 struct xfs_trans *tp) 758 { 759 struct xfs_efd_log_item *efdp; 760 struct xfs_efi_log_item *efip; 761 struct xfs_extent *extp; 762 unsigned int count; 763 764 count = EFI_ITEM(intent)->efi_format.efi_nextents; 765 extp = EFI_ITEM(intent)->efi_format.efi_extents; 766 767 tp->t_flags |= XFS_TRANS_DIRTY; 768 efdp = xfs_trans_get_efd(tp, EFI_ITEM(intent), count); 769 efdp->efd_next_extent = count; 770 memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp)); 771 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); 772 773 efip = xfs_efi_init(tp->t_mountp, count); 774 memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp)); 775 atomic_set(&efip->efi_next_extent, count); 776 xfs_trans_add_item(tp, &efip->efi_item); 777 set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags); 778 return &efip->efi_item; 779 } 780 781 static const struct xfs_item_ops xfs_efi_item_ops = { 782 .flags = XFS_ITEM_INTENT, 783 .iop_size = xfs_efi_item_size, 784 .iop_format = xfs_efi_item_format, 785 .iop_unpin = xfs_efi_item_unpin, 786 .iop_release = xfs_efi_item_release, 787 .iop_recover = xfs_efi_item_recover, 788 .iop_match = xfs_efi_item_match, 789 .iop_relog = xfs_efi_item_relog, 790 }; 791 792 /* 793 * This routine is called to create an in-core extent free intent 794 * item from the efi format structure which was logged on disk. 795 * It allocates an in-core efi, copies the extents from the format 796 * structure into it, and adds the efi to the AIL with the given 797 * LSN. 798 */ 799 STATIC int 800 xlog_recover_efi_commit_pass2( 801 struct xlog *log, 802 struct list_head *buffer_list, 803 struct xlog_recover_item *item, 804 xfs_lsn_t lsn) 805 { 806 struct xfs_mount *mp = log->l_mp; 807 struct xfs_efi_log_item *efip; 808 struct xfs_efi_log_format *efi_formatp; 809 int error; 810 811 efi_formatp = item->ri_buf[0].i_addr; 812 813 if (item->ri_buf[0].i_len < xfs_efi_log_format_sizeof(0)) { 814 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 815 item->ri_buf[0].i_addr, item->ri_buf[0].i_len); 816 return -EFSCORRUPTED; 817 } 818 819 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 820 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format); 821 if (error) { 822 xfs_efi_item_free(efip); 823 return error; 824 } 825 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 826 827 xlog_recover_intent_item(log, &efip->efi_item, lsn, 828 XFS_DEFER_OPS_TYPE_FREE); 829 return 0; 830 } 831 832 const struct xlog_recover_item_ops xlog_efi_item_ops = { 833 .item_type = XFS_LI_EFI, 834 .commit_pass2 = xlog_recover_efi_commit_pass2, 835 }; 836 837 /* 838 * This routine is called when an EFD format structure is found in a committed 839 * transaction in the log. Its purpose is to cancel the corresponding EFI if it 840 * was still in the log. To do this it searches the AIL for the EFI with an id 841 * equal to that in the EFD format structure. If we find it we drop the EFD 842 * reference, which removes the EFI from the AIL and frees it. 843 */ 844 STATIC int 845 xlog_recover_efd_commit_pass2( 846 struct xlog *log, 847 struct list_head *buffer_list, 848 struct xlog_recover_item *item, 849 xfs_lsn_t lsn) 850 { 851 struct xfs_efd_log_format *efd_formatp; 852 int buflen = item->ri_buf[0].i_len; 853 854 efd_formatp = item->ri_buf[0].i_addr; 855 856 if (buflen < sizeof(struct xfs_efd_log_format)) { 857 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp, 858 efd_formatp, buflen); 859 return -EFSCORRUPTED; 860 } 861 862 if (item->ri_buf[0].i_len != xfs_efd_log_format32_sizeof( 863 efd_formatp->efd_nextents) && 864 item->ri_buf[0].i_len != xfs_efd_log_format64_sizeof( 865 efd_formatp->efd_nextents)) { 866 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp, 867 efd_formatp, buflen); 868 return -EFSCORRUPTED; 869 } 870 871 xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id); 872 return 0; 873 } 874 875 const struct xlog_recover_item_ops xlog_efd_item_ops = { 876 .item_type = XFS_LI_EFD, 877 .commit_pass2 = xlog_recover_efd_commit_pass2, 878 }; 879