1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_bit.h" 12 #include "xfs_shared.h" 13 #include "xfs_mount.h" 14 #include "xfs_defer.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_extfree_item.h" 18 #include "xfs_log.h" 19 #include "xfs_btree.h" 20 #include "xfs_rmap.h" 21 #include "xfs_alloc.h" 22 #include "xfs_bmap.h" 23 #include "xfs_trace.h" 24 #include "xfs_error.h" 25 #include "xfs_log_priv.h" 26 #include "xfs_log_recover.h" 27 28 kmem_zone_t *xfs_efi_zone; 29 kmem_zone_t *xfs_efd_zone; 30 31 static const struct xfs_item_ops xfs_efi_item_ops; 32 33 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip) 34 { 35 return container_of(lip, struct xfs_efi_log_item, efi_item); 36 } 37 38 STATIC void 39 xfs_efi_item_free( 40 struct xfs_efi_log_item *efip) 41 { 42 kmem_free(efip->efi_item.li_lv_shadow); 43 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS) 44 kmem_free(efip); 45 else 46 kmem_cache_free(xfs_efi_zone, efip); 47 } 48 49 /* 50 * Freeing the efi requires that we remove it from the AIL if it has already 51 * been placed there. However, the EFI may not yet have been placed in the AIL 52 * when called by xfs_efi_release() from EFD processing due to the ordering of 53 * committed vs unpin operations in bulk insert operations. Hence the reference 54 * count to ensure only the last caller frees the EFI. 55 */ 56 STATIC void 57 xfs_efi_release( 58 struct xfs_efi_log_item *efip) 59 { 60 ASSERT(atomic_read(&efip->efi_refcount) > 0); 61 if (atomic_dec_and_test(&efip->efi_refcount)) { 62 xfs_trans_ail_delete(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR); 63 xfs_efi_item_free(efip); 64 } 65 } 66 67 /* 68 * This returns the number of iovecs needed to log the given efi item. 69 * We only need 1 iovec for an efi item. It just logs the efi_log_format 70 * structure. 71 */ 72 static inline int 73 xfs_efi_item_sizeof( 74 struct xfs_efi_log_item *efip) 75 { 76 return sizeof(struct xfs_efi_log_format) + 77 (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t); 78 } 79 80 STATIC void 81 xfs_efi_item_size( 82 struct xfs_log_item *lip, 83 int *nvecs, 84 int *nbytes) 85 { 86 *nvecs += 1; 87 *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip)); 88 } 89 90 /* 91 * This is called to fill in the vector of log iovecs for the 92 * given efi log item. We use only 1 iovec, and we point that 93 * at the efi_log_format structure embedded in the efi item. 94 * It is at this point that we assert that all of the extent 95 * slots in the efi item have been filled. 96 */ 97 STATIC void 98 xfs_efi_item_format( 99 struct xfs_log_item *lip, 100 struct xfs_log_vec *lv) 101 { 102 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 103 struct xfs_log_iovec *vecp = NULL; 104 105 ASSERT(atomic_read(&efip->efi_next_extent) == 106 efip->efi_format.efi_nextents); 107 108 efip->efi_format.efi_type = XFS_LI_EFI; 109 efip->efi_format.efi_size = 1; 110 111 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT, 112 &efip->efi_format, 113 xfs_efi_item_sizeof(efip)); 114 } 115 116 117 /* 118 * The unpin operation is the last place an EFI is manipulated in the log. It is 119 * either inserted in the AIL or aborted in the event of a log I/O error. In 120 * either case, the EFI transaction has been successfully committed to make it 121 * this far. Therefore, we expect whoever committed the EFI to either construct 122 * and commit the EFD or drop the EFD's reference in the event of error. Simply 123 * drop the log's EFI reference now that the log is done with it. 124 */ 125 STATIC void 126 xfs_efi_item_unpin( 127 struct xfs_log_item *lip, 128 int remove) 129 { 130 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 131 xfs_efi_release(efip); 132 } 133 134 /* 135 * The EFI has been either committed or aborted if the transaction has been 136 * cancelled. If the transaction was cancelled, an EFD isn't going to be 137 * constructed and thus we free the EFI here directly. 138 */ 139 STATIC void 140 xfs_efi_item_release( 141 struct xfs_log_item *lip) 142 { 143 xfs_efi_release(EFI_ITEM(lip)); 144 } 145 146 /* 147 * Allocate and initialize an efi item with the given number of extents. 148 */ 149 STATIC struct xfs_efi_log_item * 150 xfs_efi_init( 151 struct xfs_mount *mp, 152 uint nextents) 153 154 { 155 struct xfs_efi_log_item *efip; 156 uint size; 157 158 ASSERT(nextents > 0); 159 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { 160 size = (uint)(sizeof(struct xfs_efi_log_item) + 161 ((nextents - 1) * sizeof(xfs_extent_t))); 162 efip = kmem_zalloc(size, 0); 163 } else { 164 efip = kmem_cache_zalloc(xfs_efi_zone, 165 GFP_KERNEL | __GFP_NOFAIL); 166 } 167 168 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops); 169 efip->efi_format.efi_nextents = nextents; 170 efip->efi_format.efi_id = (uintptr_t)(void *)efip; 171 atomic_set(&efip->efi_next_extent, 0); 172 atomic_set(&efip->efi_refcount, 2); 173 174 return efip; 175 } 176 177 /* 178 * Copy an EFI format buffer from the given buf, and into the destination 179 * EFI format structure. 180 * The given buffer can be in 32 bit or 64 bit form (which has different padding), 181 * one of which will be the native format for this kernel. 182 * It will handle the conversion of formats if necessary. 183 */ 184 STATIC int 185 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt) 186 { 187 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr; 188 uint i; 189 uint len = sizeof(xfs_efi_log_format_t) + 190 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t); 191 uint len32 = sizeof(xfs_efi_log_format_32_t) + 192 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t); 193 uint len64 = sizeof(xfs_efi_log_format_64_t) + 194 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t); 195 196 if (buf->i_len == len) { 197 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len); 198 return 0; 199 } else if (buf->i_len == len32) { 200 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr; 201 202 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type; 203 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size; 204 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents; 205 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id; 206 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { 207 dst_efi_fmt->efi_extents[i].ext_start = 208 src_efi_fmt_32->efi_extents[i].ext_start; 209 dst_efi_fmt->efi_extents[i].ext_len = 210 src_efi_fmt_32->efi_extents[i].ext_len; 211 } 212 return 0; 213 } else if (buf->i_len == len64) { 214 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr; 215 216 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type; 217 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size; 218 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents; 219 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id; 220 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { 221 dst_efi_fmt->efi_extents[i].ext_start = 222 src_efi_fmt_64->efi_extents[i].ext_start; 223 dst_efi_fmt->efi_extents[i].ext_len = 224 src_efi_fmt_64->efi_extents[i].ext_len; 225 } 226 return 0; 227 } 228 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); 229 return -EFSCORRUPTED; 230 } 231 232 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip) 233 { 234 return container_of(lip, struct xfs_efd_log_item, efd_item); 235 } 236 237 STATIC void 238 xfs_efd_item_free(struct xfs_efd_log_item *efdp) 239 { 240 kmem_free(efdp->efd_item.li_lv_shadow); 241 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS) 242 kmem_free(efdp); 243 else 244 kmem_cache_free(xfs_efd_zone, efdp); 245 } 246 247 /* 248 * This returns the number of iovecs needed to log the given efd item. 249 * We only need 1 iovec for an efd item. It just logs the efd_log_format 250 * structure. 251 */ 252 static inline int 253 xfs_efd_item_sizeof( 254 struct xfs_efd_log_item *efdp) 255 { 256 return sizeof(xfs_efd_log_format_t) + 257 (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t); 258 } 259 260 STATIC void 261 xfs_efd_item_size( 262 struct xfs_log_item *lip, 263 int *nvecs, 264 int *nbytes) 265 { 266 *nvecs += 1; 267 *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip)); 268 } 269 270 /* 271 * This is called to fill in the vector of log iovecs for the 272 * given efd log item. We use only 1 iovec, and we point that 273 * at the efd_log_format structure embedded in the efd item. 274 * It is at this point that we assert that all of the extent 275 * slots in the efd item have been filled. 276 */ 277 STATIC void 278 xfs_efd_item_format( 279 struct xfs_log_item *lip, 280 struct xfs_log_vec *lv) 281 { 282 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 283 struct xfs_log_iovec *vecp = NULL; 284 285 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); 286 287 efdp->efd_format.efd_type = XFS_LI_EFD; 288 efdp->efd_format.efd_size = 1; 289 290 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT, 291 &efdp->efd_format, 292 xfs_efd_item_sizeof(efdp)); 293 } 294 295 /* 296 * The EFD is either committed or aborted if the transaction is cancelled. If 297 * the transaction is cancelled, drop our reference to the EFI and free the EFD. 298 */ 299 STATIC void 300 xfs_efd_item_release( 301 struct xfs_log_item *lip) 302 { 303 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 304 305 xfs_efi_release(efdp->efd_efip); 306 xfs_efd_item_free(efdp); 307 } 308 309 static const struct xfs_item_ops xfs_efd_item_ops = { 310 .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED, 311 .iop_size = xfs_efd_item_size, 312 .iop_format = xfs_efd_item_format, 313 .iop_release = xfs_efd_item_release, 314 }; 315 316 /* 317 * Allocate an "extent free done" log item that will hold nextents worth of 318 * extents. The caller must use all nextents extents, because we are not 319 * flexible about this at all. 320 */ 321 static struct xfs_efd_log_item * 322 xfs_trans_get_efd( 323 struct xfs_trans *tp, 324 struct xfs_efi_log_item *efip, 325 unsigned int nextents) 326 { 327 struct xfs_efd_log_item *efdp; 328 329 ASSERT(nextents > 0); 330 331 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) { 332 efdp = kmem_zalloc(sizeof(struct xfs_efd_log_item) + 333 (nextents - 1) * sizeof(struct xfs_extent), 334 0); 335 } else { 336 efdp = kmem_cache_zalloc(xfs_efd_zone, 337 GFP_KERNEL | __GFP_NOFAIL); 338 } 339 340 xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD, 341 &xfs_efd_item_ops); 342 efdp->efd_efip = efip; 343 efdp->efd_format.efd_nextents = nextents; 344 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; 345 346 xfs_trans_add_item(tp, &efdp->efd_item); 347 return efdp; 348 } 349 350 /* 351 * Free an extent and log it to the EFD. Note that the transaction is marked 352 * dirty regardless of whether the extent free succeeds or fails to support the 353 * EFI/EFD lifecycle rules. 354 */ 355 static int 356 xfs_trans_free_extent( 357 struct xfs_trans *tp, 358 struct xfs_efd_log_item *efdp, 359 xfs_fsblock_t start_block, 360 xfs_extlen_t ext_len, 361 const struct xfs_owner_info *oinfo, 362 bool skip_discard) 363 { 364 struct xfs_mount *mp = tp->t_mountp; 365 struct xfs_extent *extp; 366 uint next_extent; 367 xfs_agnumber_t agno = XFS_FSB_TO_AGNO(mp, start_block); 368 xfs_agblock_t agbno = XFS_FSB_TO_AGBNO(mp, 369 start_block); 370 int error; 371 372 trace_xfs_bmap_free_deferred(tp->t_mountp, agno, 0, agbno, ext_len); 373 374 error = __xfs_free_extent(tp, start_block, ext_len, 375 oinfo, XFS_AG_RESV_NONE, skip_discard); 376 /* 377 * Mark the transaction dirty, even on error. This ensures the 378 * transaction is aborted, which: 379 * 380 * 1.) releases the EFI and frees the EFD 381 * 2.) shuts down the filesystem 382 */ 383 tp->t_flags |= XFS_TRANS_DIRTY; 384 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); 385 386 next_extent = efdp->efd_next_extent; 387 ASSERT(next_extent < efdp->efd_format.efd_nextents); 388 extp = &(efdp->efd_format.efd_extents[next_extent]); 389 extp->ext_start = start_block; 390 extp->ext_len = ext_len; 391 efdp->efd_next_extent++; 392 393 return error; 394 } 395 396 /* Sort bmap items by AG. */ 397 static int 398 xfs_extent_free_diff_items( 399 void *priv, 400 struct list_head *a, 401 struct list_head *b) 402 { 403 struct xfs_mount *mp = priv; 404 struct xfs_extent_free_item *ra; 405 struct xfs_extent_free_item *rb; 406 407 ra = container_of(a, struct xfs_extent_free_item, xefi_list); 408 rb = container_of(b, struct xfs_extent_free_item, xefi_list); 409 return XFS_FSB_TO_AGNO(mp, ra->xefi_startblock) - 410 XFS_FSB_TO_AGNO(mp, rb->xefi_startblock); 411 } 412 413 /* Log a free extent to the intent item. */ 414 STATIC void 415 xfs_extent_free_log_item( 416 struct xfs_trans *tp, 417 struct xfs_efi_log_item *efip, 418 struct xfs_extent_free_item *free) 419 { 420 uint next_extent; 421 struct xfs_extent *extp; 422 423 tp->t_flags |= XFS_TRANS_DIRTY; 424 set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags); 425 426 /* 427 * atomic_inc_return gives us the value after the increment; 428 * we want to use it as an array index so we need to subtract 1 from 429 * it. 430 */ 431 next_extent = atomic_inc_return(&efip->efi_next_extent) - 1; 432 ASSERT(next_extent < efip->efi_format.efi_nextents); 433 extp = &efip->efi_format.efi_extents[next_extent]; 434 extp->ext_start = free->xefi_startblock; 435 extp->ext_len = free->xefi_blockcount; 436 } 437 438 static struct xfs_log_item * 439 xfs_extent_free_create_intent( 440 struct xfs_trans *tp, 441 struct list_head *items, 442 unsigned int count, 443 bool sort) 444 { 445 struct xfs_mount *mp = tp->t_mountp; 446 struct xfs_efi_log_item *efip = xfs_efi_init(mp, count); 447 struct xfs_extent_free_item *free; 448 449 ASSERT(count > 0); 450 451 xfs_trans_add_item(tp, &efip->efi_item); 452 if (sort) 453 list_sort(mp, items, xfs_extent_free_diff_items); 454 list_for_each_entry(free, items, xefi_list) 455 xfs_extent_free_log_item(tp, efip, free); 456 return &efip->efi_item; 457 } 458 459 /* Get an EFD so we can process all the free extents. */ 460 static struct xfs_log_item * 461 xfs_extent_free_create_done( 462 struct xfs_trans *tp, 463 struct xfs_log_item *intent, 464 unsigned int count) 465 { 466 return &xfs_trans_get_efd(tp, EFI_ITEM(intent), count)->efd_item; 467 } 468 469 /* Process a free extent. */ 470 STATIC int 471 xfs_extent_free_finish_item( 472 struct xfs_trans *tp, 473 struct xfs_log_item *done, 474 struct list_head *item, 475 struct xfs_btree_cur **state) 476 { 477 struct xfs_extent_free_item *free; 478 int error; 479 480 free = container_of(item, struct xfs_extent_free_item, xefi_list); 481 error = xfs_trans_free_extent(tp, EFD_ITEM(done), 482 free->xefi_startblock, 483 free->xefi_blockcount, 484 &free->xefi_oinfo, free->xefi_skip_discard); 485 kmem_free(free); 486 return error; 487 } 488 489 /* Abort all pending EFIs. */ 490 STATIC void 491 xfs_extent_free_abort_intent( 492 struct xfs_log_item *intent) 493 { 494 xfs_efi_release(EFI_ITEM(intent)); 495 } 496 497 /* Cancel a free extent. */ 498 STATIC void 499 xfs_extent_free_cancel_item( 500 struct list_head *item) 501 { 502 struct xfs_extent_free_item *free; 503 504 free = container_of(item, struct xfs_extent_free_item, xefi_list); 505 kmem_free(free); 506 } 507 508 const struct xfs_defer_op_type xfs_extent_free_defer_type = { 509 .max_items = XFS_EFI_MAX_FAST_EXTENTS, 510 .create_intent = xfs_extent_free_create_intent, 511 .abort_intent = xfs_extent_free_abort_intent, 512 .create_done = xfs_extent_free_create_done, 513 .finish_item = xfs_extent_free_finish_item, 514 .cancel_item = xfs_extent_free_cancel_item, 515 }; 516 517 /* 518 * AGFL blocks are accounted differently in the reserve pools and are not 519 * inserted into the busy extent list. 520 */ 521 STATIC int 522 xfs_agfl_free_finish_item( 523 struct xfs_trans *tp, 524 struct xfs_log_item *done, 525 struct list_head *item, 526 struct xfs_btree_cur **state) 527 { 528 struct xfs_mount *mp = tp->t_mountp; 529 struct xfs_efd_log_item *efdp = EFD_ITEM(done); 530 struct xfs_extent_free_item *free; 531 struct xfs_extent *extp; 532 struct xfs_buf *agbp; 533 int error; 534 xfs_agnumber_t agno; 535 xfs_agblock_t agbno; 536 uint next_extent; 537 538 free = container_of(item, struct xfs_extent_free_item, xefi_list); 539 ASSERT(free->xefi_blockcount == 1); 540 agno = XFS_FSB_TO_AGNO(mp, free->xefi_startblock); 541 agbno = XFS_FSB_TO_AGBNO(mp, free->xefi_startblock); 542 543 trace_xfs_agfl_free_deferred(mp, agno, 0, agbno, free->xefi_blockcount); 544 545 error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp); 546 if (!error) 547 error = xfs_free_agfl_block(tp, agno, agbno, agbp, 548 &free->xefi_oinfo); 549 550 /* 551 * Mark the transaction dirty, even on error. This ensures the 552 * transaction is aborted, which: 553 * 554 * 1.) releases the EFI and frees the EFD 555 * 2.) shuts down the filesystem 556 */ 557 tp->t_flags |= XFS_TRANS_DIRTY; 558 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); 559 560 next_extent = efdp->efd_next_extent; 561 ASSERT(next_extent < efdp->efd_format.efd_nextents); 562 extp = &(efdp->efd_format.efd_extents[next_extent]); 563 extp->ext_start = free->xefi_startblock; 564 extp->ext_len = free->xefi_blockcount; 565 efdp->efd_next_extent++; 566 567 kmem_free(free); 568 return error; 569 } 570 571 /* sub-type with special handling for AGFL deferred frees */ 572 const struct xfs_defer_op_type xfs_agfl_free_defer_type = { 573 .max_items = XFS_EFI_MAX_FAST_EXTENTS, 574 .create_intent = xfs_extent_free_create_intent, 575 .abort_intent = xfs_extent_free_abort_intent, 576 .create_done = xfs_extent_free_create_done, 577 .finish_item = xfs_agfl_free_finish_item, 578 .cancel_item = xfs_extent_free_cancel_item, 579 }; 580 581 /* 582 * Process an extent free intent item that was recovered from 583 * the log. We need to free the extents that it describes. 584 */ 585 STATIC int 586 xfs_efi_item_recover( 587 struct xfs_log_item *lip, 588 struct xfs_trans *parent_tp) 589 { 590 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 591 struct xfs_mount *mp = parent_tp->t_mountp; 592 struct xfs_efd_log_item *efdp; 593 struct xfs_trans *tp; 594 struct xfs_extent *extp; 595 xfs_fsblock_t startblock_fsb; 596 int i; 597 int error = 0; 598 599 /* 600 * First check the validity of the extents described by the 601 * EFI. If any are bad, then assume that all are bad and 602 * just toss the EFI. 603 */ 604 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 605 extp = &efip->efi_format.efi_extents[i]; 606 startblock_fsb = XFS_BB_TO_FSB(mp, 607 XFS_FSB_TO_DADDR(mp, extp->ext_start)); 608 if (startblock_fsb == 0 || 609 extp->ext_len == 0 || 610 startblock_fsb >= mp->m_sb.sb_dblocks || 611 extp->ext_len >= mp->m_sb.sb_agblocks) { 612 /* 613 * This will pull the EFI from the AIL and 614 * free the memory associated with it. 615 */ 616 xfs_efi_release(efip); 617 return -EFSCORRUPTED; 618 } 619 } 620 621 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 622 if (error) 623 return error; 624 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 625 626 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 627 extp = &efip->efi_format.efi_extents[i]; 628 error = xfs_trans_free_extent(tp, efdp, extp->ext_start, 629 extp->ext_len, 630 &XFS_RMAP_OINFO_ANY_OWNER, false); 631 if (error) 632 goto abort_error; 633 634 } 635 636 error = xfs_trans_commit(tp); 637 return error; 638 639 abort_error: 640 xfs_trans_cancel(tp); 641 return error; 642 } 643 644 STATIC bool 645 xfs_efi_item_match( 646 struct xfs_log_item *lip, 647 uint64_t intent_id) 648 { 649 return EFI_ITEM(lip)->efi_format.efi_id == intent_id; 650 } 651 652 static const struct xfs_item_ops xfs_efi_item_ops = { 653 .iop_size = xfs_efi_item_size, 654 .iop_format = xfs_efi_item_format, 655 .iop_unpin = xfs_efi_item_unpin, 656 .iop_release = xfs_efi_item_release, 657 .iop_recover = xfs_efi_item_recover, 658 .iop_match = xfs_efi_item_match, 659 }; 660 661 /* 662 * This routine is called to create an in-core extent free intent 663 * item from the efi format structure which was logged on disk. 664 * It allocates an in-core efi, copies the extents from the format 665 * structure into it, and adds the efi to the AIL with the given 666 * LSN. 667 */ 668 STATIC int 669 xlog_recover_efi_commit_pass2( 670 struct xlog *log, 671 struct list_head *buffer_list, 672 struct xlog_recover_item *item, 673 xfs_lsn_t lsn) 674 { 675 struct xfs_mount *mp = log->l_mp; 676 struct xfs_efi_log_item *efip; 677 struct xfs_efi_log_format *efi_formatp; 678 int error; 679 680 efi_formatp = item->ri_buf[0].i_addr; 681 682 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 683 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format); 684 if (error) { 685 xfs_efi_item_free(efip); 686 return error; 687 } 688 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 689 /* 690 * Insert the intent into the AIL directly and drop one reference so 691 * that finishing or canceling the work will drop the other. 692 */ 693 xfs_trans_ail_insert(log->l_ailp, &efip->efi_item, lsn); 694 xfs_efi_release(efip); 695 return 0; 696 } 697 698 const struct xlog_recover_item_ops xlog_efi_item_ops = { 699 .item_type = XFS_LI_EFI, 700 .commit_pass2 = xlog_recover_efi_commit_pass2, 701 }; 702 703 /* 704 * This routine is called when an EFD format structure is found in a committed 705 * transaction in the log. Its purpose is to cancel the corresponding EFI if it 706 * was still in the log. To do this it searches the AIL for the EFI with an id 707 * equal to that in the EFD format structure. If we find it we drop the EFD 708 * reference, which removes the EFI from the AIL and frees it. 709 */ 710 STATIC int 711 xlog_recover_efd_commit_pass2( 712 struct xlog *log, 713 struct list_head *buffer_list, 714 struct xlog_recover_item *item, 715 xfs_lsn_t lsn) 716 { 717 struct xfs_efd_log_format *efd_formatp; 718 719 efd_formatp = item->ri_buf[0].i_addr; 720 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 721 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 722 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 723 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 724 725 xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id); 726 return 0; 727 } 728 729 const struct xlog_recover_item_ops xlog_efd_item_ops = { 730 .item_type = XFS_LI_EFD, 731 .commit_pass2 = xlog_recover_efd_commit_pass2, 732 }; 733