xref: /openbmc/linux/fs/xfs/xfs_extfree_item.c (revision ca90578000afb0d8f177ea36f7259a9c3640cf49)
1 /*
2  * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_bit.h"
24 #include "xfs_mount.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_extfree_item.h"
29 #include "xfs_log.h"
30 #include "xfs_btree.h"
31 #include "xfs_rmap.h"
32 
33 
34 kmem_zone_t	*xfs_efi_zone;
35 kmem_zone_t	*xfs_efd_zone;
36 
37 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
38 {
39 	return container_of(lip, struct xfs_efi_log_item, efi_item);
40 }
41 
42 void
43 xfs_efi_item_free(
44 	struct xfs_efi_log_item	*efip)
45 {
46 	kmem_free(efip->efi_item.li_lv_shadow);
47 	if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
48 		kmem_free(efip);
49 	else
50 		kmem_zone_free(xfs_efi_zone, efip);
51 }
52 
53 /*
54  * Freeing the efi requires that we remove it from the AIL if it has already
55  * been placed there. However, the EFI may not yet have been placed in the AIL
56  * when called by xfs_efi_release() from EFD processing due to the ordering of
57  * committed vs unpin operations in bulk insert operations. Hence the reference
58  * count to ensure only the last caller frees the EFI.
59  */
60 void
61 xfs_efi_release(
62 	struct xfs_efi_log_item	*efip)
63 {
64 	ASSERT(atomic_read(&efip->efi_refcount) > 0);
65 	if (atomic_dec_and_test(&efip->efi_refcount)) {
66 		xfs_trans_ail_remove(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR);
67 		xfs_efi_item_free(efip);
68 	}
69 }
70 
71 /*
72  * This returns the number of iovecs needed to log the given efi item.
73  * We only need 1 iovec for an efi item.  It just logs the efi_log_format
74  * structure.
75  */
76 static inline int
77 xfs_efi_item_sizeof(
78 	struct xfs_efi_log_item *efip)
79 {
80 	return sizeof(struct xfs_efi_log_format) +
81 	       (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
82 }
83 
84 STATIC void
85 xfs_efi_item_size(
86 	struct xfs_log_item	*lip,
87 	int			*nvecs,
88 	int			*nbytes)
89 {
90 	*nvecs += 1;
91 	*nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
92 }
93 
94 /*
95  * This is called to fill in the vector of log iovecs for the
96  * given efi log item. We use only 1 iovec, and we point that
97  * at the efi_log_format structure embedded in the efi item.
98  * It is at this point that we assert that all of the extent
99  * slots in the efi item have been filled.
100  */
101 STATIC void
102 xfs_efi_item_format(
103 	struct xfs_log_item	*lip,
104 	struct xfs_log_vec	*lv)
105 {
106 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
107 	struct xfs_log_iovec	*vecp = NULL;
108 
109 	ASSERT(atomic_read(&efip->efi_next_extent) ==
110 				efip->efi_format.efi_nextents);
111 
112 	efip->efi_format.efi_type = XFS_LI_EFI;
113 	efip->efi_format.efi_size = 1;
114 
115 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
116 			&efip->efi_format,
117 			xfs_efi_item_sizeof(efip));
118 }
119 
120 
121 /*
122  * Pinning has no meaning for an efi item, so just return.
123  */
124 STATIC void
125 xfs_efi_item_pin(
126 	struct xfs_log_item	*lip)
127 {
128 }
129 
130 /*
131  * The unpin operation is the last place an EFI is manipulated in the log. It is
132  * either inserted in the AIL or aborted in the event of a log I/O error. In
133  * either case, the EFI transaction has been successfully committed to make it
134  * this far. Therefore, we expect whoever committed the EFI to either construct
135  * and commit the EFD or drop the EFD's reference in the event of error. Simply
136  * drop the log's EFI reference now that the log is done with it.
137  */
138 STATIC void
139 xfs_efi_item_unpin(
140 	struct xfs_log_item	*lip,
141 	int			remove)
142 {
143 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
144 	xfs_efi_release(efip);
145 }
146 
147 /*
148  * Efi items have no locking or pushing.  However, since EFIs are pulled from
149  * the AIL when their corresponding EFDs are committed to disk, their situation
150  * is very similar to being pinned.  Return XFS_ITEM_PINNED so that the caller
151  * will eventually flush the log.  This should help in getting the EFI out of
152  * the AIL.
153  */
154 STATIC uint
155 xfs_efi_item_push(
156 	struct xfs_log_item	*lip,
157 	struct list_head	*buffer_list)
158 {
159 	return XFS_ITEM_PINNED;
160 }
161 
162 /*
163  * The EFI has been either committed or aborted if the transaction has been
164  * cancelled. If the transaction was cancelled, an EFD isn't going to be
165  * constructed and thus we free the EFI here directly.
166  */
167 STATIC void
168 xfs_efi_item_unlock(
169 	struct xfs_log_item	*lip)
170 {
171 	if (lip->li_flags & XFS_LI_ABORTED)
172 		xfs_efi_release(EFI_ITEM(lip));
173 }
174 
175 /*
176  * The EFI is logged only once and cannot be moved in the log, so simply return
177  * the lsn at which it's been logged.
178  */
179 STATIC xfs_lsn_t
180 xfs_efi_item_committed(
181 	struct xfs_log_item	*lip,
182 	xfs_lsn_t		lsn)
183 {
184 	return lsn;
185 }
186 
187 /*
188  * The EFI dependency tracking op doesn't do squat.  It can't because
189  * it doesn't know where the free extent is coming from.  The dependency
190  * tracking has to be handled by the "enclosing" metadata object.  For
191  * example, for inodes, the inode is locked throughout the extent freeing
192  * so the dependency should be recorded there.
193  */
194 STATIC void
195 xfs_efi_item_committing(
196 	struct xfs_log_item	*lip,
197 	xfs_lsn_t		lsn)
198 {
199 }
200 
201 /*
202  * This is the ops vector shared by all efi log items.
203  */
204 static const struct xfs_item_ops xfs_efi_item_ops = {
205 	.iop_size	= xfs_efi_item_size,
206 	.iop_format	= xfs_efi_item_format,
207 	.iop_pin	= xfs_efi_item_pin,
208 	.iop_unpin	= xfs_efi_item_unpin,
209 	.iop_unlock	= xfs_efi_item_unlock,
210 	.iop_committed	= xfs_efi_item_committed,
211 	.iop_push	= xfs_efi_item_push,
212 	.iop_committing = xfs_efi_item_committing
213 };
214 
215 
216 /*
217  * Allocate and initialize an efi item with the given number of extents.
218  */
219 struct xfs_efi_log_item *
220 xfs_efi_init(
221 	struct xfs_mount	*mp,
222 	uint			nextents)
223 
224 {
225 	struct xfs_efi_log_item	*efip;
226 	uint			size;
227 
228 	ASSERT(nextents > 0);
229 	if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
230 		size = (uint)(sizeof(xfs_efi_log_item_t) +
231 			((nextents - 1) * sizeof(xfs_extent_t)));
232 		efip = kmem_zalloc(size, KM_SLEEP);
233 	} else {
234 		efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP);
235 	}
236 
237 	xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
238 	efip->efi_format.efi_nextents = nextents;
239 	efip->efi_format.efi_id = (uintptr_t)(void *)efip;
240 	atomic_set(&efip->efi_next_extent, 0);
241 	atomic_set(&efip->efi_refcount, 2);
242 
243 	return efip;
244 }
245 
246 /*
247  * Copy an EFI format buffer from the given buf, and into the destination
248  * EFI format structure.
249  * The given buffer can be in 32 bit or 64 bit form (which has different padding),
250  * one of which will be the native format for this kernel.
251  * It will handle the conversion of formats if necessary.
252  */
253 int
254 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
255 {
256 	xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
257 	uint i;
258 	uint len = sizeof(xfs_efi_log_format_t) +
259 		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
260 	uint len32 = sizeof(xfs_efi_log_format_32_t) +
261 		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
262 	uint len64 = sizeof(xfs_efi_log_format_64_t) +
263 		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
264 
265 	if (buf->i_len == len) {
266 		memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
267 		return 0;
268 	} else if (buf->i_len == len32) {
269 		xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
270 
271 		dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type;
272 		dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size;
273 		dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
274 		dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id;
275 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
276 			dst_efi_fmt->efi_extents[i].ext_start =
277 				src_efi_fmt_32->efi_extents[i].ext_start;
278 			dst_efi_fmt->efi_extents[i].ext_len =
279 				src_efi_fmt_32->efi_extents[i].ext_len;
280 		}
281 		return 0;
282 	} else if (buf->i_len == len64) {
283 		xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
284 
285 		dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type;
286 		dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size;
287 		dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
288 		dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id;
289 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
290 			dst_efi_fmt->efi_extents[i].ext_start =
291 				src_efi_fmt_64->efi_extents[i].ext_start;
292 			dst_efi_fmt->efi_extents[i].ext_len =
293 				src_efi_fmt_64->efi_extents[i].ext_len;
294 		}
295 		return 0;
296 	}
297 	return -EFSCORRUPTED;
298 }
299 
300 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
301 {
302 	return container_of(lip, struct xfs_efd_log_item, efd_item);
303 }
304 
305 STATIC void
306 xfs_efd_item_free(struct xfs_efd_log_item *efdp)
307 {
308 	kmem_free(efdp->efd_item.li_lv_shadow);
309 	if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
310 		kmem_free(efdp);
311 	else
312 		kmem_zone_free(xfs_efd_zone, efdp);
313 }
314 
315 /*
316  * This returns the number of iovecs needed to log the given efd item.
317  * We only need 1 iovec for an efd item.  It just logs the efd_log_format
318  * structure.
319  */
320 static inline int
321 xfs_efd_item_sizeof(
322 	struct xfs_efd_log_item *efdp)
323 {
324 	return sizeof(xfs_efd_log_format_t) +
325 	       (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
326 }
327 
328 STATIC void
329 xfs_efd_item_size(
330 	struct xfs_log_item	*lip,
331 	int			*nvecs,
332 	int			*nbytes)
333 {
334 	*nvecs += 1;
335 	*nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
336 }
337 
338 /*
339  * This is called to fill in the vector of log iovecs for the
340  * given efd log item. We use only 1 iovec, and we point that
341  * at the efd_log_format structure embedded in the efd item.
342  * It is at this point that we assert that all of the extent
343  * slots in the efd item have been filled.
344  */
345 STATIC void
346 xfs_efd_item_format(
347 	struct xfs_log_item	*lip,
348 	struct xfs_log_vec	*lv)
349 {
350 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
351 	struct xfs_log_iovec	*vecp = NULL;
352 
353 	ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
354 
355 	efdp->efd_format.efd_type = XFS_LI_EFD;
356 	efdp->efd_format.efd_size = 1;
357 
358 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
359 			&efdp->efd_format,
360 			xfs_efd_item_sizeof(efdp));
361 }
362 
363 /*
364  * Pinning has no meaning for an efd item, so just return.
365  */
366 STATIC void
367 xfs_efd_item_pin(
368 	struct xfs_log_item	*lip)
369 {
370 }
371 
372 /*
373  * Since pinning has no meaning for an efd item, unpinning does
374  * not either.
375  */
376 STATIC void
377 xfs_efd_item_unpin(
378 	struct xfs_log_item	*lip,
379 	int			remove)
380 {
381 }
382 
383 /*
384  * There isn't much you can do to push on an efd item.  It is simply stuck
385  * waiting for the log to be flushed to disk.
386  */
387 STATIC uint
388 xfs_efd_item_push(
389 	struct xfs_log_item	*lip,
390 	struct list_head	*buffer_list)
391 {
392 	return XFS_ITEM_PINNED;
393 }
394 
395 /*
396  * The EFD is either committed or aborted if the transaction is cancelled. If
397  * the transaction is cancelled, drop our reference to the EFI and free the EFD.
398  */
399 STATIC void
400 xfs_efd_item_unlock(
401 	struct xfs_log_item	*lip)
402 {
403 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
404 
405 	if (lip->li_flags & XFS_LI_ABORTED) {
406 		xfs_efi_release(efdp->efd_efip);
407 		xfs_efd_item_free(efdp);
408 	}
409 }
410 
411 /*
412  * When the efd item is committed to disk, all we need to do is delete our
413  * reference to our partner efi item and then free ourselves. Since we're
414  * freeing ourselves we must return -1 to keep the transaction code from further
415  * referencing this item.
416  */
417 STATIC xfs_lsn_t
418 xfs_efd_item_committed(
419 	struct xfs_log_item	*lip,
420 	xfs_lsn_t		lsn)
421 {
422 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
423 
424 	/*
425 	 * Drop the EFI reference regardless of whether the EFD has been
426 	 * aborted. Once the EFD transaction is constructed, it is the sole
427 	 * responsibility of the EFD to release the EFI (even if the EFI is
428 	 * aborted due to log I/O error).
429 	 */
430 	xfs_efi_release(efdp->efd_efip);
431 	xfs_efd_item_free(efdp);
432 
433 	return (xfs_lsn_t)-1;
434 }
435 
436 /*
437  * The EFD dependency tracking op doesn't do squat.  It can't because
438  * it doesn't know where the free extent is coming from.  The dependency
439  * tracking has to be handled by the "enclosing" metadata object.  For
440  * example, for inodes, the inode is locked throughout the extent freeing
441  * so the dependency should be recorded there.
442  */
443 STATIC void
444 xfs_efd_item_committing(
445 	struct xfs_log_item	*lip,
446 	xfs_lsn_t		lsn)
447 {
448 }
449 
450 /*
451  * This is the ops vector shared by all efd log items.
452  */
453 static const struct xfs_item_ops xfs_efd_item_ops = {
454 	.iop_size	= xfs_efd_item_size,
455 	.iop_format	= xfs_efd_item_format,
456 	.iop_pin	= xfs_efd_item_pin,
457 	.iop_unpin	= xfs_efd_item_unpin,
458 	.iop_unlock	= xfs_efd_item_unlock,
459 	.iop_committed	= xfs_efd_item_committed,
460 	.iop_push	= xfs_efd_item_push,
461 	.iop_committing = xfs_efd_item_committing
462 };
463 
464 /*
465  * Allocate and initialize an efd item with the given number of extents.
466  */
467 struct xfs_efd_log_item *
468 xfs_efd_init(
469 	struct xfs_mount	*mp,
470 	struct xfs_efi_log_item	*efip,
471 	uint			nextents)
472 
473 {
474 	struct xfs_efd_log_item	*efdp;
475 	uint			size;
476 
477 	ASSERT(nextents > 0);
478 	if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
479 		size = (uint)(sizeof(xfs_efd_log_item_t) +
480 			((nextents - 1) * sizeof(xfs_extent_t)));
481 		efdp = kmem_zalloc(size, KM_SLEEP);
482 	} else {
483 		efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP);
484 	}
485 
486 	xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
487 	efdp->efd_efip = efip;
488 	efdp->efd_format.efd_nextents = nextents;
489 	efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
490 
491 	return efdp;
492 }
493 
494 /*
495  * Process an extent free intent item that was recovered from
496  * the log.  We need to free the extents that it describes.
497  */
498 int
499 xfs_efi_recover(
500 	struct xfs_mount	*mp,
501 	struct xfs_efi_log_item	*efip)
502 {
503 	struct xfs_efd_log_item	*efdp;
504 	struct xfs_trans	*tp;
505 	int			i;
506 	int			error = 0;
507 	xfs_extent_t		*extp;
508 	xfs_fsblock_t		startblock_fsb;
509 	struct xfs_owner_info	oinfo;
510 
511 	ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
512 
513 	/*
514 	 * First check the validity of the extents described by the
515 	 * EFI.  If any are bad, then assume that all are bad and
516 	 * just toss the EFI.
517 	 */
518 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
519 		extp = &efip->efi_format.efi_extents[i];
520 		startblock_fsb = XFS_BB_TO_FSB(mp,
521 				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
522 		if (startblock_fsb == 0 ||
523 		    extp->ext_len == 0 ||
524 		    startblock_fsb >= mp->m_sb.sb_dblocks ||
525 		    extp->ext_len >= mp->m_sb.sb_agblocks) {
526 			/*
527 			 * This will pull the EFI from the AIL and
528 			 * free the memory associated with it.
529 			 */
530 			set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
531 			xfs_efi_release(efip);
532 			return -EIO;
533 		}
534 	}
535 
536 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
537 	if (error)
538 		return error;
539 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
540 
541 	xfs_rmap_any_owner_update(&oinfo);
542 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
543 		extp = &efip->efi_format.efi_extents[i];
544 		error = xfs_trans_free_extent(tp, efdp, extp->ext_start,
545 					      extp->ext_len, &oinfo);
546 		if (error)
547 			goto abort_error;
548 
549 	}
550 
551 	set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
552 	error = xfs_trans_commit(tp);
553 	return error;
554 
555 abort_error:
556 	xfs_trans_cancel(tp);
557 	return error;
558 }
559