xref: /openbmc/linux/fs/xfs/xfs_extfree_item.c (revision b830f94f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_shared.h"
13 #include "xfs_mount.h"
14 #include "xfs_defer.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_extfree_item.h"
18 #include "xfs_log.h"
19 #include "xfs_btree.h"
20 #include "xfs_rmap.h"
21 #include "xfs_alloc.h"
22 #include "xfs_bmap.h"
23 #include "xfs_trace.h"
24 
25 
26 kmem_zone_t	*xfs_efi_zone;
27 kmem_zone_t	*xfs_efd_zone;
28 
29 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
30 {
31 	return container_of(lip, struct xfs_efi_log_item, efi_item);
32 }
33 
34 void
35 xfs_efi_item_free(
36 	struct xfs_efi_log_item	*efip)
37 {
38 	kmem_free(efip->efi_item.li_lv_shadow);
39 	if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
40 		kmem_free(efip);
41 	else
42 		kmem_zone_free(xfs_efi_zone, efip);
43 }
44 
45 /*
46  * Freeing the efi requires that we remove it from the AIL if it has already
47  * been placed there. However, the EFI may not yet have been placed in the AIL
48  * when called by xfs_efi_release() from EFD processing due to the ordering of
49  * committed vs unpin operations in bulk insert operations. Hence the reference
50  * count to ensure only the last caller frees the EFI.
51  */
52 void
53 xfs_efi_release(
54 	struct xfs_efi_log_item	*efip)
55 {
56 	ASSERT(atomic_read(&efip->efi_refcount) > 0);
57 	if (atomic_dec_and_test(&efip->efi_refcount)) {
58 		xfs_trans_ail_remove(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR);
59 		xfs_efi_item_free(efip);
60 	}
61 }
62 
63 /*
64  * This returns the number of iovecs needed to log the given efi item.
65  * We only need 1 iovec for an efi item.  It just logs the efi_log_format
66  * structure.
67  */
68 static inline int
69 xfs_efi_item_sizeof(
70 	struct xfs_efi_log_item *efip)
71 {
72 	return sizeof(struct xfs_efi_log_format) +
73 	       (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
74 }
75 
76 STATIC void
77 xfs_efi_item_size(
78 	struct xfs_log_item	*lip,
79 	int			*nvecs,
80 	int			*nbytes)
81 {
82 	*nvecs += 1;
83 	*nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
84 }
85 
86 /*
87  * This is called to fill in the vector of log iovecs for the
88  * given efi log item. We use only 1 iovec, and we point that
89  * at the efi_log_format structure embedded in the efi item.
90  * It is at this point that we assert that all of the extent
91  * slots in the efi item have been filled.
92  */
93 STATIC void
94 xfs_efi_item_format(
95 	struct xfs_log_item	*lip,
96 	struct xfs_log_vec	*lv)
97 {
98 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
99 	struct xfs_log_iovec	*vecp = NULL;
100 
101 	ASSERT(atomic_read(&efip->efi_next_extent) ==
102 				efip->efi_format.efi_nextents);
103 
104 	efip->efi_format.efi_type = XFS_LI_EFI;
105 	efip->efi_format.efi_size = 1;
106 
107 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
108 			&efip->efi_format,
109 			xfs_efi_item_sizeof(efip));
110 }
111 
112 
113 /*
114  * The unpin operation is the last place an EFI is manipulated in the log. It is
115  * either inserted in the AIL or aborted in the event of a log I/O error. In
116  * either case, the EFI transaction has been successfully committed to make it
117  * this far. Therefore, we expect whoever committed the EFI to either construct
118  * and commit the EFD or drop the EFD's reference in the event of error. Simply
119  * drop the log's EFI reference now that the log is done with it.
120  */
121 STATIC void
122 xfs_efi_item_unpin(
123 	struct xfs_log_item	*lip,
124 	int			remove)
125 {
126 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
127 	xfs_efi_release(efip);
128 }
129 
130 /*
131  * The EFI has been either committed or aborted if the transaction has been
132  * cancelled. If the transaction was cancelled, an EFD isn't going to be
133  * constructed and thus we free the EFI here directly.
134  */
135 STATIC void
136 xfs_efi_item_release(
137 	struct xfs_log_item	*lip)
138 {
139 	xfs_efi_release(EFI_ITEM(lip));
140 }
141 
142 static const struct xfs_item_ops xfs_efi_item_ops = {
143 	.iop_size	= xfs_efi_item_size,
144 	.iop_format	= xfs_efi_item_format,
145 	.iop_unpin	= xfs_efi_item_unpin,
146 	.iop_release	= xfs_efi_item_release,
147 };
148 
149 
150 /*
151  * Allocate and initialize an efi item with the given number of extents.
152  */
153 struct xfs_efi_log_item *
154 xfs_efi_init(
155 	struct xfs_mount	*mp,
156 	uint			nextents)
157 
158 {
159 	struct xfs_efi_log_item	*efip;
160 	uint			size;
161 
162 	ASSERT(nextents > 0);
163 	if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
164 		size = (uint)(sizeof(xfs_efi_log_item_t) +
165 			((nextents - 1) * sizeof(xfs_extent_t)));
166 		efip = kmem_zalloc(size, KM_SLEEP);
167 	} else {
168 		efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP);
169 	}
170 
171 	xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
172 	efip->efi_format.efi_nextents = nextents;
173 	efip->efi_format.efi_id = (uintptr_t)(void *)efip;
174 	atomic_set(&efip->efi_next_extent, 0);
175 	atomic_set(&efip->efi_refcount, 2);
176 
177 	return efip;
178 }
179 
180 /*
181  * Copy an EFI format buffer from the given buf, and into the destination
182  * EFI format structure.
183  * The given buffer can be in 32 bit or 64 bit form (which has different padding),
184  * one of which will be the native format for this kernel.
185  * It will handle the conversion of formats if necessary.
186  */
187 int
188 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
189 {
190 	xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
191 	uint i;
192 	uint len = sizeof(xfs_efi_log_format_t) +
193 		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
194 	uint len32 = sizeof(xfs_efi_log_format_32_t) +
195 		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
196 	uint len64 = sizeof(xfs_efi_log_format_64_t) +
197 		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
198 
199 	if (buf->i_len == len) {
200 		memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
201 		return 0;
202 	} else if (buf->i_len == len32) {
203 		xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
204 
205 		dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type;
206 		dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size;
207 		dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
208 		dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id;
209 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
210 			dst_efi_fmt->efi_extents[i].ext_start =
211 				src_efi_fmt_32->efi_extents[i].ext_start;
212 			dst_efi_fmt->efi_extents[i].ext_len =
213 				src_efi_fmt_32->efi_extents[i].ext_len;
214 		}
215 		return 0;
216 	} else if (buf->i_len == len64) {
217 		xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
218 
219 		dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type;
220 		dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size;
221 		dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
222 		dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id;
223 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
224 			dst_efi_fmt->efi_extents[i].ext_start =
225 				src_efi_fmt_64->efi_extents[i].ext_start;
226 			dst_efi_fmt->efi_extents[i].ext_len =
227 				src_efi_fmt_64->efi_extents[i].ext_len;
228 		}
229 		return 0;
230 	}
231 	return -EFSCORRUPTED;
232 }
233 
234 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
235 {
236 	return container_of(lip, struct xfs_efd_log_item, efd_item);
237 }
238 
239 STATIC void
240 xfs_efd_item_free(struct xfs_efd_log_item *efdp)
241 {
242 	kmem_free(efdp->efd_item.li_lv_shadow);
243 	if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
244 		kmem_free(efdp);
245 	else
246 		kmem_zone_free(xfs_efd_zone, efdp);
247 }
248 
249 /*
250  * This returns the number of iovecs needed to log the given efd item.
251  * We only need 1 iovec for an efd item.  It just logs the efd_log_format
252  * structure.
253  */
254 static inline int
255 xfs_efd_item_sizeof(
256 	struct xfs_efd_log_item *efdp)
257 {
258 	return sizeof(xfs_efd_log_format_t) +
259 	       (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
260 }
261 
262 STATIC void
263 xfs_efd_item_size(
264 	struct xfs_log_item	*lip,
265 	int			*nvecs,
266 	int			*nbytes)
267 {
268 	*nvecs += 1;
269 	*nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
270 }
271 
272 /*
273  * This is called to fill in the vector of log iovecs for the
274  * given efd log item. We use only 1 iovec, and we point that
275  * at the efd_log_format structure embedded in the efd item.
276  * It is at this point that we assert that all of the extent
277  * slots in the efd item have been filled.
278  */
279 STATIC void
280 xfs_efd_item_format(
281 	struct xfs_log_item	*lip,
282 	struct xfs_log_vec	*lv)
283 {
284 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
285 	struct xfs_log_iovec	*vecp = NULL;
286 
287 	ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
288 
289 	efdp->efd_format.efd_type = XFS_LI_EFD;
290 	efdp->efd_format.efd_size = 1;
291 
292 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
293 			&efdp->efd_format,
294 			xfs_efd_item_sizeof(efdp));
295 }
296 
297 /*
298  * The EFD is either committed or aborted if the transaction is cancelled. If
299  * the transaction is cancelled, drop our reference to the EFI and free the EFD.
300  */
301 STATIC void
302 xfs_efd_item_release(
303 	struct xfs_log_item	*lip)
304 {
305 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
306 
307 	xfs_efi_release(efdp->efd_efip);
308 	xfs_efd_item_free(efdp);
309 }
310 
311 static const struct xfs_item_ops xfs_efd_item_ops = {
312 	.flags		= XFS_ITEM_RELEASE_WHEN_COMMITTED,
313 	.iop_size	= xfs_efd_item_size,
314 	.iop_format	= xfs_efd_item_format,
315 	.iop_release	= xfs_efd_item_release,
316 };
317 
318 /*
319  * Allocate an "extent free done" log item that will hold nextents worth of
320  * extents.  The caller must use all nextents extents, because we are not
321  * flexible about this at all.
322  */
323 static struct xfs_efd_log_item *
324 xfs_trans_get_efd(
325 	struct xfs_trans		*tp,
326 	struct xfs_efi_log_item		*efip,
327 	unsigned int			nextents)
328 {
329 	struct xfs_efd_log_item		*efdp;
330 
331 	ASSERT(nextents > 0);
332 
333 	if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
334 		efdp = kmem_zalloc(sizeof(struct xfs_efd_log_item) +
335 				(nextents - 1) * sizeof(struct xfs_extent),
336 				KM_SLEEP);
337 	} else {
338 		efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP);
339 	}
340 
341 	xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD,
342 			  &xfs_efd_item_ops);
343 	efdp->efd_efip = efip;
344 	efdp->efd_format.efd_nextents = nextents;
345 	efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
346 
347 	xfs_trans_add_item(tp, &efdp->efd_item);
348 	return efdp;
349 }
350 
351 /*
352  * Free an extent and log it to the EFD. Note that the transaction is marked
353  * dirty regardless of whether the extent free succeeds or fails to support the
354  * EFI/EFD lifecycle rules.
355  */
356 static int
357 xfs_trans_free_extent(
358 	struct xfs_trans		*tp,
359 	struct xfs_efd_log_item		*efdp,
360 	xfs_fsblock_t			start_block,
361 	xfs_extlen_t			ext_len,
362 	const struct xfs_owner_info	*oinfo,
363 	bool				skip_discard)
364 {
365 	struct xfs_mount		*mp = tp->t_mountp;
366 	struct xfs_extent		*extp;
367 	uint				next_extent;
368 	xfs_agnumber_t			agno = XFS_FSB_TO_AGNO(mp, start_block);
369 	xfs_agblock_t			agbno = XFS_FSB_TO_AGBNO(mp,
370 								start_block);
371 	int				error;
372 
373 	trace_xfs_bmap_free_deferred(tp->t_mountp, agno, 0, agbno, ext_len);
374 
375 	error = __xfs_free_extent(tp, start_block, ext_len,
376 				  oinfo, XFS_AG_RESV_NONE, skip_discard);
377 	/*
378 	 * Mark the transaction dirty, even on error. This ensures the
379 	 * transaction is aborted, which:
380 	 *
381 	 * 1.) releases the EFI and frees the EFD
382 	 * 2.) shuts down the filesystem
383 	 */
384 	tp->t_flags |= XFS_TRANS_DIRTY;
385 	set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
386 
387 	next_extent = efdp->efd_next_extent;
388 	ASSERT(next_extent < efdp->efd_format.efd_nextents);
389 	extp = &(efdp->efd_format.efd_extents[next_extent]);
390 	extp->ext_start = start_block;
391 	extp->ext_len = ext_len;
392 	efdp->efd_next_extent++;
393 
394 	return error;
395 }
396 
397 /* Sort bmap items by AG. */
398 static int
399 xfs_extent_free_diff_items(
400 	void				*priv,
401 	struct list_head		*a,
402 	struct list_head		*b)
403 {
404 	struct xfs_mount		*mp = priv;
405 	struct xfs_extent_free_item	*ra;
406 	struct xfs_extent_free_item	*rb;
407 
408 	ra = container_of(a, struct xfs_extent_free_item, xefi_list);
409 	rb = container_of(b, struct xfs_extent_free_item, xefi_list);
410 	return  XFS_FSB_TO_AGNO(mp, ra->xefi_startblock) -
411 		XFS_FSB_TO_AGNO(mp, rb->xefi_startblock);
412 }
413 
414 /* Get an EFI. */
415 STATIC void *
416 xfs_extent_free_create_intent(
417 	struct xfs_trans		*tp,
418 	unsigned int			count)
419 {
420 	struct xfs_efi_log_item		*efip;
421 
422 	ASSERT(tp != NULL);
423 	ASSERT(count > 0);
424 
425 	efip = xfs_efi_init(tp->t_mountp, count);
426 	ASSERT(efip != NULL);
427 
428 	/*
429 	 * Get a log_item_desc to point at the new item.
430 	 */
431 	xfs_trans_add_item(tp, &efip->efi_item);
432 	return efip;
433 }
434 
435 /* Log a free extent to the intent item. */
436 STATIC void
437 xfs_extent_free_log_item(
438 	struct xfs_trans		*tp,
439 	void				*intent,
440 	struct list_head		*item)
441 {
442 	struct xfs_efi_log_item		*efip = intent;
443 	struct xfs_extent_free_item	*free;
444 	uint				next_extent;
445 	struct xfs_extent		*extp;
446 
447 	free = container_of(item, struct xfs_extent_free_item, xefi_list);
448 
449 	tp->t_flags |= XFS_TRANS_DIRTY;
450 	set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags);
451 
452 	/*
453 	 * atomic_inc_return gives us the value after the increment;
454 	 * we want to use it as an array index so we need to subtract 1 from
455 	 * it.
456 	 */
457 	next_extent = atomic_inc_return(&efip->efi_next_extent) - 1;
458 	ASSERT(next_extent < efip->efi_format.efi_nextents);
459 	extp = &efip->efi_format.efi_extents[next_extent];
460 	extp->ext_start = free->xefi_startblock;
461 	extp->ext_len = free->xefi_blockcount;
462 }
463 
464 /* Get an EFD so we can process all the free extents. */
465 STATIC void *
466 xfs_extent_free_create_done(
467 	struct xfs_trans		*tp,
468 	void				*intent,
469 	unsigned int			count)
470 {
471 	return xfs_trans_get_efd(tp, intent, count);
472 }
473 
474 /* Process a free extent. */
475 STATIC int
476 xfs_extent_free_finish_item(
477 	struct xfs_trans		*tp,
478 	struct list_head		*item,
479 	void				*done_item,
480 	void				**state)
481 {
482 	struct xfs_extent_free_item	*free;
483 	int				error;
484 
485 	free = container_of(item, struct xfs_extent_free_item, xefi_list);
486 	error = xfs_trans_free_extent(tp, done_item,
487 			free->xefi_startblock,
488 			free->xefi_blockcount,
489 			&free->xefi_oinfo, free->xefi_skip_discard);
490 	kmem_free(free);
491 	return error;
492 }
493 
494 /* Abort all pending EFIs. */
495 STATIC void
496 xfs_extent_free_abort_intent(
497 	void				*intent)
498 {
499 	xfs_efi_release(intent);
500 }
501 
502 /* Cancel a free extent. */
503 STATIC void
504 xfs_extent_free_cancel_item(
505 	struct list_head		*item)
506 {
507 	struct xfs_extent_free_item	*free;
508 
509 	free = container_of(item, struct xfs_extent_free_item, xefi_list);
510 	kmem_free(free);
511 }
512 
513 const struct xfs_defer_op_type xfs_extent_free_defer_type = {
514 	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
515 	.diff_items	= xfs_extent_free_diff_items,
516 	.create_intent	= xfs_extent_free_create_intent,
517 	.abort_intent	= xfs_extent_free_abort_intent,
518 	.log_item	= xfs_extent_free_log_item,
519 	.create_done	= xfs_extent_free_create_done,
520 	.finish_item	= xfs_extent_free_finish_item,
521 	.cancel_item	= xfs_extent_free_cancel_item,
522 };
523 
524 /*
525  * AGFL blocks are accounted differently in the reserve pools and are not
526  * inserted into the busy extent list.
527  */
528 STATIC int
529 xfs_agfl_free_finish_item(
530 	struct xfs_trans		*tp,
531 	struct list_head		*item,
532 	void				*done_item,
533 	void				**state)
534 {
535 	struct xfs_mount		*mp = tp->t_mountp;
536 	struct xfs_efd_log_item		*efdp = done_item;
537 	struct xfs_extent_free_item	*free;
538 	struct xfs_extent		*extp;
539 	struct xfs_buf			*agbp;
540 	int				error;
541 	xfs_agnumber_t			agno;
542 	xfs_agblock_t			agbno;
543 	uint				next_extent;
544 
545 	free = container_of(item, struct xfs_extent_free_item, xefi_list);
546 	ASSERT(free->xefi_blockcount == 1);
547 	agno = XFS_FSB_TO_AGNO(mp, free->xefi_startblock);
548 	agbno = XFS_FSB_TO_AGBNO(mp, free->xefi_startblock);
549 
550 	trace_xfs_agfl_free_deferred(mp, agno, 0, agbno, free->xefi_blockcount);
551 
552 	error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
553 	if (!error)
554 		error = xfs_free_agfl_block(tp, agno, agbno, agbp,
555 					    &free->xefi_oinfo);
556 
557 	/*
558 	 * Mark the transaction dirty, even on error. This ensures the
559 	 * transaction is aborted, which:
560 	 *
561 	 * 1.) releases the EFI and frees the EFD
562 	 * 2.) shuts down the filesystem
563 	 */
564 	tp->t_flags |= XFS_TRANS_DIRTY;
565 	set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
566 
567 	next_extent = efdp->efd_next_extent;
568 	ASSERT(next_extent < efdp->efd_format.efd_nextents);
569 	extp = &(efdp->efd_format.efd_extents[next_extent]);
570 	extp->ext_start = free->xefi_startblock;
571 	extp->ext_len = free->xefi_blockcount;
572 	efdp->efd_next_extent++;
573 
574 	kmem_free(free);
575 	return error;
576 }
577 
578 /* sub-type with special handling for AGFL deferred frees */
579 const struct xfs_defer_op_type xfs_agfl_free_defer_type = {
580 	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
581 	.diff_items	= xfs_extent_free_diff_items,
582 	.create_intent	= xfs_extent_free_create_intent,
583 	.abort_intent	= xfs_extent_free_abort_intent,
584 	.log_item	= xfs_extent_free_log_item,
585 	.create_done	= xfs_extent_free_create_done,
586 	.finish_item	= xfs_agfl_free_finish_item,
587 	.cancel_item	= xfs_extent_free_cancel_item,
588 };
589 
590 /*
591  * Process an extent free intent item that was recovered from
592  * the log.  We need to free the extents that it describes.
593  */
594 int
595 xfs_efi_recover(
596 	struct xfs_mount	*mp,
597 	struct xfs_efi_log_item	*efip)
598 {
599 	struct xfs_efd_log_item	*efdp;
600 	struct xfs_trans	*tp;
601 	int			i;
602 	int			error = 0;
603 	xfs_extent_t		*extp;
604 	xfs_fsblock_t		startblock_fsb;
605 
606 	ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
607 
608 	/*
609 	 * First check the validity of the extents described by the
610 	 * EFI.  If any are bad, then assume that all are bad and
611 	 * just toss the EFI.
612 	 */
613 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
614 		extp = &efip->efi_format.efi_extents[i];
615 		startblock_fsb = XFS_BB_TO_FSB(mp,
616 				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
617 		if (startblock_fsb == 0 ||
618 		    extp->ext_len == 0 ||
619 		    startblock_fsb >= mp->m_sb.sb_dblocks ||
620 		    extp->ext_len >= mp->m_sb.sb_agblocks) {
621 			/*
622 			 * This will pull the EFI from the AIL and
623 			 * free the memory associated with it.
624 			 */
625 			set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
626 			xfs_efi_release(efip);
627 			return -EIO;
628 		}
629 	}
630 
631 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
632 	if (error)
633 		return error;
634 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
635 
636 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
637 		extp = &efip->efi_format.efi_extents[i];
638 		error = xfs_trans_free_extent(tp, efdp, extp->ext_start,
639 					      extp->ext_len,
640 					      &XFS_RMAP_OINFO_ANY_OWNER, false);
641 		if (error)
642 			goto abort_error;
643 
644 	}
645 
646 	set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
647 	error = xfs_trans_commit(tp);
648 	return error;
649 
650 abort_error:
651 	xfs_trans_cancel(tp);
652 	return error;
653 }
654