xref: /openbmc/linux/fs/xfs/xfs_extfree_item.c (revision b6dcefde)
1 /*
2  * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_inum.h"
23 #include "xfs_trans.h"
24 #include "xfs_buf_item.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dmapi.h"
28 #include "xfs_mount.h"
29 #include "xfs_trans_priv.h"
30 #include "xfs_extfree_item.h"
31 
32 
33 kmem_zone_t	*xfs_efi_zone;
34 kmem_zone_t	*xfs_efd_zone;
35 
36 STATIC void	xfs_efi_item_unlock(xfs_efi_log_item_t *);
37 
38 void
39 xfs_efi_item_free(xfs_efi_log_item_t *efip)
40 {
41 	int nexts = efip->efi_format.efi_nextents;
42 
43 	if (nexts > XFS_EFI_MAX_FAST_EXTENTS) {
44 		kmem_free(efip);
45 	} else {
46 		kmem_zone_free(xfs_efi_zone, efip);
47 	}
48 }
49 
50 /*
51  * This returns the number of iovecs needed to log the given efi item.
52  * We only need 1 iovec for an efi item.  It just logs the efi_log_format
53  * structure.
54  */
55 /*ARGSUSED*/
56 STATIC uint
57 xfs_efi_item_size(xfs_efi_log_item_t *efip)
58 {
59 	return 1;
60 }
61 
62 /*
63  * This is called to fill in the vector of log iovecs for the
64  * given efi log item. We use only 1 iovec, and we point that
65  * at the efi_log_format structure embedded in the efi item.
66  * It is at this point that we assert that all of the extent
67  * slots in the efi item have been filled.
68  */
69 STATIC void
70 xfs_efi_item_format(xfs_efi_log_item_t	*efip,
71 		    xfs_log_iovec_t	*log_vector)
72 {
73 	uint	size;
74 
75 	ASSERT(efip->efi_next_extent == efip->efi_format.efi_nextents);
76 
77 	efip->efi_format.efi_type = XFS_LI_EFI;
78 
79 	size = sizeof(xfs_efi_log_format_t);
80 	size += (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
81 	efip->efi_format.efi_size = 1;
82 
83 	log_vector->i_addr = (xfs_caddr_t)&(efip->efi_format);
84 	log_vector->i_len = size;
85 	XLOG_VEC_SET_TYPE(log_vector, XLOG_REG_TYPE_EFI_FORMAT);
86 	ASSERT(size >= sizeof(xfs_efi_log_format_t));
87 }
88 
89 
90 /*
91  * Pinning has no meaning for an efi item, so just return.
92  */
93 /*ARGSUSED*/
94 STATIC void
95 xfs_efi_item_pin(xfs_efi_log_item_t *efip)
96 {
97 	return;
98 }
99 
100 
101 /*
102  * While EFIs cannot really be pinned, the unpin operation is the
103  * last place at which the EFI is manipulated during a transaction.
104  * Here we coordinate with xfs_efi_cancel() to determine who gets to
105  * free the EFI.
106  */
107 /*ARGSUSED*/
108 STATIC void
109 xfs_efi_item_unpin(xfs_efi_log_item_t *efip, int stale)
110 {
111 	struct xfs_ail		*ailp = efip->efi_item.li_ailp;
112 
113 	spin_lock(&ailp->xa_lock);
114 	if (efip->efi_flags & XFS_EFI_CANCELED) {
115 		/* xfs_trans_ail_delete() drops the AIL lock. */
116 		xfs_trans_ail_delete(ailp, (xfs_log_item_t *)efip);
117 		xfs_efi_item_free(efip);
118 	} else {
119 		efip->efi_flags |= XFS_EFI_COMMITTED;
120 		spin_unlock(&ailp->xa_lock);
121 	}
122 }
123 
124 /*
125  * like unpin only we have to also clear the xaction descriptor
126  * pointing the log item if we free the item.  This routine duplicates
127  * unpin because efi_flags is protected by the AIL lock.  Freeing
128  * the descriptor and then calling unpin would force us to drop the AIL
129  * lock which would open up a race condition.
130  */
131 STATIC void
132 xfs_efi_item_unpin_remove(xfs_efi_log_item_t *efip, xfs_trans_t *tp)
133 {
134 	struct xfs_ail		*ailp = efip->efi_item.li_ailp;
135 	xfs_log_item_desc_t	*lidp;
136 
137 	spin_lock(&ailp->xa_lock);
138 	if (efip->efi_flags & XFS_EFI_CANCELED) {
139 		/*
140 		 * free the xaction descriptor pointing to this item
141 		 */
142 		lidp = xfs_trans_find_item(tp, (xfs_log_item_t *) efip);
143 		xfs_trans_free_item(tp, lidp);
144 
145 		/* xfs_trans_ail_delete() drops the AIL lock. */
146 		xfs_trans_ail_delete(ailp, (xfs_log_item_t *)efip);
147 		xfs_efi_item_free(efip);
148 	} else {
149 		efip->efi_flags |= XFS_EFI_COMMITTED;
150 		spin_unlock(&ailp->xa_lock);
151 	}
152 }
153 
154 /*
155  * Efi items have no locking or pushing.  However, since EFIs are
156  * pulled from the AIL when their corresponding EFDs are committed
157  * to disk, their situation is very similar to being pinned.  Return
158  * XFS_ITEM_PINNED so that the caller will eventually flush the log.
159  * This should help in getting the EFI out of the AIL.
160  */
161 /*ARGSUSED*/
162 STATIC uint
163 xfs_efi_item_trylock(xfs_efi_log_item_t *efip)
164 {
165 	return XFS_ITEM_PINNED;
166 }
167 
168 /*
169  * Efi items have no locking, so just return.
170  */
171 /*ARGSUSED*/
172 STATIC void
173 xfs_efi_item_unlock(xfs_efi_log_item_t *efip)
174 {
175 	if (efip->efi_item.li_flags & XFS_LI_ABORTED)
176 		xfs_efi_item_free(efip);
177 	return;
178 }
179 
180 /*
181  * The EFI is logged only once and cannot be moved in the log, so
182  * simply return the lsn at which it's been logged.  The canceled
183  * flag is not paid any attention here.  Checking for that is delayed
184  * until the EFI is unpinned.
185  */
186 /*ARGSUSED*/
187 STATIC xfs_lsn_t
188 xfs_efi_item_committed(xfs_efi_log_item_t *efip, xfs_lsn_t lsn)
189 {
190 	return lsn;
191 }
192 
193 /*
194  * There isn't much you can do to push on an efi item.  It is simply
195  * stuck waiting for all of its corresponding efd items to be
196  * committed to disk.
197  */
198 /*ARGSUSED*/
199 STATIC void
200 xfs_efi_item_push(xfs_efi_log_item_t *efip)
201 {
202 	return;
203 }
204 
205 /*
206  * The EFI dependency tracking op doesn't do squat.  It can't because
207  * it doesn't know where the free extent is coming from.  The dependency
208  * tracking has to be handled by the "enclosing" metadata object.  For
209  * example, for inodes, the inode is locked throughout the extent freeing
210  * so the dependency should be recorded there.
211  */
212 /*ARGSUSED*/
213 STATIC void
214 xfs_efi_item_committing(xfs_efi_log_item_t *efip, xfs_lsn_t lsn)
215 {
216 	return;
217 }
218 
219 /*
220  * This is the ops vector shared by all efi log items.
221  */
222 static struct xfs_item_ops xfs_efi_item_ops = {
223 	.iop_size	= (uint(*)(xfs_log_item_t*))xfs_efi_item_size,
224 	.iop_format	= (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
225 					xfs_efi_item_format,
226 	.iop_pin	= (void(*)(xfs_log_item_t*))xfs_efi_item_pin,
227 	.iop_unpin	= (void(*)(xfs_log_item_t*, int))xfs_efi_item_unpin,
228 	.iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t *))
229 					xfs_efi_item_unpin_remove,
230 	.iop_trylock	= (uint(*)(xfs_log_item_t*))xfs_efi_item_trylock,
231 	.iop_unlock	= (void(*)(xfs_log_item_t*))xfs_efi_item_unlock,
232 	.iop_committed	= (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
233 					xfs_efi_item_committed,
234 	.iop_push	= (void(*)(xfs_log_item_t*))xfs_efi_item_push,
235 	.iop_pushbuf	= NULL,
236 	.iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
237 					xfs_efi_item_committing
238 };
239 
240 
241 /*
242  * Allocate and initialize an efi item with the given number of extents.
243  */
244 xfs_efi_log_item_t *
245 xfs_efi_init(xfs_mount_t	*mp,
246 	     uint		nextents)
247 
248 {
249 	xfs_efi_log_item_t	*efip;
250 	uint			size;
251 
252 	ASSERT(nextents > 0);
253 	if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
254 		size = (uint)(sizeof(xfs_efi_log_item_t) +
255 			((nextents - 1) * sizeof(xfs_extent_t)));
256 		efip = (xfs_efi_log_item_t*)kmem_zalloc(size, KM_SLEEP);
257 	} else {
258 		efip = (xfs_efi_log_item_t*)kmem_zone_zalloc(xfs_efi_zone,
259 							     KM_SLEEP);
260 	}
261 
262 	efip->efi_item.li_type = XFS_LI_EFI;
263 	efip->efi_item.li_ops = &xfs_efi_item_ops;
264 	efip->efi_item.li_mountp = mp;
265 	efip->efi_item.li_ailp = mp->m_ail;
266 	efip->efi_format.efi_nextents = nextents;
267 	efip->efi_format.efi_id = (__psint_t)(void*)efip;
268 
269 	return (efip);
270 }
271 
272 /*
273  * Copy an EFI format buffer from the given buf, and into the destination
274  * EFI format structure.
275  * The given buffer can be in 32 bit or 64 bit form (which has different padding),
276  * one of which will be the native format for this kernel.
277  * It will handle the conversion of formats if necessary.
278  */
279 int
280 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
281 {
282 	xfs_efi_log_format_t *src_efi_fmt = (xfs_efi_log_format_t *)buf->i_addr;
283 	uint i;
284 	uint len = sizeof(xfs_efi_log_format_t) +
285 		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
286 	uint len32 = sizeof(xfs_efi_log_format_32_t) +
287 		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
288 	uint len64 = sizeof(xfs_efi_log_format_64_t) +
289 		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
290 
291 	if (buf->i_len == len) {
292 		memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
293 		return 0;
294 	} else if (buf->i_len == len32) {
295 		xfs_efi_log_format_32_t *src_efi_fmt_32 =
296 			(xfs_efi_log_format_32_t *)buf->i_addr;
297 
298 		dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type;
299 		dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size;
300 		dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
301 		dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id;
302 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
303 			dst_efi_fmt->efi_extents[i].ext_start =
304 				src_efi_fmt_32->efi_extents[i].ext_start;
305 			dst_efi_fmt->efi_extents[i].ext_len =
306 				src_efi_fmt_32->efi_extents[i].ext_len;
307 		}
308 		return 0;
309 	} else if (buf->i_len == len64) {
310 		xfs_efi_log_format_64_t *src_efi_fmt_64 =
311 			(xfs_efi_log_format_64_t *)buf->i_addr;
312 
313 		dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type;
314 		dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size;
315 		dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
316 		dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id;
317 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
318 			dst_efi_fmt->efi_extents[i].ext_start =
319 				src_efi_fmt_64->efi_extents[i].ext_start;
320 			dst_efi_fmt->efi_extents[i].ext_len =
321 				src_efi_fmt_64->efi_extents[i].ext_len;
322 		}
323 		return 0;
324 	}
325 	return EFSCORRUPTED;
326 }
327 
328 /*
329  * This is called by the efd item code below to release references to
330  * the given efi item.  Each efd calls this with the number of
331  * extents that it has logged, and when the sum of these reaches
332  * the total number of extents logged by this efi item we can free
333  * the efi item.
334  *
335  * Freeing the efi item requires that we remove it from the AIL.
336  * We'll use the AIL lock to protect our counters as well as
337  * the removal from the AIL.
338  */
339 void
340 xfs_efi_release(xfs_efi_log_item_t	*efip,
341 		uint			nextents)
342 {
343 	struct xfs_ail		*ailp = efip->efi_item.li_ailp;
344 	int			extents_left;
345 
346 	ASSERT(efip->efi_next_extent > 0);
347 	ASSERT(efip->efi_flags & XFS_EFI_COMMITTED);
348 
349 	spin_lock(&ailp->xa_lock);
350 	ASSERT(efip->efi_next_extent >= nextents);
351 	efip->efi_next_extent -= nextents;
352 	extents_left = efip->efi_next_extent;
353 	if (extents_left == 0) {
354 		/* xfs_trans_ail_delete() drops the AIL lock. */
355 		xfs_trans_ail_delete(ailp, (xfs_log_item_t *)efip);
356 		xfs_efi_item_free(efip);
357 	} else {
358 		spin_unlock(&ailp->xa_lock);
359 	}
360 }
361 
362 STATIC void
363 xfs_efd_item_free(xfs_efd_log_item_t *efdp)
364 {
365 	int nexts = efdp->efd_format.efd_nextents;
366 
367 	if (nexts > XFS_EFD_MAX_FAST_EXTENTS) {
368 		kmem_free(efdp);
369 	} else {
370 		kmem_zone_free(xfs_efd_zone, efdp);
371 	}
372 }
373 
374 /*
375  * This returns the number of iovecs needed to log the given efd item.
376  * We only need 1 iovec for an efd item.  It just logs the efd_log_format
377  * structure.
378  */
379 /*ARGSUSED*/
380 STATIC uint
381 xfs_efd_item_size(xfs_efd_log_item_t *efdp)
382 {
383 	return 1;
384 }
385 
386 /*
387  * This is called to fill in the vector of log iovecs for the
388  * given efd log item. We use only 1 iovec, and we point that
389  * at the efd_log_format structure embedded in the efd item.
390  * It is at this point that we assert that all of the extent
391  * slots in the efd item have been filled.
392  */
393 STATIC void
394 xfs_efd_item_format(xfs_efd_log_item_t	*efdp,
395 		    xfs_log_iovec_t	*log_vector)
396 {
397 	uint	size;
398 
399 	ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
400 
401 	efdp->efd_format.efd_type = XFS_LI_EFD;
402 
403 	size = sizeof(xfs_efd_log_format_t);
404 	size += (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
405 	efdp->efd_format.efd_size = 1;
406 
407 	log_vector->i_addr = (xfs_caddr_t)&(efdp->efd_format);
408 	log_vector->i_len = size;
409 	XLOG_VEC_SET_TYPE(log_vector, XLOG_REG_TYPE_EFD_FORMAT);
410 	ASSERT(size >= sizeof(xfs_efd_log_format_t));
411 }
412 
413 
414 /*
415  * Pinning has no meaning for an efd item, so just return.
416  */
417 /*ARGSUSED*/
418 STATIC void
419 xfs_efd_item_pin(xfs_efd_log_item_t *efdp)
420 {
421 	return;
422 }
423 
424 
425 /*
426  * Since pinning has no meaning for an efd item, unpinning does
427  * not either.
428  */
429 /*ARGSUSED*/
430 STATIC void
431 xfs_efd_item_unpin(xfs_efd_log_item_t *efdp, int stale)
432 {
433 	return;
434 }
435 
436 /*ARGSUSED*/
437 STATIC void
438 xfs_efd_item_unpin_remove(xfs_efd_log_item_t *efdp, xfs_trans_t *tp)
439 {
440 	return;
441 }
442 
443 /*
444  * Efd items have no locking, so just return success.
445  */
446 /*ARGSUSED*/
447 STATIC uint
448 xfs_efd_item_trylock(xfs_efd_log_item_t *efdp)
449 {
450 	return XFS_ITEM_LOCKED;
451 }
452 
453 /*
454  * Efd items have no locking or pushing, so return failure
455  * so that the caller doesn't bother with us.
456  */
457 /*ARGSUSED*/
458 STATIC void
459 xfs_efd_item_unlock(xfs_efd_log_item_t *efdp)
460 {
461 	if (efdp->efd_item.li_flags & XFS_LI_ABORTED)
462 		xfs_efd_item_free(efdp);
463 	return;
464 }
465 
466 /*
467  * When the efd item is committed to disk, all we need to do
468  * is delete our reference to our partner efi item and then
469  * free ourselves.  Since we're freeing ourselves we must
470  * return -1 to keep the transaction code from further referencing
471  * this item.
472  */
473 /*ARGSUSED*/
474 STATIC xfs_lsn_t
475 xfs_efd_item_committed(xfs_efd_log_item_t *efdp, xfs_lsn_t lsn)
476 {
477 	/*
478 	 * If we got a log I/O error, it's always the case that the LR with the
479 	 * EFI got unpinned and freed before the EFD got aborted.
480 	 */
481 	if ((efdp->efd_item.li_flags & XFS_LI_ABORTED) == 0)
482 		xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents);
483 
484 	xfs_efd_item_free(efdp);
485 	return (xfs_lsn_t)-1;
486 }
487 
488 /*
489  * There isn't much you can do to push on an efd item.  It is simply
490  * stuck waiting for the log to be flushed to disk.
491  */
492 /*ARGSUSED*/
493 STATIC void
494 xfs_efd_item_push(xfs_efd_log_item_t *efdp)
495 {
496 	return;
497 }
498 
499 /*
500  * The EFD dependency tracking op doesn't do squat.  It can't because
501  * it doesn't know where the free extent is coming from.  The dependency
502  * tracking has to be handled by the "enclosing" metadata object.  For
503  * example, for inodes, the inode is locked throughout the extent freeing
504  * so the dependency should be recorded there.
505  */
506 /*ARGSUSED*/
507 STATIC void
508 xfs_efd_item_committing(xfs_efd_log_item_t *efip, xfs_lsn_t lsn)
509 {
510 	return;
511 }
512 
513 /*
514  * This is the ops vector shared by all efd log items.
515  */
516 static struct xfs_item_ops xfs_efd_item_ops = {
517 	.iop_size	= (uint(*)(xfs_log_item_t*))xfs_efd_item_size,
518 	.iop_format	= (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
519 					xfs_efd_item_format,
520 	.iop_pin	= (void(*)(xfs_log_item_t*))xfs_efd_item_pin,
521 	.iop_unpin	= (void(*)(xfs_log_item_t*, int))xfs_efd_item_unpin,
522 	.iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*))
523 					xfs_efd_item_unpin_remove,
524 	.iop_trylock	= (uint(*)(xfs_log_item_t*))xfs_efd_item_trylock,
525 	.iop_unlock	= (void(*)(xfs_log_item_t*))xfs_efd_item_unlock,
526 	.iop_committed	= (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
527 					xfs_efd_item_committed,
528 	.iop_push	= (void(*)(xfs_log_item_t*))xfs_efd_item_push,
529 	.iop_pushbuf	= NULL,
530 	.iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
531 					xfs_efd_item_committing
532 };
533 
534 
535 /*
536  * Allocate and initialize an efd item with the given number of extents.
537  */
538 xfs_efd_log_item_t *
539 xfs_efd_init(xfs_mount_t	*mp,
540 	     xfs_efi_log_item_t	*efip,
541 	     uint		nextents)
542 
543 {
544 	xfs_efd_log_item_t	*efdp;
545 	uint			size;
546 
547 	ASSERT(nextents > 0);
548 	if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
549 		size = (uint)(sizeof(xfs_efd_log_item_t) +
550 			((nextents - 1) * sizeof(xfs_extent_t)));
551 		efdp = (xfs_efd_log_item_t*)kmem_zalloc(size, KM_SLEEP);
552 	} else {
553 		efdp = (xfs_efd_log_item_t*)kmem_zone_zalloc(xfs_efd_zone,
554 							     KM_SLEEP);
555 	}
556 
557 	efdp->efd_item.li_type = XFS_LI_EFD;
558 	efdp->efd_item.li_ops = &xfs_efd_item_ops;
559 	efdp->efd_item.li_mountp = mp;
560 	efdp->efd_item.li_ailp = mp->m_ail;
561 	efdp->efd_efip = efip;
562 	efdp->efd_format.efd_nextents = nextents;
563 	efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
564 
565 	return (efdp);
566 }
567