1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_bit.h" 12 #include "xfs_shared.h" 13 #include "xfs_mount.h" 14 #include "xfs_ag.h" 15 #include "xfs_defer.h" 16 #include "xfs_trans.h" 17 #include "xfs_trans_priv.h" 18 #include "xfs_extfree_item.h" 19 #include "xfs_log.h" 20 #include "xfs_btree.h" 21 #include "xfs_rmap.h" 22 #include "xfs_alloc.h" 23 #include "xfs_bmap.h" 24 #include "xfs_trace.h" 25 #include "xfs_error.h" 26 #include "xfs_log_priv.h" 27 #include "xfs_log_recover.h" 28 29 struct kmem_cache *xfs_efi_cache; 30 struct kmem_cache *xfs_efd_cache; 31 32 static const struct xfs_item_ops xfs_efi_item_ops; 33 34 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip) 35 { 36 return container_of(lip, struct xfs_efi_log_item, efi_item); 37 } 38 39 STATIC void 40 xfs_efi_item_free( 41 struct xfs_efi_log_item *efip) 42 { 43 kmem_free(efip->efi_item.li_lv_shadow); 44 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS) 45 kmem_free(efip); 46 else 47 kmem_cache_free(xfs_efi_cache, efip); 48 } 49 50 /* 51 * Freeing the efi requires that we remove it from the AIL if it has already 52 * been placed there. However, the EFI may not yet have been placed in the AIL 53 * when called by xfs_efi_release() from EFD processing due to the ordering of 54 * committed vs unpin operations in bulk insert operations. Hence the reference 55 * count to ensure only the last caller frees the EFI. 56 */ 57 STATIC void 58 xfs_efi_release( 59 struct xfs_efi_log_item *efip) 60 { 61 ASSERT(atomic_read(&efip->efi_refcount) > 0); 62 if (!atomic_dec_and_test(&efip->efi_refcount)) 63 return; 64 65 xfs_trans_ail_delete(&efip->efi_item, 0); 66 xfs_efi_item_free(efip); 67 } 68 69 STATIC void 70 xfs_efi_item_size( 71 struct xfs_log_item *lip, 72 int *nvecs, 73 int *nbytes) 74 { 75 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 76 77 *nvecs += 1; 78 *nbytes += xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents); 79 } 80 81 /* 82 * This is called to fill in the vector of log iovecs for the 83 * given efi log item. We use only 1 iovec, and we point that 84 * at the efi_log_format structure embedded in the efi item. 85 * It is at this point that we assert that all of the extent 86 * slots in the efi item have been filled. 87 */ 88 STATIC void 89 xfs_efi_item_format( 90 struct xfs_log_item *lip, 91 struct xfs_log_vec *lv) 92 { 93 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 94 struct xfs_log_iovec *vecp = NULL; 95 96 ASSERT(atomic_read(&efip->efi_next_extent) == 97 efip->efi_format.efi_nextents); 98 99 efip->efi_format.efi_type = XFS_LI_EFI; 100 efip->efi_format.efi_size = 1; 101 102 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT, 103 &efip->efi_format, 104 xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents)); 105 } 106 107 108 /* 109 * The unpin operation is the last place an EFI is manipulated in the log. It is 110 * either inserted in the AIL or aborted in the event of a log I/O error. In 111 * either case, the EFI transaction has been successfully committed to make it 112 * this far. Therefore, we expect whoever committed the EFI to either construct 113 * and commit the EFD or drop the EFD's reference in the event of error. Simply 114 * drop the log's EFI reference now that the log is done with it. 115 */ 116 STATIC void 117 xfs_efi_item_unpin( 118 struct xfs_log_item *lip, 119 int remove) 120 { 121 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 122 xfs_efi_release(efip); 123 } 124 125 /* 126 * The EFI has been either committed or aborted if the transaction has been 127 * cancelled. If the transaction was cancelled, an EFD isn't going to be 128 * constructed and thus we free the EFI here directly. 129 */ 130 STATIC void 131 xfs_efi_item_release( 132 struct xfs_log_item *lip) 133 { 134 xfs_efi_release(EFI_ITEM(lip)); 135 } 136 137 /* 138 * Allocate and initialize an efi item with the given number of extents. 139 */ 140 STATIC struct xfs_efi_log_item * 141 xfs_efi_init( 142 struct xfs_mount *mp, 143 uint nextents) 144 145 { 146 struct xfs_efi_log_item *efip; 147 148 ASSERT(nextents > 0); 149 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { 150 efip = kzalloc(xfs_efi_log_item_sizeof(nextents), 151 GFP_KERNEL | __GFP_NOFAIL); 152 } else { 153 efip = kmem_cache_zalloc(xfs_efi_cache, 154 GFP_KERNEL | __GFP_NOFAIL); 155 } 156 157 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops); 158 efip->efi_format.efi_nextents = nextents; 159 efip->efi_format.efi_id = (uintptr_t)(void *)efip; 160 atomic_set(&efip->efi_next_extent, 0); 161 atomic_set(&efip->efi_refcount, 2); 162 163 return efip; 164 } 165 166 /* 167 * Copy an EFI format buffer from the given buf, and into the destination 168 * EFI format structure. 169 * The given buffer can be in 32 bit or 64 bit form (which has different padding), 170 * one of which will be the native format for this kernel. 171 * It will handle the conversion of formats if necessary. 172 */ 173 STATIC int 174 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt) 175 { 176 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr; 177 uint i; 178 uint len = xfs_efi_log_format_sizeof(src_efi_fmt->efi_nextents); 179 uint len32 = xfs_efi_log_format32_sizeof(src_efi_fmt->efi_nextents); 180 uint len64 = xfs_efi_log_format64_sizeof(src_efi_fmt->efi_nextents); 181 182 if (buf->i_len == len) { 183 memcpy(dst_efi_fmt, src_efi_fmt, 184 offsetof(struct xfs_efi_log_format, efi_extents)); 185 for (i = 0; i < src_efi_fmt->efi_nextents; i++) 186 memcpy(&dst_efi_fmt->efi_extents[i], 187 &src_efi_fmt->efi_extents[i], 188 sizeof(struct xfs_extent)); 189 return 0; 190 } else if (buf->i_len == len32) { 191 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr; 192 193 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type; 194 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size; 195 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents; 196 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id; 197 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { 198 dst_efi_fmt->efi_extents[i].ext_start = 199 src_efi_fmt_32->efi_extents[i].ext_start; 200 dst_efi_fmt->efi_extents[i].ext_len = 201 src_efi_fmt_32->efi_extents[i].ext_len; 202 } 203 return 0; 204 } else if (buf->i_len == len64) { 205 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr; 206 207 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type; 208 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size; 209 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents; 210 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id; 211 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { 212 dst_efi_fmt->efi_extents[i].ext_start = 213 src_efi_fmt_64->efi_extents[i].ext_start; 214 dst_efi_fmt->efi_extents[i].ext_len = 215 src_efi_fmt_64->efi_extents[i].ext_len; 216 } 217 return 0; 218 } 219 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, NULL, buf->i_addr, 220 buf->i_len); 221 return -EFSCORRUPTED; 222 } 223 224 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip) 225 { 226 return container_of(lip, struct xfs_efd_log_item, efd_item); 227 } 228 229 STATIC void 230 xfs_efd_item_free(struct xfs_efd_log_item *efdp) 231 { 232 kmem_free(efdp->efd_item.li_lv_shadow); 233 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS) 234 kmem_free(efdp); 235 else 236 kmem_cache_free(xfs_efd_cache, efdp); 237 } 238 239 STATIC void 240 xfs_efd_item_size( 241 struct xfs_log_item *lip, 242 int *nvecs, 243 int *nbytes) 244 { 245 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 246 247 *nvecs += 1; 248 *nbytes += xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents); 249 } 250 251 /* 252 * This is called to fill in the vector of log iovecs for the 253 * given efd log item. We use only 1 iovec, and we point that 254 * at the efd_log_format structure embedded in the efd item. 255 * It is at this point that we assert that all of the extent 256 * slots in the efd item have been filled. 257 */ 258 STATIC void 259 xfs_efd_item_format( 260 struct xfs_log_item *lip, 261 struct xfs_log_vec *lv) 262 { 263 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 264 struct xfs_log_iovec *vecp = NULL; 265 266 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); 267 268 efdp->efd_format.efd_type = XFS_LI_EFD; 269 efdp->efd_format.efd_size = 1; 270 271 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT, 272 &efdp->efd_format, 273 xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents)); 274 } 275 276 /* 277 * The EFD is either committed or aborted if the transaction is cancelled. If 278 * the transaction is cancelled, drop our reference to the EFI and free the EFD. 279 */ 280 STATIC void 281 xfs_efd_item_release( 282 struct xfs_log_item *lip) 283 { 284 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 285 286 xfs_efi_release(efdp->efd_efip); 287 xfs_efd_item_free(efdp); 288 } 289 290 static struct xfs_log_item * 291 xfs_efd_item_intent( 292 struct xfs_log_item *lip) 293 { 294 return &EFD_ITEM(lip)->efd_efip->efi_item; 295 } 296 297 static const struct xfs_item_ops xfs_efd_item_ops = { 298 .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED | 299 XFS_ITEM_INTENT_DONE, 300 .iop_size = xfs_efd_item_size, 301 .iop_format = xfs_efd_item_format, 302 .iop_release = xfs_efd_item_release, 303 .iop_intent = xfs_efd_item_intent, 304 }; 305 306 /* 307 * Allocate an "extent free done" log item that will hold nextents worth of 308 * extents. The caller must use all nextents extents, because we are not 309 * flexible about this at all. 310 */ 311 static struct xfs_efd_log_item * 312 xfs_trans_get_efd( 313 struct xfs_trans *tp, 314 struct xfs_efi_log_item *efip, 315 unsigned int nextents) 316 { 317 struct xfs_efd_log_item *efdp; 318 319 ASSERT(nextents > 0); 320 321 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) { 322 efdp = kzalloc(xfs_efd_log_item_sizeof(nextents), 323 GFP_KERNEL | __GFP_NOFAIL); 324 } else { 325 efdp = kmem_cache_zalloc(xfs_efd_cache, 326 GFP_KERNEL | __GFP_NOFAIL); 327 } 328 329 xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD, 330 &xfs_efd_item_ops); 331 efdp->efd_efip = efip; 332 efdp->efd_format.efd_nextents = nextents; 333 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; 334 335 xfs_trans_add_item(tp, &efdp->efd_item); 336 return efdp; 337 } 338 339 /* 340 * Free an extent and log it to the EFD. Note that the transaction is marked 341 * dirty regardless of whether the extent free succeeds or fails to support the 342 * EFI/EFD lifecycle rules. 343 */ 344 static int 345 xfs_trans_free_extent( 346 struct xfs_trans *tp, 347 struct xfs_efd_log_item *efdp, 348 xfs_fsblock_t start_block, 349 xfs_extlen_t ext_len, 350 const struct xfs_owner_info *oinfo, 351 bool skip_discard) 352 { 353 struct xfs_mount *mp = tp->t_mountp; 354 struct xfs_extent *extp; 355 uint next_extent; 356 xfs_agnumber_t agno = XFS_FSB_TO_AGNO(mp, start_block); 357 xfs_agblock_t agbno = XFS_FSB_TO_AGBNO(mp, 358 start_block); 359 int error; 360 361 trace_xfs_bmap_free_deferred(tp->t_mountp, agno, 0, agbno, ext_len); 362 363 error = __xfs_free_extent(tp, start_block, ext_len, 364 oinfo, XFS_AG_RESV_NONE, skip_discard); 365 /* 366 * Mark the transaction dirty, even on error. This ensures the 367 * transaction is aborted, which: 368 * 369 * 1.) releases the EFI and frees the EFD 370 * 2.) shuts down the filesystem 371 */ 372 tp->t_flags |= XFS_TRANS_DIRTY | XFS_TRANS_HAS_INTENT_DONE; 373 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); 374 375 next_extent = efdp->efd_next_extent; 376 ASSERT(next_extent < efdp->efd_format.efd_nextents); 377 extp = &(efdp->efd_format.efd_extents[next_extent]); 378 extp->ext_start = start_block; 379 extp->ext_len = ext_len; 380 efdp->efd_next_extent++; 381 382 return error; 383 } 384 385 /* Sort bmap items by AG. */ 386 static int 387 xfs_extent_free_diff_items( 388 void *priv, 389 const struct list_head *a, 390 const struct list_head *b) 391 { 392 struct xfs_mount *mp = priv; 393 struct xfs_extent_free_item *ra; 394 struct xfs_extent_free_item *rb; 395 396 ra = container_of(a, struct xfs_extent_free_item, xefi_list); 397 rb = container_of(b, struct xfs_extent_free_item, xefi_list); 398 return XFS_FSB_TO_AGNO(mp, ra->xefi_startblock) - 399 XFS_FSB_TO_AGNO(mp, rb->xefi_startblock); 400 } 401 402 /* Log a free extent to the intent item. */ 403 STATIC void 404 xfs_extent_free_log_item( 405 struct xfs_trans *tp, 406 struct xfs_efi_log_item *efip, 407 struct xfs_extent_free_item *free) 408 { 409 uint next_extent; 410 struct xfs_extent *extp; 411 412 tp->t_flags |= XFS_TRANS_DIRTY; 413 set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags); 414 415 /* 416 * atomic_inc_return gives us the value after the increment; 417 * we want to use it as an array index so we need to subtract 1 from 418 * it. 419 */ 420 next_extent = atomic_inc_return(&efip->efi_next_extent) - 1; 421 ASSERT(next_extent < efip->efi_format.efi_nextents); 422 extp = &efip->efi_format.efi_extents[next_extent]; 423 extp->ext_start = free->xefi_startblock; 424 extp->ext_len = free->xefi_blockcount; 425 } 426 427 static struct xfs_log_item * 428 xfs_extent_free_create_intent( 429 struct xfs_trans *tp, 430 struct list_head *items, 431 unsigned int count, 432 bool sort) 433 { 434 struct xfs_mount *mp = tp->t_mountp; 435 struct xfs_efi_log_item *efip = xfs_efi_init(mp, count); 436 struct xfs_extent_free_item *free; 437 438 ASSERT(count > 0); 439 440 xfs_trans_add_item(tp, &efip->efi_item); 441 if (sort) 442 list_sort(mp, items, xfs_extent_free_diff_items); 443 list_for_each_entry(free, items, xefi_list) 444 xfs_extent_free_log_item(tp, efip, free); 445 return &efip->efi_item; 446 } 447 448 /* Get an EFD so we can process all the free extents. */ 449 static struct xfs_log_item * 450 xfs_extent_free_create_done( 451 struct xfs_trans *tp, 452 struct xfs_log_item *intent, 453 unsigned int count) 454 { 455 return &xfs_trans_get_efd(tp, EFI_ITEM(intent), count)->efd_item; 456 } 457 458 /* Process a free extent. */ 459 STATIC int 460 xfs_extent_free_finish_item( 461 struct xfs_trans *tp, 462 struct xfs_log_item *done, 463 struct list_head *item, 464 struct xfs_btree_cur **state) 465 { 466 struct xfs_owner_info oinfo = { }; 467 struct xfs_extent_free_item *free; 468 int error; 469 470 free = container_of(item, struct xfs_extent_free_item, xefi_list); 471 oinfo.oi_owner = free->xefi_owner; 472 if (free->xefi_flags & XFS_EFI_ATTR_FORK) 473 oinfo.oi_flags |= XFS_OWNER_INFO_ATTR_FORK; 474 if (free->xefi_flags & XFS_EFI_BMBT_BLOCK) 475 oinfo.oi_flags |= XFS_OWNER_INFO_BMBT_BLOCK; 476 error = xfs_trans_free_extent(tp, EFD_ITEM(done), 477 free->xefi_startblock, 478 free->xefi_blockcount, 479 &oinfo, free->xefi_flags & XFS_EFI_SKIP_DISCARD); 480 kmem_cache_free(xfs_extfree_item_cache, free); 481 return error; 482 } 483 484 /* Abort all pending EFIs. */ 485 STATIC void 486 xfs_extent_free_abort_intent( 487 struct xfs_log_item *intent) 488 { 489 xfs_efi_release(EFI_ITEM(intent)); 490 } 491 492 /* Cancel a free extent. */ 493 STATIC void 494 xfs_extent_free_cancel_item( 495 struct list_head *item) 496 { 497 struct xfs_extent_free_item *free; 498 499 free = container_of(item, struct xfs_extent_free_item, xefi_list); 500 kmem_cache_free(xfs_extfree_item_cache, free); 501 } 502 503 const struct xfs_defer_op_type xfs_extent_free_defer_type = { 504 .max_items = XFS_EFI_MAX_FAST_EXTENTS, 505 .create_intent = xfs_extent_free_create_intent, 506 .abort_intent = xfs_extent_free_abort_intent, 507 .create_done = xfs_extent_free_create_done, 508 .finish_item = xfs_extent_free_finish_item, 509 .cancel_item = xfs_extent_free_cancel_item, 510 }; 511 512 /* 513 * AGFL blocks are accounted differently in the reserve pools and are not 514 * inserted into the busy extent list. 515 */ 516 STATIC int 517 xfs_agfl_free_finish_item( 518 struct xfs_trans *tp, 519 struct xfs_log_item *done, 520 struct list_head *item, 521 struct xfs_btree_cur **state) 522 { 523 struct xfs_owner_info oinfo = { }; 524 struct xfs_mount *mp = tp->t_mountp; 525 struct xfs_efd_log_item *efdp = EFD_ITEM(done); 526 struct xfs_extent_free_item *free; 527 struct xfs_extent *extp; 528 struct xfs_buf *agbp; 529 int error; 530 xfs_agnumber_t agno; 531 xfs_agblock_t agbno; 532 uint next_extent; 533 struct xfs_perag *pag; 534 535 free = container_of(item, struct xfs_extent_free_item, xefi_list); 536 ASSERT(free->xefi_blockcount == 1); 537 agno = XFS_FSB_TO_AGNO(mp, free->xefi_startblock); 538 agbno = XFS_FSB_TO_AGBNO(mp, free->xefi_startblock); 539 oinfo.oi_owner = free->xefi_owner; 540 541 trace_xfs_agfl_free_deferred(mp, agno, 0, agbno, free->xefi_blockcount); 542 543 pag = xfs_perag_get(mp, agno); 544 error = xfs_alloc_read_agf(pag, tp, 0, &agbp); 545 if (!error) 546 error = xfs_free_agfl_block(tp, agno, agbno, agbp, &oinfo); 547 xfs_perag_put(pag); 548 549 /* 550 * Mark the transaction dirty, even on error. This ensures the 551 * transaction is aborted, which: 552 * 553 * 1.) releases the EFI and frees the EFD 554 * 2.) shuts down the filesystem 555 */ 556 tp->t_flags |= XFS_TRANS_DIRTY; 557 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); 558 559 next_extent = efdp->efd_next_extent; 560 ASSERT(next_extent < efdp->efd_format.efd_nextents); 561 extp = &(efdp->efd_format.efd_extents[next_extent]); 562 extp->ext_start = free->xefi_startblock; 563 extp->ext_len = free->xefi_blockcount; 564 efdp->efd_next_extent++; 565 566 kmem_cache_free(xfs_extfree_item_cache, free); 567 return error; 568 } 569 570 /* sub-type with special handling for AGFL deferred frees */ 571 const struct xfs_defer_op_type xfs_agfl_free_defer_type = { 572 .max_items = XFS_EFI_MAX_FAST_EXTENTS, 573 .create_intent = xfs_extent_free_create_intent, 574 .abort_intent = xfs_extent_free_abort_intent, 575 .create_done = xfs_extent_free_create_done, 576 .finish_item = xfs_agfl_free_finish_item, 577 .cancel_item = xfs_extent_free_cancel_item, 578 }; 579 580 /* Is this recovered EFI ok? */ 581 static inline bool 582 xfs_efi_validate_ext( 583 struct xfs_mount *mp, 584 struct xfs_extent *extp) 585 { 586 return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len); 587 } 588 589 /* 590 * Process an extent free intent item that was recovered from 591 * the log. We need to free the extents that it describes. 592 */ 593 STATIC int 594 xfs_efi_item_recover( 595 struct xfs_log_item *lip, 596 struct list_head *capture_list) 597 { 598 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 599 struct xfs_mount *mp = lip->li_log->l_mp; 600 struct xfs_efd_log_item *efdp; 601 struct xfs_trans *tp; 602 struct xfs_extent *extp; 603 int i; 604 int error = 0; 605 606 /* 607 * First check the validity of the extents described by the 608 * EFI. If any are bad, then assume that all are bad and 609 * just toss the EFI. 610 */ 611 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 612 if (!xfs_efi_validate_ext(mp, 613 &efip->efi_format.efi_extents[i])) { 614 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 615 &efip->efi_format, 616 sizeof(efip->efi_format)); 617 return -EFSCORRUPTED; 618 } 619 } 620 621 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 622 if (error) 623 return error; 624 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 625 626 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 627 extp = &efip->efi_format.efi_extents[i]; 628 error = xfs_trans_free_extent(tp, efdp, extp->ext_start, 629 extp->ext_len, 630 &XFS_RMAP_OINFO_ANY_OWNER, false); 631 if (error == -EFSCORRUPTED) 632 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 633 extp, sizeof(*extp)); 634 if (error) 635 goto abort_error; 636 637 } 638 639 return xfs_defer_ops_capture_and_commit(tp, capture_list); 640 641 abort_error: 642 xfs_trans_cancel(tp); 643 return error; 644 } 645 646 STATIC bool 647 xfs_efi_item_match( 648 struct xfs_log_item *lip, 649 uint64_t intent_id) 650 { 651 return EFI_ITEM(lip)->efi_format.efi_id == intent_id; 652 } 653 654 /* Relog an intent item to push the log tail forward. */ 655 static struct xfs_log_item * 656 xfs_efi_item_relog( 657 struct xfs_log_item *intent, 658 struct xfs_trans *tp) 659 { 660 struct xfs_efd_log_item *efdp; 661 struct xfs_efi_log_item *efip; 662 struct xfs_extent *extp; 663 unsigned int count; 664 665 count = EFI_ITEM(intent)->efi_format.efi_nextents; 666 extp = EFI_ITEM(intent)->efi_format.efi_extents; 667 668 tp->t_flags |= XFS_TRANS_DIRTY; 669 efdp = xfs_trans_get_efd(tp, EFI_ITEM(intent), count); 670 efdp->efd_next_extent = count; 671 memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp)); 672 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); 673 674 efip = xfs_efi_init(tp->t_mountp, count); 675 memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp)); 676 atomic_set(&efip->efi_next_extent, count); 677 xfs_trans_add_item(tp, &efip->efi_item); 678 set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags); 679 return &efip->efi_item; 680 } 681 682 static const struct xfs_item_ops xfs_efi_item_ops = { 683 .flags = XFS_ITEM_INTENT, 684 .iop_size = xfs_efi_item_size, 685 .iop_format = xfs_efi_item_format, 686 .iop_unpin = xfs_efi_item_unpin, 687 .iop_release = xfs_efi_item_release, 688 .iop_recover = xfs_efi_item_recover, 689 .iop_match = xfs_efi_item_match, 690 .iop_relog = xfs_efi_item_relog, 691 }; 692 693 /* 694 * This routine is called to create an in-core extent free intent 695 * item from the efi format structure which was logged on disk. 696 * It allocates an in-core efi, copies the extents from the format 697 * structure into it, and adds the efi to the AIL with the given 698 * LSN. 699 */ 700 STATIC int 701 xlog_recover_efi_commit_pass2( 702 struct xlog *log, 703 struct list_head *buffer_list, 704 struct xlog_recover_item *item, 705 xfs_lsn_t lsn) 706 { 707 struct xfs_mount *mp = log->l_mp; 708 struct xfs_efi_log_item *efip; 709 struct xfs_efi_log_format *efi_formatp; 710 int error; 711 712 efi_formatp = item->ri_buf[0].i_addr; 713 714 if (item->ri_buf[0].i_len < xfs_efi_log_format_sizeof(0)) { 715 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 716 item->ri_buf[0].i_addr, item->ri_buf[0].i_len); 717 return -EFSCORRUPTED; 718 } 719 720 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 721 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format); 722 if (error) { 723 xfs_efi_item_free(efip); 724 return error; 725 } 726 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 727 /* 728 * Insert the intent into the AIL directly and drop one reference so 729 * that finishing or canceling the work will drop the other. 730 */ 731 xfs_trans_ail_insert(log->l_ailp, &efip->efi_item, lsn); 732 xfs_efi_release(efip); 733 return 0; 734 } 735 736 const struct xlog_recover_item_ops xlog_efi_item_ops = { 737 .item_type = XFS_LI_EFI, 738 .commit_pass2 = xlog_recover_efi_commit_pass2, 739 }; 740 741 /* 742 * This routine is called when an EFD format structure is found in a committed 743 * transaction in the log. Its purpose is to cancel the corresponding EFI if it 744 * was still in the log. To do this it searches the AIL for the EFI with an id 745 * equal to that in the EFD format structure. If we find it we drop the EFD 746 * reference, which removes the EFI from the AIL and frees it. 747 */ 748 STATIC int 749 xlog_recover_efd_commit_pass2( 750 struct xlog *log, 751 struct list_head *buffer_list, 752 struct xlog_recover_item *item, 753 xfs_lsn_t lsn) 754 { 755 struct xfs_efd_log_format *efd_formatp; 756 int buflen = item->ri_buf[0].i_len; 757 758 efd_formatp = item->ri_buf[0].i_addr; 759 760 if (buflen < sizeof(struct xfs_efd_log_format)) { 761 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp, 762 efd_formatp, buflen); 763 return -EFSCORRUPTED; 764 } 765 766 if (item->ri_buf[0].i_len != xfs_efd_log_format32_sizeof( 767 efd_formatp->efd_nextents) && 768 item->ri_buf[0].i_len != xfs_efd_log_format64_sizeof( 769 efd_formatp->efd_nextents)) { 770 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp, 771 efd_formatp, buflen); 772 return -EFSCORRUPTED; 773 } 774 775 xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id); 776 return 0; 777 } 778 779 const struct xlog_recover_item_ops xlog_efd_item_ops = { 780 .item_type = XFS_LI_EFD, 781 .commit_pass2 = xlog_recover_efd_commit_pass2, 782 }; 783