1 /* 2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_log_format.h" 21 #include "xfs_trans_resv.h" 22 #include "xfs_sb.h" 23 #include "xfs_ag.h" 24 #include "xfs_mount.h" 25 #include "xfs_trans.h" 26 #include "xfs_trans_priv.h" 27 #include "xfs_buf_item.h" 28 #include "xfs_extfree_item.h" 29 30 31 kmem_zone_t *xfs_efi_zone; 32 kmem_zone_t *xfs_efd_zone; 33 34 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip) 35 { 36 return container_of(lip, struct xfs_efi_log_item, efi_item); 37 } 38 39 void 40 xfs_efi_item_free( 41 struct xfs_efi_log_item *efip) 42 { 43 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS) 44 kmem_free(efip); 45 else 46 kmem_zone_free(xfs_efi_zone, efip); 47 } 48 49 /* 50 * Freeing the efi requires that we remove it from the AIL if it has already 51 * been placed there. However, the EFI may not yet have been placed in the AIL 52 * when called by xfs_efi_release() from EFD processing due to the ordering of 53 * committed vs unpin operations in bulk insert operations. Hence the reference 54 * count to ensure only the last caller frees the EFI. 55 */ 56 STATIC void 57 __xfs_efi_release( 58 struct xfs_efi_log_item *efip) 59 { 60 struct xfs_ail *ailp = efip->efi_item.li_ailp; 61 62 if (atomic_dec_and_test(&efip->efi_refcount)) { 63 spin_lock(&ailp->xa_lock); 64 /* xfs_trans_ail_delete() drops the AIL lock. */ 65 xfs_trans_ail_delete(ailp, &efip->efi_item, 66 SHUTDOWN_LOG_IO_ERROR); 67 xfs_efi_item_free(efip); 68 } 69 } 70 71 /* 72 * This returns the number of iovecs needed to log the given efi item. 73 * We only need 1 iovec for an efi item. It just logs the efi_log_format 74 * structure. 75 */ 76 static inline int 77 xfs_efi_item_sizeof( 78 struct xfs_efi_log_item *efip) 79 { 80 return sizeof(struct xfs_efi_log_format) + 81 (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t); 82 } 83 84 STATIC void 85 xfs_efi_item_size( 86 struct xfs_log_item *lip, 87 int *nvecs, 88 int *nbytes) 89 { 90 *nvecs += 1; 91 *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip)); 92 } 93 94 /* 95 * This is called to fill in the vector of log iovecs for the 96 * given efi log item. We use only 1 iovec, and we point that 97 * at the efi_log_format structure embedded in the efi item. 98 * It is at this point that we assert that all of the extent 99 * slots in the efi item have been filled. 100 */ 101 STATIC void 102 xfs_efi_item_format( 103 struct xfs_log_item *lip, 104 struct xfs_log_iovec *log_vector) 105 { 106 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 107 108 ASSERT(atomic_read(&efip->efi_next_extent) == 109 efip->efi_format.efi_nextents); 110 111 efip->efi_format.efi_type = XFS_LI_EFI; 112 efip->efi_format.efi_size = 1; 113 114 log_vector->i_addr = &efip->efi_format; 115 log_vector->i_len = xfs_efi_item_sizeof(efip); 116 log_vector->i_type = XLOG_REG_TYPE_EFI_FORMAT; 117 ASSERT(log_vector->i_len >= sizeof(xfs_efi_log_format_t)); 118 } 119 120 121 /* 122 * Pinning has no meaning for an efi item, so just return. 123 */ 124 STATIC void 125 xfs_efi_item_pin( 126 struct xfs_log_item *lip) 127 { 128 } 129 130 /* 131 * While EFIs cannot really be pinned, the unpin operation is the last place at 132 * which the EFI is manipulated during a transaction. If we are being asked to 133 * remove the EFI it's because the transaction has been cancelled and by 134 * definition that means the EFI cannot be in the AIL so remove it from the 135 * transaction and free it. Otherwise coordinate with xfs_efi_release() 136 * to determine who gets to free the EFI. 137 */ 138 STATIC void 139 xfs_efi_item_unpin( 140 struct xfs_log_item *lip, 141 int remove) 142 { 143 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 144 145 if (remove) { 146 ASSERT(!(lip->li_flags & XFS_LI_IN_AIL)); 147 if (lip->li_desc) 148 xfs_trans_del_item(lip); 149 xfs_efi_item_free(efip); 150 return; 151 } 152 __xfs_efi_release(efip); 153 } 154 155 /* 156 * Efi items have no locking or pushing. However, since EFIs are pulled from 157 * the AIL when their corresponding EFDs are committed to disk, their situation 158 * is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller 159 * will eventually flush the log. This should help in getting the EFI out of 160 * the AIL. 161 */ 162 STATIC uint 163 xfs_efi_item_push( 164 struct xfs_log_item *lip, 165 struct list_head *buffer_list) 166 { 167 return XFS_ITEM_PINNED; 168 } 169 170 STATIC void 171 xfs_efi_item_unlock( 172 struct xfs_log_item *lip) 173 { 174 if (lip->li_flags & XFS_LI_ABORTED) 175 xfs_efi_item_free(EFI_ITEM(lip)); 176 } 177 178 /* 179 * The EFI is logged only once and cannot be moved in the log, so simply return 180 * the lsn at which it's been logged. 181 */ 182 STATIC xfs_lsn_t 183 xfs_efi_item_committed( 184 struct xfs_log_item *lip, 185 xfs_lsn_t lsn) 186 { 187 return lsn; 188 } 189 190 /* 191 * The EFI dependency tracking op doesn't do squat. It can't because 192 * it doesn't know where the free extent is coming from. The dependency 193 * tracking has to be handled by the "enclosing" metadata object. For 194 * example, for inodes, the inode is locked throughout the extent freeing 195 * so the dependency should be recorded there. 196 */ 197 STATIC void 198 xfs_efi_item_committing( 199 struct xfs_log_item *lip, 200 xfs_lsn_t lsn) 201 { 202 } 203 204 /* 205 * This is the ops vector shared by all efi log items. 206 */ 207 static const struct xfs_item_ops xfs_efi_item_ops = { 208 .iop_size = xfs_efi_item_size, 209 .iop_format = xfs_efi_item_format, 210 .iop_pin = xfs_efi_item_pin, 211 .iop_unpin = xfs_efi_item_unpin, 212 .iop_unlock = xfs_efi_item_unlock, 213 .iop_committed = xfs_efi_item_committed, 214 .iop_push = xfs_efi_item_push, 215 .iop_committing = xfs_efi_item_committing 216 }; 217 218 219 /* 220 * Allocate and initialize an efi item with the given number of extents. 221 */ 222 struct xfs_efi_log_item * 223 xfs_efi_init( 224 struct xfs_mount *mp, 225 uint nextents) 226 227 { 228 struct xfs_efi_log_item *efip; 229 uint size; 230 231 ASSERT(nextents > 0); 232 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { 233 size = (uint)(sizeof(xfs_efi_log_item_t) + 234 ((nextents - 1) * sizeof(xfs_extent_t))); 235 efip = kmem_zalloc(size, KM_SLEEP); 236 } else { 237 efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP); 238 } 239 240 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops); 241 efip->efi_format.efi_nextents = nextents; 242 efip->efi_format.efi_id = (__psint_t)(void*)efip; 243 atomic_set(&efip->efi_next_extent, 0); 244 atomic_set(&efip->efi_refcount, 2); 245 246 return efip; 247 } 248 249 /* 250 * Copy an EFI format buffer from the given buf, and into the destination 251 * EFI format structure. 252 * The given buffer can be in 32 bit or 64 bit form (which has different padding), 253 * one of which will be the native format for this kernel. 254 * It will handle the conversion of formats if necessary. 255 */ 256 int 257 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt) 258 { 259 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr; 260 uint i; 261 uint len = sizeof(xfs_efi_log_format_t) + 262 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t); 263 uint len32 = sizeof(xfs_efi_log_format_32_t) + 264 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t); 265 uint len64 = sizeof(xfs_efi_log_format_64_t) + 266 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t); 267 268 if (buf->i_len == len) { 269 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len); 270 return 0; 271 } else if (buf->i_len == len32) { 272 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr; 273 274 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type; 275 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size; 276 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents; 277 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id; 278 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { 279 dst_efi_fmt->efi_extents[i].ext_start = 280 src_efi_fmt_32->efi_extents[i].ext_start; 281 dst_efi_fmt->efi_extents[i].ext_len = 282 src_efi_fmt_32->efi_extents[i].ext_len; 283 } 284 return 0; 285 } else if (buf->i_len == len64) { 286 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr; 287 288 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type; 289 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size; 290 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents; 291 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id; 292 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { 293 dst_efi_fmt->efi_extents[i].ext_start = 294 src_efi_fmt_64->efi_extents[i].ext_start; 295 dst_efi_fmt->efi_extents[i].ext_len = 296 src_efi_fmt_64->efi_extents[i].ext_len; 297 } 298 return 0; 299 } 300 return EFSCORRUPTED; 301 } 302 303 /* 304 * This is called by the efd item code below to release references to the given 305 * efi item. Each efd calls this with the number of extents that it has 306 * logged, and when the sum of these reaches the total number of extents logged 307 * by this efi item we can free the efi item. 308 */ 309 void 310 xfs_efi_release(xfs_efi_log_item_t *efip, 311 uint nextents) 312 { 313 ASSERT(atomic_read(&efip->efi_next_extent) >= nextents); 314 if (atomic_sub_and_test(nextents, &efip->efi_next_extent)) { 315 /* recovery needs us to drop the EFI reference, too */ 316 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) 317 __xfs_efi_release(efip); 318 319 __xfs_efi_release(efip); 320 /* efip may now have been freed, do not reference it again. */ 321 } 322 } 323 324 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip) 325 { 326 return container_of(lip, struct xfs_efd_log_item, efd_item); 327 } 328 329 STATIC void 330 xfs_efd_item_free(struct xfs_efd_log_item *efdp) 331 { 332 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS) 333 kmem_free(efdp); 334 else 335 kmem_zone_free(xfs_efd_zone, efdp); 336 } 337 338 /* 339 * This returns the number of iovecs needed to log the given efd item. 340 * We only need 1 iovec for an efd item. It just logs the efd_log_format 341 * structure. 342 */ 343 static inline int 344 xfs_efd_item_sizeof( 345 struct xfs_efd_log_item *efdp) 346 { 347 return sizeof(xfs_efd_log_format_t) + 348 (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t); 349 } 350 351 STATIC void 352 xfs_efd_item_size( 353 struct xfs_log_item *lip, 354 int *nvecs, 355 int *nbytes) 356 { 357 *nvecs += 1; 358 *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip)); 359 } 360 361 /* 362 * This is called to fill in the vector of log iovecs for the 363 * given efd log item. We use only 1 iovec, and we point that 364 * at the efd_log_format structure embedded in the efd item. 365 * It is at this point that we assert that all of the extent 366 * slots in the efd item have been filled. 367 */ 368 STATIC void 369 xfs_efd_item_format( 370 struct xfs_log_item *lip, 371 struct xfs_log_iovec *log_vector) 372 { 373 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 374 375 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); 376 377 efdp->efd_format.efd_type = XFS_LI_EFD; 378 efdp->efd_format.efd_size = 1; 379 380 log_vector->i_addr = &efdp->efd_format; 381 log_vector->i_len = xfs_efd_item_sizeof(efdp); 382 log_vector->i_type = XLOG_REG_TYPE_EFD_FORMAT; 383 ASSERT(log_vector->i_len >= sizeof(xfs_efd_log_format_t)); 384 } 385 386 /* 387 * Pinning has no meaning for an efd item, so just return. 388 */ 389 STATIC void 390 xfs_efd_item_pin( 391 struct xfs_log_item *lip) 392 { 393 } 394 395 /* 396 * Since pinning has no meaning for an efd item, unpinning does 397 * not either. 398 */ 399 STATIC void 400 xfs_efd_item_unpin( 401 struct xfs_log_item *lip, 402 int remove) 403 { 404 } 405 406 /* 407 * There isn't much you can do to push on an efd item. It is simply stuck 408 * waiting for the log to be flushed to disk. 409 */ 410 STATIC uint 411 xfs_efd_item_push( 412 struct xfs_log_item *lip, 413 struct list_head *buffer_list) 414 { 415 return XFS_ITEM_PINNED; 416 } 417 418 STATIC void 419 xfs_efd_item_unlock( 420 struct xfs_log_item *lip) 421 { 422 if (lip->li_flags & XFS_LI_ABORTED) 423 xfs_efd_item_free(EFD_ITEM(lip)); 424 } 425 426 /* 427 * When the efd item is committed to disk, all we need to do 428 * is delete our reference to our partner efi item and then 429 * free ourselves. Since we're freeing ourselves we must 430 * return -1 to keep the transaction code from further referencing 431 * this item. 432 */ 433 STATIC xfs_lsn_t 434 xfs_efd_item_committed( 435 struct xfs_log_item *lip, 436 xfs_lsn_t lsn) 437 { 438 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 439 440 /* 441 * If we got a log I/O error, it's always the case that the LR with the 442 * EFI got unpinned and freed before the EFD got aborted. 443 */ 444 if (!(lip->li_flags & XFS_LI_ABORTED)) 445 xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents); 446 447 xfs_efd_item_free(efdp); 448 return (xfs_lsn_t)-1; 449 } 450 451 /* 452 * The EFD dependency tracking op doesn't do squat. It can't because 453 * it doesn't know where the free extent is coming from. The dependency 454 * tracking has to be handled by the "enclosing" metadata object. For 455 * example, for inodes, the inode is locked throughout the extent freeing 456 * so the dependency should be recorded there. 457 */ 458 STATIC void 459 xfs_efd_item_committing( 460 struct xfs_log_item *lip, 461 xfs_lsn_t lsn) 462 { 463 } 464 465 /* 466 * This is the ops vector shared by all efd log items. 467 */ 468 static const struct xfs_item_ops xfs_efd_item_ops = { 469 .iop_size = xfs_efd_item_size, 470 .iop_format = xfs_efd_item_format, 471 .iop_pin = xfs_efd_item_pin, 472 .iop_unpin = xfs_efd_item_unpin, 473 .iop_unlock = xfs_efd_item_unlock, 474 .iop_committed = xfs_efd_item_committed, 475 .iop_push = xfs_efd_item_push, 476 .iop_committing = xfs_efd_item_committing 477 }; 478 479 /* 480 * Allocate and initialize an efd item with the given number of extents. 481 */ 482 struct xfs_efd_log_item * 483 xfs_efd_init( 484 struct xfs_mount *mp, 485 struct xfs_efi_log_item *efip, 486 uint nextents) 487 488 { 489 struct xfs_efd_log_item *efdp; 490 uint size; 491 492 ASSERT(nextents > 0); 493 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) { 494 size = (uint)(sizeof(xfs_efd_log_item_t) + 495 ((nextents - 1) * sizeof(xfs_extent_t))); 496 efdp = kmem_zalloc(size, KM_SLEEP); 497 } else { 498 efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP); 499 } 500 501 xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops); 502 efdp->efd_efip = efip; 503 efdp->efd_format.efd_nextents = nextents; 504 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; 505 506 return efdp; 507 } 508