1 /* 2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_format.h" 21 #include "xfs_log_format.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_mount.h" 24 #include "xfs_trans.h" 25 #include "xfs_trans_priv.h" 26 #include "xfs_buf_item.h" 27 #include "xfs_extfree_item.h" 28 #include "xfs_log.h" 29 30 31 kmem_zone_t *xfs_efi_zone; 32 kmem_zone_t *xfs_efd_zone; 33 34 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip) 35 { 36 return container_of(lip, struct xfs_efi_log_item, efi_item); 37 } 38 39 void 40 xfs_efi_item_free( 41 struct xfs_efi_log_item *efip) 42 { 43 kmem_free(efip->efi_item.li_lv_shadow); 44 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS) 45 kmem_free(efip); 46 else 47 kmem_zone_free(xfs_efi_zone, efip); 48 } 49 50 /* 51 * This returns the number of iovecs needed to log the given efi item. 52 * We only need 1 iovec for an efi item. It just logs the efi_log_format 53 * structure. 54 */ 55 static inline int 56 xfs_efi_item_sizeof( 57 struct xfs_efi_log_item *efip) 58 { 59 return sizeof(struct xfs_efi_log_format) + 60 (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t); 61 } 62 63 STATIC void 64 xfs_efi_item_size( 65 struct xfs_log_item *lip, 66 int *nvecs, 67 int *nbytes) 68 { 69 *nvecs += 1; 70 *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip)); 71 } 72 73 /* 74 * This is called to fill in the vector of log iovecs for the 75 * given efi log item. We use only 1 iovec, and we point that 76 * at the efi_log_format structure embedded in the efi item. 77 * It is at this point that we assert that all of the extent 78 * slots in the efi item have been filled. 79 */ 80 STATIC void 81 xfs_efi_item_format( 82 struct xfs_log_item *lip, 83 struct xfs_log_vec *lv) 84 { 85 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 86 struct xfs_log_iovec *vecp = NULL; 87 88 ASSERT(atomic_read(&efip->efi_next_extent) == 89 efip->efi_format.efi_nextents); 90 91 efip->efi_format.efi_type = XFS_LI_EFI; 92 efip->efi_format.efi_size = 1; 93 94 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT, 95 &efip->efi_format, 96 xfs_efi_item_sizeof(efip)); 97 } 98 99 100 /* 101 * Pinning has no meaning for an efi item, so just return. 102 */ 103 STATIC void 104 xfs_efi_item_pin( 105 struct xfs_log_item *lip) 106 { 107 } 108 109 /* 110 * The unpin operation is the last place an EFI is manipulated in the log. It is 111 * either inserted in the AIL or aborted in the event of a log I/O error. In 112 * either case, the EFI transaction has been successfully committed to make it 113 * this far. Therefore, we expect whoever committed the EFI to either construct 114 * and commit the EFD or drop the EFD's reference in the event of error. Simply 115 * drop the log's EFI reference now that the log is done with it. 116 */ 117 STATIC void 118 xfs_efi_item_unpin( 119 struct xfs_log_item *lip, 120 int remove) 121 { 122 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 123 xfs_efi_release(efip); 124 } 125 126 /* 127 * Efi items have no locking or pushing. However, since EFIs are pulled from 128 * the AIL when their corresponding EFDs are committed to disk, their situation 129 * is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller 130 * will eventually flush the log. This should help in getting the EFI out of 131 * the AIL. 132 */ 133 STATIC uint 134 xfs_efi_item_push( 135 struct xfs_log_item *lip, 136 struct list_head *buffer_list) 137 { 138 return XFS_ITEM_PINNED; 139 } 140 141 /* 142 * The EFI has been either committed or aborted if the transaction has been 143 * cancelled. If the transaction was cancelled, an EFD isn't going to be 144 * constructed and thus we free the EFI here directly. 145 */ 146 STATIC void 147 xfs_efi_item_unlock( 148 struct xfs_log_item *lip) 149 { 150 if (lip->li_flags & XFS_LI_ABORTED) 151 xfs_efi_item_free(EFI_ITEM(lip)); 152 } 153 154 /* 155 * The EFI is logged only once and cannot be moved in the log, so simply return 156 * the lsn at which it's been logged. 157 */ 158 STATIC xfs_lsn_t 159 xfs_efi_item_committed( 160 struct xfs_log_item *lip, 161 xfs_lsn_t lsn) 162 { 163 return lsn; 164 } 165 166 /* 167 * The EFI dependency tracking op doesn't do squat. It can't because 168 * it doesn't know where the free extent is coming from. The dependency 169 * tracking has to be handled by the "enclosing" metadata object. For 170 * example, for inodes, the inode is locked throughout the extent freeing 171 * so the dependency should be recorded there. 172 */ 173 STATIC void 174 xfs_efi_item_committing( 175 struct xfs_log_item *lip, 176 xfs_lsn_t lsn) 177 { 178 } 179 180 /* 181 * This is the ops vector shared by all efi log items. 182 */ 183 static const struct xfs_item_ops xfs_efi_item_ops = { 184 .iop_size = xfs_efi_item_size, 185 .iop_format = xfs_efi_item_format, 186 .iop_pin = xfs_efi_item_pin, 187 .iop_unpin = xfs_efi_item_unpin, 188 .iop_unlock = xfs_efi_item_unlock, 189 .iop_committed = xfs_efi_item_committed, 190 .iop_push = xfs_efi_item_push, 191 .iop_committing = xfs_efi_item_committing 192 }; 193 194 195 /* 196 * Allocate and initialize an efi item with the given number of extents. 197 */ 198 struct xfs_efi_log_item * 199 xfs_efi_init( 200 struct xfs_mount *mp, 201 uint nextents) 202 203 { 204 struct xfs_efi_log_item *efip; 205 uint size; 206 207 ASSERT(nextents > 0); 208 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { 209 size = (uint)(sizeof(xfs_efi_log_item_t) + 210 ((nextents - 1) * sizeof(xfs_extent_t))); 211 efip = kmem_zalloc(size, KM_SLEEP); 212 } else { 213 efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP); 214 } 215 216 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops); 217 efip->efi_format.efi_nextents = nextents; 218 efip->efi_format.efi_id = (uintptr_t)(void *)efip; 219 atomic_set(&efip->efi_next_extent, 0); 220 atomic_set(&efip->efi_refcount, 2); 221 222 return efip; 223 } 224 225 /* 226 * Copy an EFI format buffer from the given buf, and into the destination 227 * EFI format structure. 228 * The given buffer can be in 32 bit or 64 bit form (which has different padding), 229 * one of which will be the native format for this kernel. 230 * It will handle the conversion of formats if necessary. 231 */ 232 int 233 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt) 234 { 235 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr; 236 uint i; 237 uint len = sizeof(xfs_efi_log_format_t) + 238 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t); 239 uint len32 = sizeof(xfs_efi_log_format_32_t) + 240 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t); 241 uint len64 = sizeof(xfs_efi_log_format_64_t) + 242 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t); 243 244 if (buf->i_len == len) { 245 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len); 246 return 0; 247 } else if (buf->i_len == len32) { 248 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr; 249 250 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type; 251 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size; 252 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents; 253 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id; 254 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { 255 dst_efi_fmt->efi_extents[i].ext_start = 256 src_efi_fmt_32->efi_extents[i].ext_start; 257 dst_efi_fmt->efi_extents[i].ext_len = 258 src_efi_fmt_32->efi_extents[i].ext_len; 259 } 260 return 0; 261 } else if (buf->i_len == len64) { 262 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr; 263 264 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type; 265 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size; 266 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents; 267 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id; 268 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { 269 dst_efi_fmt->efi_extents[i].ext_start = 270 src_efi_fmt_64->efi_extents[i].ext_start; 271 dst_efi_fmt->efi_extents[i].ext_len = 272 src_efi_fmt_64->efi_extents[i].ext_len; 273 } 274 return 0; 275 } 276 return -EFSCORRUPTED; 277 } 278 279 /* 280 * Freeing the efi requires that we remove it from the AIL if it has already 281 * been placed there. However, the EFI may not yet have been placed in the AIL 282 * when called by xfs_efi_release() from EFD processing due to the ordering of 283 * committed vs unpin operations in bulk insert operations. Hence the reference 284 * count to ensure only the last caller frees the EFI. 285 */ 286 void 287 xfs_efi_release( 288 struct xfs_efi_log_item *efip) 289 { 290 if (atomic_dec_and_test(&efip->efi_refcount)) { 291 xfs_trans_ail_remove(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR); 292 xfs_efi_item_free(efip); 293 } 294 } 295 296 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip) 297 { 298 return container_of(lip, struct xfs_efd_log_item, efd_item); 299 } 300 301 STATIC void 302 xfs_efd_item_free(struct xfs_efd_log_item *efdp) 303 { 304 kmem_free(efdp->efd_item.li_lv_shadow); 305 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS) 306 kmem_free(efdp); 307 else 308 kmem_zone_free(xfs_efd_zone, efdp); 309 } 310 311 /* 312 * This returns the number of iovecs needed to log the given efd item. 313 * We only need 1 iovec for an efd item. It just logs the efd_log_format 314 * structure. 315 */ 316 static inline int 317 xfs_efd_item_sizeof( 318 struct xfs_efd_log_item *efdp) 319 { 320 return sizeof(xfs_efd_log_format_t) + 321 (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t); 322 } 323 324 STATIC void 325 xfs_efd_item_size( 326 struct xfs_log_item *lip, 327 int *nvecs, 328 int *nbytes) 329 { 330 *nvecs += 1; 331 *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip)); 332 } 333 334 /* 335 * This is called to fill in the vector of log iovecs for the 336 * given efd log item. We use only 1 iovec, and we point that 337 * at the efd_log_format structure embedded in the efd item. 338 * It is at this point that we assert that all of the extent 339 * slots in the efd item have been filled. 340 */ 341 STATIC void 342 xfs_efd_item_format( 343 struct xfs_log_item *lip, 344 struct xfs_log_vec *lv) 345 { 346 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 347 struct xfs_log_iovec *vecp = NULL; 348 349 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); 350 351 efdp->efd_format.efd_type = XFS_LI_EFD; 352 efdp->efd_format.efd_size = 1; 353 354 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT, 355 &efdp->efd_format, 356 xfs_efd_item_sizeof(efdp)); 357 } 358 359 /* 360 * Pinning has no meaning for an efd item, so just return. 361 */ 362 STATIC void 363 xfs_efd_item_pin( 364 struct xfs_log_item *lip) 365 { 366 } 367 368 /* 369 * Since pinning has no meaning for an efd item, unpinning does 370 * not either. 371 */ 372 STATIC void 373 xfs_efd_item_unpin( 374 struct xfs_log_item *lip, 375 int remove) 376 { 377 } 378 379 /* 380 * There isn't much you can do to push on an efd item. It is simply stuck 381 * waiting for the log to be flushed to disk. 382 */ 383 STATIC uint 384 xfs_efd_item_push( 385 struct xfs_log_item *lip, 386 struct list_head *buffer_list) 387 { 388 return XFS_ITEM_PINNED; 389 } 390 391 /* 392 * The EFD is either committed or aborted if the transaction is cancelled. If 393 * the transaction is cancelled, drop our reference to the EFI and free the EFD. 394 */ 395 STATIC void 396 xfs_efd_item_unlock( 397 struct xfs_log_item *lip) 398 { 399 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 400 401 if (lip->li_flags & XFS_LI_ABORTED) { 402 xfs_efi_release(efdp->efd_efip); 403 xfs_efd_item_free(efdp); 404 } 405 } 406 407 /* 408 * When the efd item is committed to disk, all we need to do is delete our 409 * reference to our partner efi item and then free ourselves. Since we're 410 * freeing ourselves we must return -1 to keep the transaction code from further 411 * referencing this item. 412 */ 413 STATIC xfs_lsn_t 414 xfs_efd_item_committed( 415 struct xfs_log_item *lip, 416 xfs_lsn_t lsn) 417 { 418 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 419 420 /* 421 * Drop the EFI reference regardless of whether the EFD has been 422 * aborted. Once the EFD transaction is constructed, it is the sole 423 * responsibility of the EFD to release the EFI (even if the EFI is 424 * aborted due to log I/O error). 425 */ 426 xfs_efi_release(efdp->efd_efip); 427 xfs_efd_item_free(efdp); 428 429 return (xfs_lsn_t)-1; 430 } 431 432 /* 433 * The EFD dependency tracking op doesn't do squat. It can't because 434 * it doesn't know where the free extent is coming from. The dependency 435 * tracking has to be handled by the "enclosing" metadata object. For 436 * example, for inodes, the inode is locked throughout the extent freeing 437 * so the dependency should be recorded there. 438 */ 439 STATIC void 440 xfs_efd_item_committing( 441 struct xfs_log_item *lip, 442 xfs_lsn_t lsn) 443 { 444 } 445 446 /* 447 * This is the ops vector shared by all efd log items. 448 */ 449 static const struct xfs_item_ops xfs_efd_item_ops = { 450 .iop_size = xfs_efd_item_size, 451 .iop_format = xfs_efd_item_format, 452 .iop_pin = xfs_efd_item_pin, 453 .iop_unpin = xfs_efd_item_unpin, 454 .iop_unlock = xfs_efd_item_unlock, 455 .iop_committed = xfs_efd_item_committed, 456 .iop_push = xfs_efd_item_push, 457 .iop_committing = xfs_efd_item_committing 458 }; 459 460 /* 461 * Allocate and initialize an efd item with the given number of extents. 462 */ 463 struct xfs_efd_log_item * 464 xfs_efd_init( 465 struct xfs_mount *mp, 466 struct xfs_efi_log_item *efip, 467 uint nextents) 468 469 { 470 struct xfs_efd_log_item *efdp; 471 uint size; 472 473 ASSERT(nextents > 0); 474 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) { 475 size = (uint)(sizeof(xfs_efd_log_item_t) + 476 ((nextents - 1) * sizeof(xfs_extent_t))); 477 efdp = kmem_zalloc(size, KM_SLEEP); 478 } else { 479 efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP); 480 } 481 482 xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops); 483 efdp->efd_efip = efip; 484 efdp->efd_format.efd_nextents = nextents; 485 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; 486 487 return efdp; 488 } 489