xref: /openbmc/linux/fs/xfs/xfs_extfree_item.c (revision 71de0a05)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_shared.h"
13 #include "xfs_mount.h"
14 #include "xfs_ag.h"
15 #include "xfs_defer.h"
16 #include "xfs_trans.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_extfree_item.h"
19 #include "xfs_log.h"
20 #include "xfs_btree.h"
21 #include "xfs_rmap.h"
22 #include "xfs_alloc.h"
23 #include "xfs_bmap.h"
24 #include "xfs_trace.h"
25 #include "xfs_error.h"
26 #include "xfs_log_priv.h"
27 #include "xfs_log_recover.h"
28 
29 struct kmem_cache	*xfs_efi_cache;
30 struct kmem_cache	*xfs_efd_cache;
31 
32 static const struct xfs_item_ops xfs_efi_item_ops;
33 
34 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
35 {
36 	return container_of(lip, struct xfs_efi_log_item, efi_item);
37 }
38 
39 STATIC void
40 xfs_efi_item_free(
41 	struct xfs_efi_log_item	*efip)
42 {
43 	kmem_free(efip->efi_item.li_lv_shadow);
44 	if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
45 		kmem_free(efip);
46 	else
47 		kmem_cache_free(xfs_efi_cache, efip);
48 }
49 
50 /*
51  * Freeing the efi requires that we remove it from the AIL if it has already
52  * been placed there. However, the EFI may not yet have been placed in the AIL
53  * when called by xfs_efi_release() from EFD processing due to the ordering of
54  * committed vs unpin operations in bulk insert operations. Hence the reference
55  * count to ensure only the last caller frees the EFI.
56  */
57 STATIC void
58 xfs_efi_release(
59 	struct xfs_efi_log_item	*efip)
60 {
61 	ASSERT(atomic_read(&efip->efi_refcount) > 0);
62 	if (!atomic_dec_and_test(&efip->efi_refcount))
63 		return;
64 
65 	xfs_trans_ail_delete(&efip->efi_item, 0);
66 	xfs_efi_item_free(efip);
67 }
68 
69 STATIC void
70 xfs_efi_item_size(
71 	struct xfs_log_item	*lip,
72 	int			*nvecs,
73 	int			*nbytes)
74 {
75 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
76 
77 	*nvecs += 1;
78 	*nbytes += xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents);
79 }
80 
81 /*
82  * This is called to fill in the vector of log iovecs for the
83  * given efi log item. We use only 1 iovec, and we point that
84  * at the efi_log_format structure embedded in the efi item.
85  * It is at this point that we assert that all of the extent
86  * slots in the efi item have been filled.
87  */
88 STATIC void
89 xfs_efi_item_format(
90 	struct xfs_log_item	*lip,
91 	struct xfs_log_vec	*lv)
92 {
93 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
94 	struct xfs_log_iovec	*vecp = NULL;
95 
96 	ASSERT(atomic_read(&efip->efi_next_extent) ==
97 				efip->efi_format.efi_nextents);
98 
99 	efip->efi_format.efi_type = XFS_LI_EFI;
100 	efip->efi_format.efi_size = 1;
101 
102 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
103 			&efip->efi_format,
104 			xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents));
105 }
106 
107 
108 /*
109  * The unpin operation is the last place an EFI is manipulated in the log. It is
110  * either inserted in the AIL or aborted in the event of a log I/O error. In
111  * either case, the EFI transaction has been successfully committed to make it
112  * this far. Therefore, we expect whoever committed the EFI to either construct
113  * and commit the EFD or drop the EFD's reference in the event of error. Simply
114  * drop the log's EFI reference now that the log is done with it.
115  */
116 STATIC void
117 xfs_efi_item_unpin(
118 	struct xfs_log_item	*lip,
119 	int			remove)
120 {
121 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
122 	xfs_efi_release(efip);
123 }
124 
125 /*
126  * The EFI has been either committed or aborted if the transaction has been
127  * cancelled. If the transaction was cancelled, an EFD isn't going to be
128  * constructed and thus we free the EFI here directly.
129  */
130 STATIC void
131 xfs_efi_item_release(
132 	struct xfs_log_item	*lip)
133 {
134 	xfs_efi_release(EFI_ITEM(lip));
135 }
136 
137 /*
138  * Allocate and initialize an efi item with the given number of extents.
139  */
140 STATIC struct xfs_efi_log_item *
141 xfs_efi_init(
142 	struct xfs_mount	*mp,
143 	uint			nextents)
144 
145 {
146 	struct xfs_efi_log_item	*efip;
147 
148 	ASSERT(nextents > 0);
149 	if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
150 		efip = kzalloc(xfs_efi_log_item_sizeof(nextents),
151 				GFP_KERNEL | __GFP_NOFAIL);
152 	} else {
153 		efip = kmem_cache_zalloc(xfs_efi_cache,
154 					 GFP_KERNEL | __GFP_NOFAIL);
155 	}
156 
157 	xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
158 	efip->efi_format.efi_nextents = nextents;
159 	efip->efi_format.efi_id = (uintptr_t)(void *)efip;
160 	atomic_set(&efip->efi_next_extent, 0);
161 	atomic_set(&efip->efi_refcount, 2);
162 
163 	return efip;
164 }
165 
166 /*
167  * Copy an EFI format buffer from the given buf, and into the destination
168  * EFI format structure.
169  * The given buffer can be in 32 bit or 64 bit form (which has different padding),
170  * one of which will be the native format for this kernel.
171  * It will handle the conversion of formats if necessary.
172  */
173 STATIC int
174 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
175 {
176 	xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
177 	uint i;
178 	uint len = xfs_efi_log_format_sizeof(src_efi_fmt->efi_nextents);
179 	uint len32 = xfs_efi_log_format32_sizeof(src_efi_fmt->efi_nextents);
180 	uint len64 = xfs_efi_log_format64_sizeof(src_efi_fmt->efi_nextents);
181 
182 	if (buf->i_len == len) {
183 		memcpy(dst_efi_fmt, src_efi_fmt,
184 		       offsetof(struct xfs_efi_log_format, efi_extents));
185 		for (i = 0; i < src_efi_fmt->efi_nextents; i++)
186 			memcpy(&dst_efi_fmt->efi_extents[i],
187 			       &src_efi_fmt->efi_extents[i],
188 			       sizeof(struct xfs_extent));
189 		return 0;
190 	} else if (buf->i_len == len32) {
191 		xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
192 
193 		dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type;
194 		dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size;
195 		dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
196 		dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id;
197 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
198 			dst_efi_fmt->efi_extents[i].ext_start =
199 				src_efi_fmt_32->efi_extents[i].ext_start;
200 			dst_efi_fmt->efi_extents[i].ext_len =
201 				src_efi_fmt_32->efi_extents[i].ext_len;
202 		}
203 		return 0;
204 	} else if (buf->i_len == len64) {
205 		xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
206 
207 		dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type;
208 		dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size;
209 		dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
210 		dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id;
211 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
212 			dst_efi_fmt->efi_extents[i].ext_start =
213 				src_efi_fmt_64->efi_extents[i].ext_start;
214 			dst_efi_fmt->efi_extents[i].ext_len =
215 				src_efi_fmt_64->efi_extents[i].ext_len;
216 		}
217 		return 0;
218 	}
219 	XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, NULL, buf->i_addr,
220 			buf->i_len);
221 	return -EFSCORRUPTED;
222 }
223 
224 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
225 {
226 	return container_of(lip, struct xfs_efd_log_item, efd_item);
227 }
228 
229 STATIC void
230 xfs_efd_item_free(struct xfs_efd_log_item *efdp)
231 {
232 	kmem_free(efdp->efd_item.li_lv_shadow);
233 	if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
234 		kmem_free(efdp);
235 	else
236 		kmem_cache_free(xfs_efd_cache, efdp);
237 }
238 
239 STATIC void
240 xfs_efd_item_size(
241 	struct xfs_log_item	*lip,
242 	int			*nvecs,
243 	int			*nbytes)
244 {
245 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
246 
247 	*nvecs += 1;
248 	*nbytes += xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents);
249 }
250 
251 /*
252  * This is called to fill in the vector of log iovecs for the
253  * given efd log item. We use only 1 iovec, and we point that
254  * at the efd_log_format structure embedded in the efd item.
255  * It is at this point that we assert that all of the extent
256  * slots in the efd item have been filled.
257  */
258 STATIC void
259 xfs_efd_item_format(
260 	struct xfs_log_item	*lip,
261 	struct xfs_log_vec	*lv)
262 {
263 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
264 	struct xfs_log_iovec	*vecp = NULL;
265 
266 	ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
267 
268 	efdp->efd_format.efd_type = XFS_LI_EFD;
269 	efdp->efd_format.efd_size = 1;
270 
271 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
272 			&efdp->efd_format,
273 			xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents));
274 }
275 
276 /*
277  * The EFD is either committed or aborted if the transaction is cancelled. If
278  * the transaction is cancelled, drop our reference to the EFI and free the EFD.
279  */
280 STATIC void
281 xfs_efd_item_release(
282 	struct xfs_log_item	*lip)
283 {
284 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
285 
286 	xfs_efi_release(efdp->efd_efip);
287 	xfs_efd_item_free(efdp);
288 }
289 
290 static struct xfs_log_item *
291 xfs_efd_item_intent(
292 	struct xfs_log_item	*lip)
293 {
294 	return &EFD_ITEM(lip)->efd_efip->efi_item;
295 }
296 
297 static const struct xfs_item_ops xfs_efd_item_ops = {
298 	.flags		= XFS_ITEM_RELEASE_WHEN_COMMITTED |
299 			  XFS_ITEM_INTENT_DONE,
300 	.iop_size	= xfs_efd_item_size,
301 	.iop_format	= xfs_efd_item_format,
302 	.iop_release	= xfs_efd_item_release,
303 	.iop_intent	= xfs_efd_item_intent,
304 };
305 
306 /*
307  * Allocate an "extent free done" log item that will hold nextents worth of
308  * extents.  The caller must use all nextents extents, because we are not
309  * flexible about this at all.
310  */
311 static struct xfs_efd_log_item *
312 xfs_trans_get_efd(
313 	struct xfs_trans		*tp,
314 	struct xfs_efi_log_item		*efip,
315 	unsigned int			nextents)
316 {
317 	struct xfs_efd_log_item		*efdp;
318 
319 	ASSERT(nextents > 0);
320 
321 	if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
322 		efdp = kzalloc(xfs_efd_log_item_sizeof(nextents),
323 				GFP_KERNEL | __GFP_NOFAIL);
324 	} else {
325 		efdp = kmem_cache_zalloc(xfs_efd_cache,
326 					GFP_KERNEL | __GFP_NOFAIL);
327 	}
328 
329 	xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD,
330 			  &xfs_efd_item_ops);
331 	efdp->efd_efip = efip;
332 	efdp->efd_format.efd_nextents = nextents;
333 	efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
334 
335 	xfs_trans_add_item(tp, &efdp->efd_item);
336 	return efdp;
337 }
338 
339 /*
340  * Free an extent and log it to the EFD. Note that the transaction is marked
341  * dirty regardless of whether the extent free succeeds or fails to support the
342  * EFI/EFD lifecycle rules.
343  */
344 static int
345 xfs_trans_free_extent(
346 	struct xfs_trans		*tp,
347 	struct xfs_efd_log_item		*efdp,
348 	struct xfs_extent_free_item	*xefi)
349 {
350 	struct xfs_owner_info		oinfo = { };
351 	struct xfs_mount		*mp = tp->t_mountp;
352 	struct xfs_extent		*extp;
353 	uint				next_extent;
354 	xfs_agnumber_t			agno = XFS_FSB_TO_AGNO(mp,
355 							xefi->xefi_startblock);
356 	xfs_agblock_t			agbno = XFS_FSB_TO_AGBNO(mp,
357 							xefi->xefi_startblock);
358 	int				error;
359 
360 	oinfo.oi_owner = xefi->xefi_owner;
361 	if (xefi->xefi_flags & XFS_EFI_ATTR_FORK)
362 		oinfo.oi_flags |= XFS_OWNER_INFO_ATTR_FORK;
363 	if (xefi->xefi_flags & XFS_EFI_BMBT_BLOCK)
364 		oinfo.oi_flags |= XFS_OWNER_INFO_BMBT_BLOCK;
365 
366 	trace_xfs_bmap_free_deferred(tp->t_mountp, agno, 0, agbno,
367 			xefi->xefi_blockcount);
368 
369 	error = __xfs_free_extent(tp, xefi->xefi_startblock,
370 			xefi->xefi_blockcount, &oinfo, XFS_AG_RESV_NONE,
371 			xefi->xefi_flags & XFS_EFI_SKIP_DISCARD);
372 	/*
373 	 * Mark the transaction dirty, even on error. This ensures the
374 	 * transaction is aborted, which:
375 	 *
376 	 * 1.) releases the EFI and frees the EFD
377 	 * 2.) shuts down the filesystem
378 	 */
379 	tp->t_flags |= XFS_TRANS_DIRTY | XFS_TRANS_HAS_INTENT_DONE;
380 	set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
381 
382 	next_extent = efdp->efd_next_extent;
383 	ASSERT(next_extent < efdp->efd_format.efd_nextents);
384 	extp = &(efdp->efd_format.efd_extents[next_extent]);
385 	extp->ext_start = xefi->xefi_startblock;
386 	extp->ext_len = xefi->xefi_blockcount;
387 	efdp->efd_next_extent++;
388 
389 	return error;
390 }
391 
392 /* Sort bmap items by AG. */
393 static int
394 xfs_extent_free_diff_items(
395 	void				*priv,
396 	const struct list_head		*a,
397 	const struct list_head		*b)
398 {
399 	struct xfs_mount		*mp = priv;
400 	struct xfs_extent_free_item	*ra;
401 	struct xfs_extent_free_item	*rb;
402 
403 	ra = container_of(a, struct xfs_extent_free_item, xefi_list);
404 	rb = container_of(b, struct xfs_extent_free_item, xefi_list);
405 	return  XFS_FSB_TO_AGNO(mp, ra->xefi_startblock) -
406 		XFS_FSB_TO_AGNO(mp, rb->xefi_startblock);
407 }
408 
409 /* Log a free extent to the intent item. */
410 STATIC void
411 xfs_extent_free_log_item(
412 	struct xfs_trans		*tp,
413 	struct xfs_efi_log_item		*efip,
414 	struct xfs_extent_free_item	*xefi)
415 {
416 	uint				next_extent;
417 	struct xfs_extent		*extp;
418 
419 	tp->t_flags |= XFS_TRANS_DIRTY;
420 	set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags);
421 
422 	/*
423 	 * atomic_inc_return gives us the value after the increment;
424 	 * we want to use it as an array index so we need to subtract 1 from
425 	 * it.
426 	 */
427 	next_extent = atomic_inc_return(&efip->efi_next_extent) - 1;
428 	ASSERT(next_extent < efip->efi_format.efi_nextents);
429 	extp = &efip->efi_format.efi_extents[next_extent];
430 	extp->ext_start = xefi->xefi_startblock;
431 	extp->ext_len = xefi->xefi_blockcount;
432 }
433 
434 static struct xfs_log_item *
435 xfs_extent_free_create_intent(
436 	struct xfs_trans		*tp,
437 	struct list_head		*items,
438 	unsigned int			count,
439 	bool				sort)
440 {
441 	struct xfs_mount		*mp = tp->t_mountp;
442 	struct xfs_efi_log_item		*efip = xfs_efi_init(mp, count);
443 	struct xfs_extent_free_item	*xefi;
444 
445 	ASSERT(count > 0);
446 
447 	xfs_trans_add_item(tp, &efip->efi_item);
448 	if (sort)
449 		list_sort(mp, items, xfs_extent_free_diff_items);
450 	list_for_each_entry(xefi, items, xefi_list)
451 		xfs_extent_free_log_item(tp, efip, xefi);
452 	return &efip->efi_item;
453 }
454 
455 /* Get an EFD so we can process all the free extents. */
456 static struct xfs_log_item *
457 xfs_extent_free_create_done(
458 	struct xfs_trans		*tp,
459 	struct xfs_log_item		*intent,
460 	unsigned int			count)
461 {
462 	return &xfs_trans_get_efd(tp, EFI_ITEM(intent), count)->efd_item;
463 }
464 
465 /* Process a free extent. */
466 STATIC int
467 xfs_extent_free_finish_item(
468 	struct xfs_trans		*tp,
469 	struct xfs_log_item		*done,
470 	struct list_head		*item,
471 	struct xfs_btree_cur		**state)
472 {
473 	struct xfs_extent_free_item	*xefi;
474 	int				error;
475 
476 	xefi = container_of(item, struct xfs_extent_free_item, xefi_list);
477 
478 	error = xfs_trans_free_extent(tp, EFD_ITEM(done), xefi);
479 	kmem_cache_free(xfs_extfree_item_cache, xefi);
480 	return error;
481 }
482 
483 /* Abort all pending EFIs. */
484 STATIC void
485 xfs_extent_free_abort_intent(
486 	struct xfs_log_item		*intent)
487 {
488 	xfs_efi_release(EFI_ITEM(intent));
489 }
490 
491 /* Cancel a free extent. */
492 STATIC void
493 xfs_extent_free_cancel_item(
494 	struct list_head		*item)
495 {
496 	struct xfs_extent_free_item	*xefi;
497 
498 	xefi = container_of(item, struct xfs_extent_free_item, xefi_list);
499 	kmem_cache_free(xfs_extfree_item_cache, xefi);
500 }
501 
502 const struct xfs_defer_op_type xfs_extent_free_defer_type = {
503 	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
504 	.create_intent	= xfs_extent_free_create_intent,
505 	.abort_intent	= xfs_extent_free_abort_intent,
506 	.create_done	= xfs_extent_free_create_done,
507 	.finish_item	= xfs_extent_free_finish_item,
508 	.cancel_item	= xfs_extent_free_cancel_item,
509 };
510 
511 /*
512  * AGFL blocks are accounted differently in the reserve pools and are not
513  * inserted into the busy extent list.
514  */
515 STATIC int
516 xfs_agfl_free_finish_item(
517 	struct xfs_trans		*tp,
518 	struct xfs_log_item		*done,
519 	struct list_head		*item,
520 	struct xfs_btree_cur		**state)
521 {
522 	struct xfs_owner_info		oinfo = { };
523 	struct xfs_mount		*mp = tp->t_mountp;
524 	struct xfs_efd_log_item		*efdp = EFD_ITEM(done);
525 	struct xfs_extent_free_item	*xefi;
526 	struct xfs_extent		*extp;
527 	struct xfs_buf			*agbp;
528 	int				error;
529 	xfs_agnumber_t			agno;
530 	xfs_agblock_t			agbno;
531 	uint				next_extent;
532 	struct xfs_perag		*pag;
533 
534 	xefi = container_of(item, struct xfs_extent_free_item, xefi_list);
535 	ASSERT(xefi->xefi_blockcount == 1);
536 	agno = XFS_FSB_TO_AGNO(mp, xefi->xefi_startblock);
537 	agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock);
538 	oinfo.oi_owner = xefi->xefi_owner;
539 
540 	trace_xfs_agfl_free_deferred(mp, agno, 0, agbno, xefi->xefi_blockcount);
541 
542 	pag = xfs_perag_get(mp, agno);
543 	error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
544 	if (!error)
545 		error = xfs_free_agfl_block(tp, agno, agbno, agbp, &oinfo);
546 	xfs_perag_put(pag);
547 
548 	/*
549 	 * Mark the transaction dirty, even on error. This ensures the
550 	 * transaction is aborted, which:
551 	 *
552 	 * 1.) releases the EFI and frees the EFD
553 	 * 2.) shuts down the filesystem
554 	 */
555 	tp->t_flags |= XFS_TRANS_DIRTY;
556 	set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
557 
558 	next_extent = efdp->efd_next_extent;
559 	ASSERT(next_extent < efdp->efd_format.efd_nextents);
560 	extp = &(efdp->efd_format.efd_extents[next_extent]);
561 	extp->ext_start = xefi->xefi_startblock;
562 	extp->ext_len = xefi->xefi_blockcount;
563 	efdp->efd_next_extent++;
564 
565 	kmem_cache_free(xfs_extfree_item_cache, xefi);
566 	return error;
567 }
568 
569 /* sub-type with special handling for AGFL deferred frees */
570 const struct xfs_defer_op_type xfs_agfl_free_defer_type = {
571 	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
572 	.create_intent	= xfs_extent_free_create_intent,
573 	.abort_intent	= xfs_extent_free_abort_intent,
574 	.create_done	= xfs_extent_free_create_done,
575 	.finish_item	= xfs_agfl_free_finish_item,
576 	.cancel_item	= xfs_extent_free_cancel_item,
577 };
578 
579 /* Is this recovered EFI ok? */
580 static inline bool
581 xfs_efi_validate_ext(
582 	struct xfs_mount		*mp,
583 	struct xfs_extent		*extp)
584 {
585 	return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len);
586 }
587 
588 /*
589  * Process an extent free intent item that was recovered from
590  * the log.  We need to free the extents that it describes.
591  */
592 STATIC int
593 xfs_efi_item_recover(
594 	struct xfs_log_item		*lip,
595 	struct list_head		*capture_list)
596 {
597 	struct xfs_efi_log_item		*efip = EFI_ITEM(lip);
598 	struct xfs_mount		*mp = lip->li_log->l_mp;
599 	struct xfs_efd_log_item		*efdp;
600 	struct xfs_trans		*tp;
601 	int				i;
602 	int				error = 0;
603 
604 	/*
605 	 * First check the validity of the extents described by the
606 	 * EFI.  If any are bad, then assume that all are bad and
607 	 * just toss the EFI.
608 	 */
609 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
610 		if (!xfs_efi_validate_ext(mp,
611 					&efip->efi_format.efi_extents[i])) {
612 			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
613 					&efip->efi_format,
614 					sizeof(efip->efi_format));
615 			return -EFSCORRUPTED;
616 		}
617 	}
618 
619 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
620 	if (error)
621 		return error;
622 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
623 
624 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
625 		struct xfs_extent_free_item	fake = {
626 			.xefi_owner		= XFS_RMAP_OWN_UNKNOWN,
627 		};
628 		struct xfs_extent		*extp;
629 
630 		extp = &efip->efi_format.efi_extents[i];
631 
632 		fake.xefi_startblock = extp->ext_start;
633 		fake.xefi_blockcount = extp->ext_len;
634 
635 		error = xfs_trans_free_extent(tp, efdp, &fake);
636 		if (error == -EFSCORRUPTED)
637 			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
638 					extp, sizeof(*extp));
639 		if (error)
640 			goto abort_error;
641 
642 	}
643 
644 	return xfs_defer_ops_capture_and_commit(tp, capture_list);
645 
646 abort_error:
647 	xfs_trans_cancel(tp);
648 	return error;
649 }
650 
651 STATIC bool
652 xfs_efi_item_match(
653 	struct xfs_log_item	*lip,
654 	uint64_t		intent_id)
655 {
656 	return EFI_ITEM(lip)->efi_format.efi_id == intent_id;
657 }
658 
659 /* Relog an intent item to push the log tail forward. */
660 static struct xfs_log_item *
661 xfs_efi_item_relog(
662 	struct xfs_log_item		*intent,
663 	struct xfs_trans		*tp)
664 {
665 	struct xfs_efd_log_item		*efdp;
666 	struct xfs_efi_log_item		*efip;
667 	struct xfs_extent		*extp;
668 	unsigned int			count;
669 
670 	count = EFI_ITEM(intent)->efi_format.efi_nextents;
671 	extp = EFI_ITEM(intent)->efi_format.efi_extents;
672 
673 	tp->t_flags |= XFS_TRANS_DIRTY;
674 	efdp = xfs_trans_get_efd(tp, EFI_ITEM(intent), count);
675 	efdp->efd_next_extent = count;
676 	memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp));
677 	set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
678 
679 	efip = xfs_efi_init(tp->t_mountp, count);
680 	memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp));
681 	atomic_set(&efip->efi_next_extent, count);
682 	xfs_trans_add_item(tp, &efip->efi_item);
683 	set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags);
684 	return &efip->efi_item;
685 }
686 
687 static const struct xfs_item_ops xfs_efi_item_ops = {
688 	.flags		= XFS_ITEM_INTENT,
689 	.iop_size	= xfs_efi_item_size,
690 	.iop_format	= xfs_efi_item_format,
691 	.iop_unpin	= xfs_efi_item_unpin,
692 	.iop_release	= xfs_efi_item_release,
693 	.iop_recover	= xfs_efi_item_recover,
694 	.iop_match	= xfs_efi_item_match,
695 	.iop_relog	= xfs_efi_item_relog,
696 };
697 
698 /*
699  * This routine is called to create an in-core extent free intent
700  * item from the efi format structure which was logged on disk.
701  * It allocates an in-core efi, copies the extents from the format
702  * structure into it, and adds the efi to the AIL with the given
703  * LSN.
704  */
705 STATIC int
706 xlog_recover_efi_commit_pass2(
707 	struct xlog			*log,
708 	struct list_head		*buffer_list,
709 	struct xlog_recover_item	*item,
710 	xfs_lsn_t			lsn)
711 {
712 	struct xfs_mount		*mp = log->l_mp;
713 	struct xfs_efi_log_item		*efip;
714 	struct xfs_efi_log_format	*efi_formatp;
715 	int				error;
716 
717 	efi_formatp = item->ri_buf[0].i_addr;
718 
719 	if (item->ri_buf[0].i_len < xfs_efi_log_format_sizeof(0)) {
720 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
721 				item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
722 		return -EFSCORRUPTED;
723 	}
724 
725 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
726 	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
727 	if (error) {
728 		xfs_efi_item_free(efip);
729 		return error;
730 	}
731 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
732 	/*
733 	 * Insert the intent into the AIL directly and drop one reference so
734 	 * that finishing or canceling the work will drop the other.
735 	 */
736 	xfs_trans_ail_insert(log->l_ailp, &efip->efi_item, lsn);
737 	xfs_efi_release(efip);
738 	return 0;
739 }
740 
741 const struct xlog_recover_item_ops xlog_efi_item_ops = {
742 	.item_type		= XFS_LI_EFI,
743 	.commit_pass2		= xlog_recover_efi_commit_pass2,
744 };
745 
746 /*
747  * This routine is called when an EFD format structure is found in a committed
748  * transaction in the log. Its purpose is to cancel the corresponding EFI if it
749  * was still in the log. To do this it searches the AIL for the EFI with an id
750  * equal to that in the EFD format structure. If we find it we drop the EFD
751  * reference, which removes the EFI from the AIL and frees it.
752  */
753 STATIC int
754 xlog_recover_efd_commit_pass2(
755 	struct xlog			*log,
756 	struct list_head		*buffer_list,
757 	struct xlog_recover_item	*item,
758 	xfs_lsn_t			lsn)
759 {
760 	struct xfs_efd_log_format	*efd_formatp;
761 	int				buflen = item->ri_buf[0].i_len;
762 
763 	efd_formatp = item->ri_buf[0].i_addr;
764 
765 	if (buflen < sizeof(struct xfs_efd_log_format)) {
766 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
767 				efd_formatp, buflen);
768 		return -EFSCORRUPTED;
769 	}
770 
771 	if (item->ri_buf[0].i_len != xfs_efd_log_format32_sizeof(
772 						efd_formatp->efd_nextents) &&
773 	    item->ri_buf[0].i_len != xfs_efd_log_format64_sizeof(
774 						efd_formatp->efd_nextents)) {
775 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
776 				efd_formatp, buflen);
777 		return -EFSCORRUPTED;
778 	}
779 
780 	xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id);
781 	return 0;
782 }
783 
784 const struct xlog_recover_item_ops xlog_efd_item_ops = {
785 	.item_type		= XFS_LI_EFD,
786 	.commit_pass2		= xlog_recover_efd_commit_pass2,
787 };
788