xref: /openbmc/linux/fs/xfs/xfs_extfree_item.c (revision 2b1b1267080fe822789d0845a58ebb452724736b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_shared.h"
13 #include "xfs_mount.h"
14 #include "xfs_defer.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_extfree_item.h"
18 #include "xfs_log.h"
19 #include "xfs_btree.h"
20 #include "xfs_rmap.h"
21 #include "xfs_alloc.h"
22 #include "xfs_bmap.h"
23 #include "xfs_trace.h"
24 #include "xfs_error.h"
25 #include "xfs_log_priv.h"
26 #include "xfs_log_recover.h"
27 
28 kmem_zone_t	*xfs_efi_zone;
29 kmem_zone_t	*xfs_efd_zone;
30 
31 static const struct xfs_item_ops xfs_efi_item_ops;
32 
33 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
34 {
35 	return container_of(lip, struct xfs_efi_log_item, efi_item);
36 }
37 
38 STATIC void
39 xfs_efi_item_free(
40 	struct xfs_efi_log_item	*efip)
41 {
42 	kmem_free(efip->efi_item.li_lv_shadow);
43 	if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
44 		kmem_free(efip);
45 	else
46 		kmem_cache_free(xfs_efi_zone, efip);
47 }
48 
49 /*
50  * Freeing the efi requires that we remove it from the AIL if it has already
51  * been placed there. However, the EFI may not yet have been placed in the AIL
52  * when called by xfs_efi_release() from EFD processing due to the ordering of
53  * committed vs unpin operations in bulk insert operations. Hence the reference
54  * count to ensure only the last caller frees the EFI.
55  */
56 STATIC void
57 xfs_efi_release(
58 	struct xfs_efi_log_item	*efip)
59 {
60 	ASSERT(atomic_read(&efip->efi_refcount) > 0);
61 	if (atomic_dec_and_test(&efip->efi_refcount)) {
62 		xfs_trans_ail_delete(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR);
63 		xfs_efi_item_free(efip);
64 	}
65 }
66 
67 /*
68  * This returns the number of iovecs needed to log the given efi item.
69  * We only need 1 iovec for an efi item.  It just logs the efi_log_format
70  * structure.
71  */
72 static inline int
73 xfs_efi_item_sizeof(
74 	struct xfs_efi_log_item *efip)
75 {
76 	return sizeof(struct xfs_efi_log_format) +
77 	       (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
78 }
79 
80 STATIC void
81 xfs_efi_item_size(
82 	struct xfs_log_item	*lip,
83 	int			*nvecs,
84 	int			*nbytes)
85 {
86 	*nvecs += 1;
87 	*nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
88 }
89 
90 /*
91  * This is called to fill in the vector of log iovecs for the
92  * given efi log item. We use only 1 iovec, and we point that
93  * at the efi_log_format structure embedded in the efi item.
94  * It is at this point that we assert that all of the extent
95  * slots in the efi item have been filled.
96  */
97 STATIC void
98 xfs_efi_item_format(
99 	struct xfs_log_item	*lip,
100 	struct xfs_log_vec	*lv)
101 {
102 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
103 	struct xfs_log_iovec	*vecp = NULL;
104 
105 	ASSERT(atomic_read(&efip->efi_next_extent) ==
106 				efip->efi_format.efi_nextents);
107 
108 	efip->efi_format.efi_type = XFS_LI_EFI;
109 	efip->efi_format.efi_size = 1;
110 
111 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
112 			&efip->efi_format,
113 			xfs_efi_item_sizeof(efip));
114 }
115 
116 
117 /*
118  * The unpin operation is the last place an EFI is manipulated in the log. It is
119  * either inserted in the AIL or aborted in the event of a log I/O error. In
120  * either case, the EFI transaction has been successfully committed to make it
121  * this far. Therefore, we expect whoever committed the EFI to either construct
122  * and commit the EFD or drop the EFD's reference in the event of error. Simply
123  * drop the log's EFI reference now that the log is done with it.
124  */
125 STATIC void
126 xfs_efi_item_unpin(
127 	struct xfs_log_item	*lip,
128 	int			remove)
129 {
130 	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
131 	xfs_efi_release(efip);
132 }
133 
134 /*
135  * The EFI has been either committed or aborted if the transaction has been
136  * cancelled. If the transaction was cancelled, an EFD isn't going to be
137  * constructed and thus we free the EFI here directly.
138  */
139 STATIC void
140 xfs_efi_item_release(
141 	struct xfs_log_item	*lip)
142 {
143 	xfs_efi_release(EFI_ITEM(lip));
144 }
145 
146 /*
147  * Allocate and initialize an efi item with the given number of extents.
148  */
149 STATIC struct xfs_efi_log_item *
150 xfs_efi_init(
151 	struct xfs_mount	*mp,
152 	uint			nextents)
153 
154 {
155 	struct xfs_efi_log_item	*efip;
156 	uint			size;
157 
158 	ASSERT(nextents > 0);
159 	if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
160 		size = (uint)(sizeof(struct xfs_efi_log_item) +
161 			((nextents - 1) * sizeof(xfs_extent_t)));
162 		efip = kmem_zalloc(size, 0);
163 	} else {
164 		efip = kmem_zone_zalloc(xfs_efi_zone, 0);
165 	}
166 
167 	xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
168 	efip->efi_format.efi_nextents = nextents;
169 	efip->efi_format.efi_id = (uintptr_t)(void *)efip;
170 	atomic_set(&efip->efi_next_extent, 0);
171 	atomic_set(&efip->efi_refcount, 2);
172 
173 	return efip;
174 }
175 
176 /*
177  * Copy an EFI format buffer from the given buf, and into the destination
178  * EFI format structure.
179  * The given buffer can be in 32 bit or 64 bit form (which has different padding),
180  * one of which will be the native format for this kernel.
181  * It will handle the conversion of formats if necessary.
182  */
183 STATIC int
184 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
185 {
186 	xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
187 	uint i;
188 	uint len = sizeof(xfs_efi_log_format_t) +
189 		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
190 	uint len32 = sizeof(xfs_efi_log_format_32_t) +
191 		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
192 	uint len64 = sizeof(xfs_efi_log_format_64_t) +
193 		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
194 
195 	if (buf->i_len == len) {
196 		memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
197 		return 0;
198 	} else if (buf->i_len == len32) {
199 		xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
200 
201 		dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type;
202 		dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size;
203 		dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
204 		dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id;
205 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
206 			dst_efi_fmt->efi_extents[i].ext_start =
207 				src_efi_fmt_32->efi_extents[i].ext_start;
208 			dst_efi_fmt->efi_extents[i].ext_len =
209 				src_efi_fmt_32->efi_extents[i].ext_len;
210 		}
211 		return 0;
212 	} else if (buf->i_len == len64) {
213 		xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
214 
215 		dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type;
216 		dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size;
217 		dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
218 		dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id;
219 		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
220 			dst_efi_fmt->efi_extents[i].ext_start =
221 				src_efi_fmt_64->efi_extents[i].ext_start;
222 			dst_efi_fmt->efi_extents[i].ext_len =
223 				src_efi_fmt_64->efi_extents[i].ext_len;
224 		}
225 		return 0;
226 	}
227 	XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
228 	return -EFSCORRUPTED;
229 }
230 
231 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
232 {
233 	return container_of(lip, struct xfs_efd_log_item, efd_item);
234 }
235 
236 STATIC void
237 xfs_efd_item_free(struct xfs_efd_log_item *efdp)
238 {
239 	kmem_free(efdp->efd_item.li_lv_shadow);
240 	if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
241 		kmem_free(efdp);
242 	else
243 		kmem_cache_free(xfs_efd_zone, efdp);
244 }
245 
246 /*
247  * This returns the number of iovecs needed to log the given efd item.
248  * We only need 1 iovec for an efd item.  It just logs the efd_log_format
249  * structure.
250  */
251 static inline int
252 xfs_efd_item_sizeof(
253 	struct xfs_efd_log_item *efdp)
254 {
255 	return sizeof(xfs_efd_log_format_t) +
256 	       (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
257 }
258 
259 STATIC void
260 xfs_efd_item_size(
261 	struct xfs_log_item	*lip,
262 	int			*nvecs,
263 	int			*nbytes)
264 {
265 	*nvecs += 1;
266 	*nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
267 }
268 
269 /*
270  * This is called to fill in the vector of log iovecs for the
271  * given efd log item. We use only 1 iovec, and we point that
272  * at the efd_log_format structure embedded in the efd item.
273  * It is at this point that we assert that all of the extent
274  * slots in the efd item have been filled.
275  */
276 STATIC void
277 xfs_efd_item_format(
278 	struct xfs_log_item	*lip,
279 	struct xfs_log_vec	*lv)
280 {
281 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
282 	struct xfs_log_iovec	*vecp = NULL;
283 
284 	ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
285 
286 	efdp->efd_format.efd_type = XFS_LI_EFD;
287 	efdp->efd_format.efd_size = 1;
288 
289 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
290 			&efdp->efd_format,
291 			xfs_efd_item_sizeof(efdp));
292 }
293 
294 /*
295  * The EFD is either committed or aborted if the transaction is cancelled. If
296  * the transaction is cancelled, drop our reference to the EFI and free the EFD.
297  */
298 STATIC void
299 xfs_efd_item_release(
300 	struct xfs_log_item	*lip)
301 {
302 	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
303 
304 	xfs_efi_release(efdp->efd_efip);
305 	xfs_efd_item_free(efdp);
306 }
307 
308 static const struct xfs_item_ops xfs_efd_item_ops = {
309 	.flags		= XFS_ITEM_RELEASE_WHEN_COMMITTED,
310 	.iop_size	= xfs_efd_item_size,
311 	.iop_format	= xfs_efd_item_format,
312 	.iop_release	= xfs_efd_item_release,
313 };
314 
315 /*
316  * Allocate an "extent free done" log item that will hold nextents worth of
317  * extents.  The caller must use all nextents extents, because we are not
318  * flexible about this at all.
319  */
320 static struct xfs_efd_log_item *
321 xfs_trans_get_efd(
322 	struct xfs_trans		*tp,
323 	struct xfs_efi_log_item		*efip,
324 	unsigned int			nextents)
325 {
326 	struct xfs_efd_log_item		*efdp;
327 
328 	ASSERT(nextents > 0);
329 
330 	if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
331 		efdp = kmem_zalloc(sizeof(struct xfs_efd_log_item) +
332 				(nextents - 1) * sizeof(struct xfs_extent),
333 				0);
334 	} else {
335 		efdp = kmem_zone_zalloc(xfs_efd_zone, 0);
336 	}
337 
338 	xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD,
339 			  &xfs_efd_item_ops);
340 	efdp->efd_efip = efip;
341 	efdp->efd_format.efd_nextents = nextents;
342 	efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
343 
344 	xfs_trans_add_item(tp, &efdp->efd_item);
345 	return efdp;
346 }
347 
348 /*
349  * Free an extent and log it to the EFD. Note that the transaction is marked
350  * dirty regardless of whether the extent free succeeds or fails to support the
351  * EFI/EFD lifecycle rules.
352  */
353 static int
354 xfs_trans_free_extent(
355 	struct xfs_trans		*tp,
356 	struct xfs_efd_log_item		*efdp,
357 	xfs_fsblock_t			start_block,
358 	xfs_extlen_t			ext_len,
359 	const struct xfs_owner_info	*oinfo,
360 	bool				skip_discard)
361 {
362 	struct xfs_mount		*mp = tp->t_mountp;
363 	struct xfs_extent		*extp;
364 	uint				next_extent;
365 	xfs_agnumber_t			agno = XFS_FSB_TO_AGNO(mp, start_block);
366 	xfs_agblock_t			agbno = XFS_FSB_TO_AGBNO(mp,
367 								start_block);
368 	int				error;
369 
370 	trace_xfs_bmap_free_deferred(tp->t_mountp, agno, 0, agbno, ext_len);
371 
372 	error = __xfs_free_extent(tp, start_block, ext_len,
373 				  oinfo, XFS_AG_RESV_NONE, skip_discard);
374 	/*
375 	 * Mark the transaction dirty, even on error. This ensures the
376 	 * transaction is aborted, which:
377 	 *
378 	 * 1.) releases the EFI and frees the EFD
379 	 * 2.) shuts down the filesystem
380 	 */
381 	tp->t_flags |= XFS_TRANS_DIRTY;
382 	set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
383 
384 	next_extent = efdp->efd_next_extent;
385 	ASSERT(next_extent < efdp->efd_format.efd_nextents);
386 	extp = &(efdp->efd_format.efd_extents[next_extent]);
387 	extp->ext_start = start_block;
388 	extp->ext_len = ext_len;
389 	efdp->efd_next_extent++;
390 
391 	return error;
392 }
393 
394 /* Sort bmap items by AG. */
395 static int
396 xfs_extent_free_diff_items(
397 	void				*priv,
398 	struct list_head		*a,
399 	struct list_head		*b)
400 {
401 	struct xfs_mount		*mp = priv;
402 	struct xfs_extent_free_item	*ra;
403 	struct xfs_extent_free_item	*rb;
404 
405 	ra = container_of(a, struct xfs_extent_free_item, xefi_list);
406 	rb = container_of(b, struct xfs_extent_free_item, xefi_list);
407 	return  XFS_FSB_TO_AGNO(mp, ra->xefi_startblock) -
408 		XFS_FSB_TO_AGNO(mp, rb->xefi_startblock);
409 }
410 
411 /* Log a free extent to the intent item. */
412 STATIC void
413 xfs_extent_free_log_item(
414 	struct xfs_trans		*tp,
415 	struct xfs_efi_log_item		*efip,
416 	struct xfs_extent_free_item	*free)
417 {
418 	uint				next_extent;
419 	struct xfs_extent		*extp;
420 
421 	tp->t_flags |= XFS_TRANS_DIRTY;
422 	set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags);
423 
424 	/*
425 	 * atomic_inc_return gives us the value after the increment;
426 	 * we want to use it as an array index so we need to subtract 1 from
427 	 * it.
428 	 */
429 	next_extent = atomic_inc_return(&efip->efi_next_extent) - 1;
430 	ASSERT(next_extent < efip->efi_format.efi_nextents);
431 	extp = &efip->efi_format.efi_extents[next_extent];
432 	extp->ext_start = free->xefi_startblock;
433 	extp->ext_len = free->xefi_blockcount;
434 }
435 
436 static struct xfs_log_item *
437 xfs_extent_free_create_intent(
438 	struct xfs_trans		*tp,
439 	struct list_head		*items,
440 	unsigned int			count,
441 	bool				sort)
442 {
443 	struct xfs_mount		*mp = tp->t_mountp;
444 	struct xfs_efi_log_item		*efip = xfs_efi_init(mp, count);
445 	struct xfs_extent_free_item	*free;
446 
447 	ASSERT(count > 0);
448 
449 	xfs_trans_add_item(tp, &efip->efi_item);
450 	if (sort)
451 		list_sort(mp, items, xfs_extent_free_diff_items);
452 	list_for_each_entry(free, items, xefi_list)
453 		xfs_extent_free_log_item(tp, efip, free);
454 	return &efip->efi_item;
455 }
456 
457 /* Get an EFD so we can process all the free extents. */
458 static struct xfs_log_item *
459 xfs_extent_free_create_done(
460 	struct xfs_trans		*tp,
461 	struct xfs_log_item		*intent,
462 	unsigned int			count)
463 {
464 	return &xfs_trans_get_efd(tp, EFI_ITEM(intent), count)->efd_item;
465 }
466 
467 /* Process a free extent. */
468 STATIC int
469 xfs_extent_free_finish_item(
470 	struct xfs_trans		*tp,
471 	struct xfs_log_item		*done,
472 	struct list_head		*item,
473 	struct xfs_btree_cur		**state)
474 {
475 	struct xfs_extent_free_item	*free;
476 	int				error;
477 
478 	free = container_of(item, struct xfs_extent_free_item, xefi_list);
479 	error = xfs_trans_free_extent(tp, EFD_ITEM(done),
480 			free->xefi_startblock,
481 			free->xefi_blockcount,
482 			&free->xefi_oinfo, free->xefi_skip_discard);
483 	kmem_free(free);
484 	return error;
485 }
486 
487 /* Abort all pending EFIs. */
488 STATIC void
489 xfs_extent_free_abort_intent(
490 	struct xfs_log_item		*intent)
491 {
492 	xfs_efi_release(EFI_ITEM(intent));
493 }
494 
495 /* Cancel a free extent. */
496 STATIC void
497 xfs_extent_free_cancel_item(
498 	struct list_head		*item)
499 {
500 	struct xfs_extent_free_item	*free;
501 
502 	free = container_of(item, struct xfs_extent_free_item, xefi_list);
503 	kmem_free(free);
504 }
505 
506 const struct xfs_defer_op_type xfs_extent_free_defer_type = {
507 	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
508 	.create_intent	= xfs_extent_free_create_intent,
509 	.abort_intent	= xfs_extent_free_abort_intent,
510 	.create_done	= xfs_extent_free_create_done,
511 	.finish_item	= xfs_extent_free_finish_item,
512 	.cancel_item	= xfs_extent_free_cancel_item,
513 };
514 
515 /*
516  * AGFL blocks are accounted differently in the reserve pools and are not
517  * inserted into the busy extent list.
518  */
519 STATIC int
520 xfs_agfl_free_finish_item(
521 	struct xfs_trans		*tp,
522 	struct xfs_log_item		*done,
523 	struct list_head		*item,
524 	struct xfs_btree_cur		**state)
525 {
526 	struct xfs_mount		*mp = tp->t_mountp;
527 	struct xfs_efd_log_item		*efdp = EFD_ITEM(done);
528 	struct xfs_extent_free_item	*free;
529 	struct xfs_extent		*extp;
530 	struct xfs_buf			*agbp;
531 	int				error;
532 	xfs_agnumber_t			agno;
533 	xfs_agblock_t			agbno;
534 	uint				next_extent;
535 
536 	free = container_of(item, struct xfs_extent_free_item, xefi_list);
537 	ASSERT(free->xefi_blockcount == 1);
538 	agno = XFS_FSB_TO_AGNO(mp, free->xefi_startblock);
539 	agbno = XFS_FSB_TO_AGBNO(mp, free->xefi_startblock);
540 
541 	trace_xfs_agfl_free_deferred(mp, agno, 0, agbno, free->xefi_blockcount);
542 
543 	error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
544 	if (!error)
545 		error = xfs_free_agfl_block(tp, agno, agbno, agbp,
546 					    &free->xefi_oinfo);
547 
548 	/*
549 	 * Mark the transaction dirty, even on error. This ensures the
550 	 * transaction is aborted, which:
551 	 *
552 	 * 1.) releases the EFI and frees the EFD
553 	 * 2.) shuts down the filesystem
554 	 */
555 	tp->t_flags |= XFS_TRANS_DIRTY;
556 	set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
557 
558 	next_extent = efdp->efd_next_extent;
559 	ASSERT(next_extent < efdp->efd_format.efd_nextents);
560 	extp = &(efdp->efd_format.efd_extents[next_extent]);
561 	extp->ext_start = free->xefi_startblock;
562 	extp->ext_len = free->xefi_blockcount;
563 	efdp->efd_next_extent++;
564 
565 	kmem_free(free);
566 	return error;
567 }
568 
569 /* sub-type with special handling for AGFL deferred frees */
570 const struct xfs_defer_op_type xfs_agfl_free_defer_type = {
571 	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
572 	.create_intent	= xfs_extent_free_create_intent,
573 	.abort_intent	= xfs_extent_free_abort_intent,
574 	.create_done	= xfs_extent_free_create_done,
575 	.finish_item	= xfs_agfl_free_finish_item,
576 	.cancel_item	= xfs_extent_free_cancel_item,
577 };
578 
579 /*
580  * Process an extent free intent item that was recovered from
581  * the log.  We need to free the extents that it describes.
582  */
583 STATIC int
584 xfs_efi_item_recover(
585 	struct xfs_log_item		*lip,
586 	struct xfs_trans		*parent_tp)
587 {
588 	struct xfs_efi_log_item		*efip = EFI_ITEM(lip);
589 	struct xfs_mount		*mp = parent_tp->t_mountp;
590 	struct xfs_efd_log_item		*efdp;
591 	struct xfs_trans		*tp;
592 	struct xfs_extent		*extp;
593 	xfs_fsblock_t			startblock_fsb;
594 	int				i;
595 	int				error = 0;
596 
597 	/*
598 	 * First check the validity of the extents described by the
599 	 * EFI.  If any are bad, then assume that all are bad and
600 	 * just toss the EFI.
601 	 */
602 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
603 		extp = &efip->efi_format.efi_extents[i];
604 		startblock_fsb = XFS_BB_TO_FSB(mp,
605 				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
606 		if (startblock_fsb == 0 ||
607 		    extp->ext_len == 0 ||
608 		    startblock_fsb >= mp->m_sb.sb_dblocks ||
609 		    extp->ext_len >= mp->m_sb.sb_agblocks) {
610 			/*
611 			 * This will pull the EFI from the AIL and
612 			 * free the memory associated with it.
613 			 */
614 			xfs_efi_release(efip);
615 			return -EFSCORRUPTED;
616 		}
617 	}
618 
619 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
620 	if (error)
621 		return error;
622 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
623 
624 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
625 		extp = &efip->efi_format.efi_extents[i];
626 		error = xfs_trans_free_extent(tp, efdp, extp->ext_start,
627 					      extp->ext_len,
628 					      &XFS_RMAP_OINFO_ANY_OWNER, false);
629 		if (error)
630 			goto abort_error;
631 
632 	}
633 
634 	error = xfs_trans_commit(tp);
635 	return error;
636 
637 abort_error:
638 	xfs_trans_cancel(tp);
639 	return error;
640 }
641 
642 STATIC bool
643 xfs_efi_item_match(
644 	struct xfs_log_item	*lip,
645 	uint64_t		intent_id)
646 {
647 	return EFI_ITEM(lip)->efi_format.efi_id == intent_id;
648 }
649 
650 static const struct xfs_item_ops xfs_efi_item_ops = {
651 	.iop_size	= xfs_efi_item_size,
652 	.iop_format	= xfs_efi_item_format,
653 	.iop_unpin	= xfs_efi_item_unpin,
654 	.iop_release	= xfs_efi_item_release,
655 	.iop_recover	= xfs_efi_item_recover,
656 	.iop_match	= xfs_efi_item_match,
657 };
658 
659 /*
660  * This routine is called to create an in-core extent free intent
661  * item from the efi format structure which was logged on disk.
662  * It allocates an in-core efi, copies the extents from the format
663  * structure into it, and adds the efi to the AIL with the given
664  * LSN.
665  */
666 STATIC int
667 xlog_recover_efi_commit_pass2(
668 	struct xlog			*log,
669 	struct list_head		*buffer_list,
670 	struct xlog_recover_item	*item,
671 	xfs_lsn_t			lsn)
672 {
673 	struct xfs_mount		*mp = log->l_mp;
674 	struct xfs_efi_log_item		*efip;
675 	struct xfs_efi_log_format	*efi_formatp;
676 	int				error;
677 
678 	efi_formatp = item->ri_buf[0].i_addr;
679 
680 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
681 	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
682 	if (error) {
683 		xfs_efi_item_free(efip);
684 		return error;
685 	}
686 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
687 	/*
688 	 * Insert the intent into the AIL directly and drop one reference so
689 	 * that finishing or canceling the work will drop the other.
690 	 */
691 	xfs_trans_ail_insert(log->l_ailp, &efip->efi_item, lsn);
692 	xfs_efi_release(efip);
693 	return 0;
694 }
695 
696 const struct xlog_recover_item_ops xlog_efi_item_ops = {
697 	.item_type		= XFS_LI_EFI,
698 	.commit_pass2		= xlog_recover_efi_commit_pass2,
699 };
700 
701 /*
702  * This routine is called when an EFD format structure is found in a committed
703  * transaction in the log. Its purpose is to cancel the corresponding EFI if it
704  * was still in the log. To do this it searches the AIL for the EFI with an id
705  * equal to that in the EFD format structure. If we find it we drop the EFD
706  * reference, which removes the EFI from the AIL and frees it.
707  */
708 STATIC int
709 xlog_recover_efd_commit_pass2(
710 	struct xlog			*log,
711 	struct list_head		*buffer_list,
712 	struct xlog_recover_item	*item,
713 	xfs_lsn_t			lsn)
714 {
715 	struct xfs_efd_log_format	*efd_formatp;
716 
717 	efd_formatp = item->ri_buf[0].i_addr;
718 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
719 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
720 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
721 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
722 
723 	xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id);
724 	return 0;
725 }
726 
727 const struct xlog_recover_item_ops xlog_efd_item_ops = {
728 	.item_type		= XFS_LI_EFD,
729 	.commit_pass2		= xlog_recover_efd_commit_pass2,
730 };
731