1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_bit.h" 12 #include "xfs_shared.h" 13 #include "xfs_mount.h" 14 #include "xfs_defer.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_extfree_item.h" 18 #include "xfs_log.h" 19 #include "xfs_btree.h" 20 #include "xfs_rmap.h" 21 #include "xfs_alloc.h" 22 #include "xfs_bmap.h" 23 #include "xfs_trace.h" 24 #include "xfs_error.h" 25 #include "xfs_log_priv.h" 26 #include "xfs_log_recover.h" 27 28 kmem_zone_t *xfs_efi_zone; 29 kmem_zone_t *xfs_efd_zone; 30 31 static const struct xfs_item_ops xfs_efi_item_ops; 32 33 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip) 34 { 35 return container_of(lip, struct xfs_efi_log_item, efi_item); 36 } 37 38 STATIC void 39 xfs_efi_item_free( 40 struct xfs_efi_log_item *efip) 41 { 42 kmem_free(efip->efi_item.li_lv_shadow); 43 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS) 44 kmem_free(efip); 45 else 46 kmem_cache_free(xfs_efi_zone, efip); 47 } 48 49 /* 50 * Freeing the efi requires that we remove it from the AIL if it has already 51 * been placed there. However, the EFI may not yet have been placed in the AIL 52 * when called by xfs_efi_release() from EFD processing due to the ordering of 53 * committed vs unpin operations in bulk insert operations. Hence the reference 54 * count to ensure only the last caller frees the EFI. 55 */ 56 STATIC void 57 xfs_efi_release( 58 struct xfs_efi_log_item *efip) 59 { 60 ASSERT(atomic_read(&efip->efi_refcount) > 0); 61 if (atomic_dec_and_test(&efip->efi_refcount)) { 62 xfs_trans_ail_delete(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR); 63 xfs_efi_item_free(efip); 64 } 65 } 66 67 /* 68 * This returns the number of iovecs needed to log the given efi item. 69 * We only need 1 iovec for an efi item. It just logs the efi_log_format 70 * structure. 71 */ 72 static inline int 73 xfs_efi_item_sizeof( 74 struct xfs_efi_log_item *efip) 75 { 76 return sizeof(struct xfs_efi_log_format) + 77 (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t); 78 } 79 80 STATIC void 81 xfs_efi_item_size( 82 struct xfs_log_item *lip, 83 int *nvecs, 84 int *nbytes) 85 { 86 *nvecs += 1; 87 *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip)); 88 } 89 90 /* 91 * This is called to fill in the vector of log iovecs for the 92 * given efi log item. We use only 1 iovec, and we point that 93 * at the efi_log_format structure embedded in the efi item. 94 * It is at this point that we assert that all of the extent 95 * slots in the efi item have been filled. 96 */ 97 STATIC void 98 xfs_efi_item_format( 99 struct xfs_log_item *lip, 100 struct xfs_log_vec *lv) 101 { 102 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 103 struct xfs_log_iovec *vecp = NULL; 104 105 ASSERT(atomic_read(&efip->efi_next_extent) == 106 efip->efi_format.efi_nextents); 107 108 efip->efi_format.efi_type = XFS_LI_EFI; 109 efip->efi_format.efi_size = 1; 110 111 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT, 112 &efip->efi_format, 113 xfs_efi_item_sizeof(efip)); 114 } 115 116 117 /* 118 * The unpin operation is the last place an EFI is manipulated in the log. It is 119 * either inserted in the AIL or aborted in the event of a log I/O error. In 120 * either case, the EFI transaction has been successfully committed to make it 121 * this far. Therefore, we expect whoever committed the EFI to either construct 122 * and commit the EFD or drop the EFD's reference in the event of error. Simply 123 * drop the log's EFI reference now that the log is done with it. 124 */ 125 STATIC void 126 xfs_efi_item_unpin( 127 struct xfs_log_item *lip, 128 int remove) 129 { 130 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 131 xfs_efi_release(efip); 132 } 133 134 /* 135 * The EFI has been either committed or aborted if the transaction has been 136 * cancelled. If the transaction was cancelled, an EFD isn't going to be 137 * constructed and thus we free the EFI here directly. 138 */ 139 STATIC void 140 xfs_efi_item_release( 141 struct xfs_log_item *lip) 142 { 143 xfs_efi_release(EFI_ITEM(lip)); 144 } 145 146 /* 147 * Allocate and initialize an efi item with the given number of extents. 148 */ 149 STATIC struct xfs_efi_log_item * 150 xfs_efi_init( 151 struct xfs_mount *mp, 152 uint nextents) 153 154 { 155 struct xfs_efi_log_item *efip; 156 uint size; 157 158 ASSERT(nextents > 0); 159 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { 160 size = (uint)(sizeof(struct xfs_efi_log_item) + 161 ((nextents - 1) * sizeof(xfs_extent_t))); 162 efip = kmem_zalloc(size, 0); 163 } else { 164 efip = kmem_zone_zalloc(xfs_efi_zone, 0); 165 } 166 167 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops); 168 efip->efi_format.efi_nextents = nextents; 169 efip->efi_format.efi_id = (uintptr_t)(void *)efip; 170 atomic_set(&efip->efi_next_extent, 0); 171 atomic_set(&efip->efi_refcount, 2); 172 173 return efip; 174 } 175 176 /* 177 * Copy an EFI format buffer from the given buf, and into the destination 178 * EFI format structure. 179 * The given buffer can be in 32 bit or 64 bit form (which has different padding), 180 * one of which will be the native format for this kernel. 181 * It will handle the conversion of formats if necessary. 182 */ 183 STATIC int 184 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt) 185 { 186 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr; 187 uint i; 188 uint len = sizeof(xfs_efi_log_format_t) + 189 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t); 190 uint len32 = sizeof(xfs_efi_log_format_32_t) + 191 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t); 192 uint len64 = sizeof(xfs_efi_log_format_64_t) + 193 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t); 194 195 if (buf->i_len == len) { 196 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len); 197 return 0; 198 } else if (buf->i_len == len32) { 199 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr; 200 201 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type; 202 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size; 203 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents; 204 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id; 205 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { 206 dst_efi_fmt->efi_extents[i].ext_start = 207 src_efi_fmt_32->efi_extents[i].ext_start; 208 dst_efi_fmt->efi_extents[i].ext_len = 209 src_efi_fmt_32->efi_extents[i].ext_len; 210 } 211 return 0; 212 } else if (buf->i_len == len64) { 213 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr; 214 215 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type; 216 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size; 217 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents; 218 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id; 219 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { 220 dst_efi_fmt->efi_extents[i].ext_start = 221 src_efi_fmt_64->efi_extents[i].ext_start; 222 dst_efi_fmt->efi_extents[i].ext_len = 223 src_efi_fmt_64->efi_extents[i].ext_len; 224 } 225 return 0; 226 } 227 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); 228 return -EFSCORRUPTED; 229 } 230 231 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip) 232 { 233 return container_of(lip, struct xfs_efd_log_item, efd_item); 234 } 235 236 STATIC void 237 xfs_efd_item_free(struct xfs_efd_log_item *efdp) 238 { 239 kmem_free(efdp->efd_item.li_lv_shadow); 240 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS) 241 kmem_free(efdp); 242 else 243 kmem_cache_free(xfs_efd_zone, efdp); 244 } 245 246 /* 247 * This returns the number of iovecs needed to log the given efd item. 248 * We only need 1 iovec for an efd item. It just logs the efd_log_format 249 * structure. 250 */ 251 static inline int 252 xfs_efd_item_sizeof( 253 struct xfs_efd_log_item *efdp) 254 { 255 return sizeof(xfs_efd_log_format_t) + 256 (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t); 257 } 258 259 STATIC void 260 xfs_efd_item_size( 261 struct xfs_log_item *lip, 262 int *nvecs, 263 int *nbytes) 264 { 265 *nvecs += 1; 266 *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip)); 267 } 268 269 /* 270 * This is called to fill in the vector of log iovecs for the 271 * given efd log item. We use only 1 iovec, and we point that 272 * at the efd_log_format structure embedded in the efd item. 273 * It is at this point that we assert that all of the extent 274 * slots in the efd item have been filled. 275 */ 276 STATIC void 277 xfs_efd_item_format( 278 struct xfs_log_item *lip, 279 struct xfs_log_vec *lv) 280 { 281 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 282 struct xfs_log_iovec *vecp = NULL; 283 284 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); 285 286 efdp->efd_format.efd_type = XFS_LI_EFD; 287 efdp->efd_format.efd_size = 1; 288 289 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT, 290 &efdp->efd_format, 291 xfs_efd_item_sizeof(efdp)); 292 } 293 294 /* 295 * The EFD is either committed or aborted if the transaction is cancelled. If 296 * the transaction is cancelled, drop our reference to the EFI and free the EFD. 297 */ 298 STATIC void 299 xfs_efd_item_release( 300 struct xfs_log_item *lip) 301 { 302 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 303 304 xfs_efi_release(efdp->efd_efip); 305 xfs_efd_item_free(efdp); 306 } 307 308 static const struct xfs_item_ops xfs_efd_item_ops = { 309 .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED, 310 .iop_size = xfs_efd_item_size, 311 .iop_format = xfs_efd_item_format, 312 .iop_release = xfs_efd_item_release, 313 }; 314 315 /* 316 * Allocate an "extent free done" log item that will hold nextents worth of 317 * extents. The caller must use all nextents extents, because we are not 318 * flexible about this at all. 319 */ 320 static struct xfs_efd_log_item * 321 xfs_trans_get_efd( 322 struct xfs_trans *tp, 323 struct xfs_efi_log_item *efip, 324 unsigned int nextents) 325 { 326 struct xfs_efd_log_item *efdp; 327 328 ASSERT(nextents > 0); 329 330 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) { 331 efdp = kmem_zalloc(sizeof(struct xfs_efd_log_item) + 332 (nextents - 1) * sizeof(struct xfs_extent), 333 0); 334 } else { 335 efdp = kmem_zone_zalloc(xfs_efd_zone, 0); 336 } 337 338 xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD, 339 &xfs_efd_item_ops); 340 efdp->efd_efip = efip; 341 efdp->efd_format.efd_nextents = nextents; 342 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; 343 344 xfs_trans_add_item(tp, &efdp->efd_item); 345 return efdp; 346 } 347 348 /* 349 * Free an extent and log it to the EFD. Note that the transaction is marked 350 * dirty regardless of whether the extent free succeeds or fails to support the 351 * EFI/EFD lifecycle rules. 352 */ 353 static int 354 xfs_trans_free_extent( 355 struct xfs_trans *tp, 356 struct xfs_efd_log_item *efdp, 357 xfs_fsblock_t start_block, 358 xfs_extlen_t ext_len, 359 const struct xfs_owner_info *oinfo, 360 bool skip_discard) 361 { 362 struct xfs_mount *mp = tp->t_mountp; 363 struct xfs_extent *extp; 364 uint next_extent; 365 xfs_agnumber_t agno = XFS_FSB_TO_AGNO(mp, start_block); 366 xfs_agblock_t agbno = XFS_FSB_TO_AGBNO(mp, 367 start_block); 368 int error; 369 370 trace_xfs_bmap_free_deferred(tp->t_mountp, agno, 0, agbno, ext_len); 371 372 error = __xfs_free_extent(tp, start_block, ext_len, 373 oinfo, XFS_AG_RESV_NONE, skip_discard); 374 /* 375 * Mark the transaction dirty, even on error. This ensures the 376 * transaction is aborted, which: 377 * 378 * 1.) releases the EFI and frees the EFD 379 * 2.) shuts down the filesystem 380 */ 381 tp->t_flags |= XFS_TRANS_DIRTY; 382 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); 383 384 next_extent = efdp->efd_next_extent; 385 ASSERT(next_extent < efdp->efd_format.efd_nextents); 386 extp = &(efdp->efd_format.efd_extents[next_extent]); 387 extp->ext_start = start_block; 388 extp->ext_len = ext_len; 389 efdp->efd_next_extent++; 390 391 return error; 392 } 393 394 /* Sort bmap items by AG. */ 395 static int 396 xfs_extent_free_diff_items( 397 void *priv, 398 struct list_head *a, 399 struct list_head *b) 400 { 401 struct xfs_mount *mp = priv; 402 struct xfs_extent_free_item *ra; 403 struct xfs_extent_free_item *rb; 404 405 ra = container_of(a, struct xfs_extent_free_item, xefi_list); 406 rb = container_of(b, struct xfs_extent_free_item, xefi_list); 407 return XFS_FSB_TO_AGNO(mp, ra->xefi_startblock) - 408 XFS_FSB_TO_AGNO(mp, rb->xefi_startblock); 409 } 410 411 /* Log a free extent to the intent item. */ 412 STATIC void 413 xfs_extent_free_log_item( 414 struct xfs_trans *tp, 415 struct xfs_efi_log_item *efip, 416 struct xfs_extent_free_item *free) 417 { 418 uint next_extent; 419 struct xfs_extent *extp; 420 421 tp->t_flags |= XFS_TRANS_DIRTY; 422 set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags); 423 424 /* 425 * atomic_inc_return gives us the value after the increment; 426 * we want to use it as an array index so we need to subtract 1 from 427 * it. 428 */ 429 next_extent = atomic_inc_return(&efip->efi_next_extent) - 1; 430 ASSERT(next_extent < efip->efi_format.efi_nextents); 431 extp = &efip->efi_format.efi_extents[next_extent]; 432 extp->ext_start = free->xefi_startblock; 433 extp->ext_len = free->xefi_blockcount; 434 } 435 436 static struct xfs_log_item * 437 xfs_extent_free_create_intent( 438 struct xfs_trans *tp, 439 struct list_head *items, 440 unsigned int count, 441 bool sort) 442 { 443 struct xfs_mount *mp = tp->t_mountp; 444 struct xfs_efi_log_item *efip = xfs_efi_init(mp, count); 445 struct xfs_extent_free_item *free; 446 447 ASSERT(count > 0); 448 449 xfs_trans_add_item(tp, &efip->efi_item); 450 if (sort) 451 list_sort(mp, items, xfs_extent_free_diff_items); 452 list_for_each_entry(free, items, xefi_list) 453 xfs_extent_free_log_item(tp, efip, free); 454 return &efip->efi_item; 455 } 456 457 /* Get an EFD so we can process all the free extents. */ 458 static struct xfs_log_item * 459 xfs_extent_free_create_done( 460 struct xfs_trans *tp, 461 struct xfs_log_item *intent, 462 unsigned int count) 463 { 464 return &xfs_trans_get_efd(tp, EFI_ITEM(intent), count)->efd_item; 465 } 466 467 /* Process a free extent. */ 468 STATIC int 469 xfs_extent_free_finish_item( 470 struct xfs_trans *tp, 471 struct xfs_log_item *done, 472 struct list_head *item, 473 struct xfs_btree_cur **state) 474 { 475 struct xfs_extent_free_item *free; 476 int error; 477 478 free = container_of(item, struct xfs_extent_free_item, xefi_list); 479 error = xfs_trans_free_extent(tp, EFD_ITEM(done), 480 free->xefi_startblock, 481 free->xefi_blockcount, 482 &free->xefi_oinfo, free->xefi_skip_discard); 483 kmem_free(free); 484 return error; 485 } 486 487 /* Abort all pending EFIs. */ 488 STATIC void 489 xfs_extent_free_abort_intent( 490 struct xfs_log_item *intent) 491 { 492 xfs_efi_release(EFI_ITEM(intent)); 493 } 494 495 /* Cancel a free extent. */ 496 STATIC void 497 xfs_extent_free_cancel_item( 498 struct list_head *item) 499 { 500 struct xfs_extent_free_item *free; 501 502 free = container_of(item, struct xfs_extent_free_item, xefi_list); 503 kmem_free(free); 504 } 505 506 const struct xfs_defer_op_type xfs_extent_free_defer_type = { 507 .max_items = XFS_EFI_MAX_FAST_EXTENTS, 508 .create_intent = xfs_extent_free_create_intent, 509 .abort_intent = xfs_extent_free_abort_intent, 510 .create_done = xfs_extent_free_create_done, 511 .finish_item = xfs_extent_free_finish_item, 512 .cancel_item = xfs_extent_free_cancel_item, 513 }; 514 515 /* 516 * AGFL blocks are accounted differently in the reserve pools and are not 517 * inserted into the busy extent list. 518 */ 519 STATIC int 520 xfs_agfl_free_finish_item( 521 struct xfs_trans *tp, 522 struct xfs_log_item *done, 523 struct list_head *item, 524 struct xfs_btree_cur **state) 525 { 526 struct xfs_mount *mp = tp->t_mountp; 527 struct xfs_efd_log_item *efdp = EFD_ITEM(done); 528 struct xfs_extent_free_item *free; 529 struct xfs_extent *extp; 530 struct xfs_buf *agbp; 531 int error; 532 xfs_agnumber_t agno; 533 xfs_agblock_t agbno; 534 uint next_extent; 535 536 free = container_of(item, struct xfs_extent_free_item, xefi_list); 537 ASSERT(free->xefi_blockcount == 1); 538 agno = XFS_FSB_TO_AGNO(mp, free->xefi_startblock); 539 agbno = XFS_FSB_TO_AGBNO(mp, free->xefi_startblock); 540 541 trace_xfs_agfl_free_deferred(mp, agno, 0, agbno, free->xefi_blockcount); 542 543 error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp); 544 if (!error) 545 error = xfs_free_agfl_block(tp, agno, agbno, agbp, 546 &free->xefi_oinfo); 547 548 /* 549 * Mark the transaction dirty, even on error. This ensures the 550 * transaction is aborted, which: 551 * 552 * 1.) releases the EFI and frees the EFD 553 * 2.) shuts down the filesystem 554 */ 555 tp->t_flags |= XFS_TRANS_DIRTY; 556 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); 557 558 next_extent = efdp->efd_next_extent; 559 ASSERT(next_extent < efdp->efd_format.efd_nextents); 560 extp = &(efdp->efd_format.efd_extents[next_extent]); 561 extp->ext_start = free->xefi_startblock; 562 extp->ext_len = free->xefi_blockcount; 563 efdp->efd_next_extent++; 564 565 kmem_free(free); 566 return error; 567 } 568 569 /* sub-type with special handling for AGFL deferred frees */ 570 const struct xfs_defer_op_type xfs_agfl_free_defer_type = { 571 .max_items = XFS_EFI_MAX_FAST_EXTENTS, 572 .create_intent = xfs_extent_free_create_intent, 573 .abort_intent = xfs_extent_free_abort_intent, 574 .create_done = xfs_extent_free_create_done, 575 .finish_item = xfs_agfl_free_finish_item, 576 .cancel_item = xfs_extent_free_cancel_item, 577 }; 578 579 /* 580 * Process an extent free intent item that was recovered from 581 * the log. We need to free the extents that it describes. 582 */ 583 STATIC int 584 xfs_efi_item_recover( 585 struct xfs_log_item *lip, 586 struct xfs_trans *parent_tp) 587 { 588 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 589 struct xfs_mount *mp = parent_tp->t_mountp; 590 struct xfs_efd_log_item *efdp; 591 struct xfs_trans *tp; 592 struct xfs_extent *extp; 593 xfs_fsblock_t startblock_fsb; 594 int i; 595 int error = 0; 596 597 /* 598 * First check the validity of the extents described by the 599 * EFI. If any are bad, then assume that all are bad and 600 * just toss the EFI. 601 */ 602 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 603 extp = &efip->efi_format.efi_extents[i]; 604 startblock_fsb = XFS_BB_TO_FSB(mp, 605 XFS_FSB_TO_DADDR(mp, extp->ext_start)); 606 if (startblock_fsb == 0 || 607 extp->ext_len == 0 || 608 startblock_fsb >= mp->m_sb.sb_dblocks || 609 extp->ext_len >= mp->m_sb.sb_agblocks) { 610 /* 611 * This will pull the EFI from the AIL and 612 * free the memory associated with it. 613 */ 614 xfs_efi_release(efip); 615 return -EFSCORRUPTED; 616 } 617 } 618 619 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 620 if (error) 621 return error; 622 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 623 624 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 625 extp = &efip->efi_format.efi_extents[i]; 626 error = xfs_trans_free_extent(tp, efdp, extp->ext_start, 627 extp->ext_len, 628 &XFS_RMAP_OINFO_ANY_OWNER, false); 629 if (error) 630 goto abort_error; 631 632 } 633 634 error = xfs_trans_commit(tp); 635 return error; 636 637 abort_error: 638 xfs_trans_cancel(tp); 639 return error; 640 } 641 642 STATIC bool 643 xfs_efi_item_match( 644 struct xfs_log_item *lip, 645 uint64_t intent_id) 646 { 647 return EFI_ITEM(lip)->efi_format.efi_id == intent_id; 648 } 649 650 static const struct xfs_item_ops xfs_efi_item_ops = { 651 .iop_size = xfs_efi_item_size, 652 .iop_format = xfs_efi_item_format, 653 .iop_unpin = xfs_efi_item_unpin, 654 .iop_release = xfs_efi_item_release, 655 .iop_recover = xfs_efi_item_recover, 656 .iop_match = xfs_efi_item_match, 657 }; 658 659 /* 660 * This routine is called to create an in-core extent free intent 661 * item from the efi format structure which was logged on disk. 662 * It allocates an in-core efi, copies the extents from the format 663 * structure into it, and adds the efi to the AIL with the given 664 * LSN. 665 */ 666 STATIC int 667 xlog_recover_efi_commit_pass2( 668 struct xlog *log, 669 struct list_head *buffer_list, 670 struct xlog_recover_item *item, 671 xfs_lsn_t lsn) 672 { 673 struct xfs_mount *mp = log->l_mp; 674 struct xfs_efi_log_item *efip; 675 struct xfs_efi_log_format *efi_formatp; 676 int error; 677 678 efi_formatp = item->ri_buf[0].i_addr; 679 680 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 681 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format); 682 if (error) { 683 xfs_efi_item_free(efip); 684 return error; 685 } 686 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 687 /* 688 * Insert the intent into the AIL directly and drop one reference so 689 * that finishing or canceling the work will drop the other. 690 */ 691 xfs_trans_ail_insert(log->l_ailp, &efip->efi_item, lsn); 692 xfs_efi_release(efip); 693 return 0; 694 } 695 696 const struct xlog_recover_item_ops xlog_efi_item_ops = { 697 .item_type = XFS_LI_EFI, 698 .commit_pass2 = xlog_recover_efi_commit_pass2, 699 }; 700 701 /* 702 * This routine is called when an EFD format structure is found in a committed 703 * transaction in the log. Its purpose is to cancel the corresponding EFI if it 704 * was still in the log. To do this it searches the AIL for the EFI with an id 705 * equal to that in the EFD format structure. If we find it we drop the EFD 706 * reference, which removes the EFI from the AIL and frees it. 707 */ 708 STATIC int 709 xlog_recover_efd_commit_pass2( 710 struct xlog *log, 711 struct list_head *buffer_list, 712 struct xlog_recover_item *item, 713 xfs_lsn_t lsn) 714 { 715 struct xfs_efd_log_format *efd_formatp; 716 717 efd_formatp = item->ri_buf[0].i_addr; 718 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 719 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 720 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 721 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 722 723 xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id); 724 return 0; 725 } 726 727 const struct xlog_recover_item_ops xlog_efd_item_ops = { 728 .item_type = XFS_LI_EFD, 729 .commit_pass2 = xlog_recover_efd_commit_pass2, 730 }; 731