1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_bit.h" 12 #include "xfs_shared.h" 13 #include "xfs_mount.h" 14 #include "xfs_defer.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_extfree_item.h" 18 #include "xfs_log.h" 19 #include "xfs_btree.h" 20 #include "xfs_rmap.h" 21 #include "xfs_alloc.h" 22 #include "xfs_bmap.h" 23 #include "xfs_trace.h" 24 25 26 kmem_zone_t *xfs_efi_zone; 27 kmem_zone_t *xfs_efd_zone; 28 29 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip) 30 { 31 return container_of(lip, struct xfs_efi_log_item, efi_item); 32 } 33 34 void 35 xfs_efi_item_free( 36 struct xfs_efi_log_item *efip) 37 { 38 kmem_free(efip->efi_item.li_lv_shadow); 39 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS) 40 kmem_free(efip); 41 else 42 kmem_zone_free(xfs_efi_zone, efip); 43 } 44 45 /* 46 * Freeing the efi requires that we remove it from the AIL if it has already 47 * been placed there. However, the EFI may not yet have been placed in the AIL 48 * when called by xfs_efi_release() from EFD processing due to the ordering of 49 * committed vs unpin operations in bulk insert operations. Hence the reference 50 * count to ensure only the last caller frees the EFI. 51 */ 52 void 53 xfs_efi_release( 54 struct xfs_efi_log_item *efip) 55 { 56 ASSERT(atomic_read(&efip->efi_refcount) > 0); 57 if (atomic_dec_and_test(&efip->efi_refcount)) { 58 xfs_trans_ail_remove(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR); 59 xfs_efi_item_free(efip); 60 } 61 } 62 63 /* 64 * This returns the number of iovecs needed to log the given efi item. 65 * We only need 1 iovec for an efi item. It just logs the efi_log_format 66 * structure. 67 */ 68 static inline int 69 xfs_efi_item_sizeof( 70 struct xfs_efi_log_item *efip) 71 { 72 return sizeof(struct xfs_efi_log_format) + 73 (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t); 74 } 75 76 STATIC void 77 xfs_efi_item_size( 78 struct xfs_log_item *lip, 79 int *nvecs, 80 int *nbytes) 81 { 82 *nvecs += 1; 83 *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip)); 84 } 85 86 /* 87 * This is called to fill in the vector of log iovecs for the 88 * given efi log item. We use only 1 iovec, and we point that 89 * at the efi_log_format structure embedded in the efi item. 90 * It is at this point that we assert that all of the extent 91 * slots in the efi item have been filled. 92 */ 93 STATIC void 94 xfs_efi_item_format( 95 struct xfs_log_item *lip, 96 struct xfs_log_vec *lv) 97 { 98 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 99 struct xfs_log_iovec *vecp = NULL; 100 101 ASSERT(atomic_read(&efip->efi_next_extent) == 102 efip->efi_format.efi_nextents); 103 104 efip->efi_format.efi_type = XFS_LI_EFI; 105 efip->efi_format.efi_size = 1; 106 107 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT, 108 &efip->efi_format, 109 xfs_efi_item_sizeof(efip)); 110 } 111 112 113 /* 114 * The unpin operation is the last place an EFI is manipulated in the log. It is 115 * either inserted in the AIL or aborted in the event of a log I/O error. In 116 * either case, the EFI transaction has been successfully committed to make it 117 * this far. Therefore, we expect whoever committed the EFI to either construct 118 * and commit the EFD or drop the EFD's reference in the event of error. Simply 119 * drop the log's EFI reference now that the log is done with it. 120 */ 121 STATIC void 122 xfs_efi_item_unpin( 123 struct xfs_log_item *lip, 124 int remove) 125 { 126 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 127 xfs_efi_release(efip); 128 } 129 130 /* 131 * The EFI has been either committed or aborted if the transaction has been 132 * cancelled. If the transaction was cancelled, an EFD isn't going to be 133 * constructed and thus we free the EFI here directly. 134 */ 135 STATIC void 136 xfs_efi_item_release( 137 struct xfs_log_item *lip) 138 { 139 xfs_efi_release(EFI_ITEM(lip)); 140 } 141 142 static const struct xfs_item_ops xfs_efi_item_ops = { 143 .iop_size = xfs_efi_item_size, 144 .iop_format = xfs_efi_item_format, 145 .iop_unpin = xfs_efi_item_unpin, 146 .iop_release = xfs_efi_item_release, 147 }; 148 149 150 /* 151 * Allocate and initialize an efi item with the given number of extents. 152 */ 153 struct xfs_efi_log_item * 154 xfs_efi_init( 155 struct xfs_mount *mp, 156 uint nextents) 157 158 { 159 struct xfs_efi_log_item *efip; 160 uint size; 161 162 ASSERT(nextents > 0); 163 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { 164 size = (uint)(sizeof(xfs_efi_log_item_t) + 165 ((nextents - 1) * sizeof(xfs_extent_t))); 166 efip = kmem_zalloc(size, KM_SLEEP); 167 } else { 168 efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP); 169 } 170 171 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops); 172 efip->efi_format.efi_nextents = nextents; 173 efip->efi_format.efi_id = (uintptr_t)(void *)efip; 174 atomic_set(&efip->efi_next_extent, 0); 175 atomic_set(&efip->efi_refcount, 2); 176 177 return efip; 178 } 179 180 /* 181 * Copy an EFI format buffer from the given buf, and into the destination 182 * EFI format structure. 183 * The given buffer can be in 32 bit or 64 bit form (which has different padding), 184 * one of which will be the native format for this kernel. 185 * It will handle the conversion of formats if necessary. 186 */ 187 int 188 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt) 189 { 190 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr; 191 uint i; 192 uint len = sizeof(xfs_efi_log_format_t) + 193 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t); 194 uint len32 = sizeof(xfs_efi_log_format_32_t) + 195 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t); 196 uint len64 = sizeof(xfs_efi_log_format_64_t) + 197 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t); 198 199 if (buf->i_len == len) { 200 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len); 201 return 0; 202 } else if (buf->i_len == len32) { 203 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr; 204 205 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type; 206 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size; 207 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents; 208 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id; 209 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { 210 dst_efi_fmt->efi_extents[i].ext_start = 211 src_efi_fmt_32->efi_extents[i].ext_start; 212 dst_efi_fmt->efi_extents[i].ext_len = 213 src_efi_fmt_32->efi_extents[i].ext_len; 214 } 215 return 0; 216 } else if (buf->i_len == len64) { 217 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr; 218 219 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type; 220 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size; 221 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents; 222 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id; 223 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { 224 dst_efi_fmt->efi_extents[i].ext_start = 225 src_efi_fmt_64->efi_extents[i].ext_start; 226 dst_efi_fmt->efi_extents[i].ext_len = 227 src_efi_fmt_64->efi_extents[i].ext_len; 228 } 229 return 0; 230 } 231 return -EFSCORRUPTED; 232 } 233 234 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip) 235 { 236 return container_of(lip, struct xfs_efd_log_item, efd_item); 237 } 238 239 STATIC void 240 xfs_efd_item_free(struct xfs_efd_log_item *efdp) 241 { 242 kmem_free(efdp->efd_item.li_lv_shadow); 243 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS) 244 kmem_free(efdp); 245 else 246 kmem_zone_free(xfs_efd_zone, efdp); 247 } 248 249 /* 250 * This returns the number of iovecs needed to log the given efd item. 251 * We only need 1 iovec for an efd item. It just logs the efd_log_format 252 * structure. 253 */ 254 static inline int 255 xfs_efd_item_sizeof( 256 struct xfs_efd_log_item *efdp) 257 { 258 return sizeof(xfs_efd_log_format_t) + 259 (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t); 260 } 261 262 STATIC void 263 xfs_efd_item_size( 264 struct xfs_log_item *lip, 265 int *nvecs, 266 int *nbytes) 267 { 268 *nvecs += 1; 269 *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip)); 270 } 271 272 /* 273 * This is called to fill in the vector of log iovecs for the 274 * given efd log item. We use only 1 iovec, and we point that 275 * at the efd_log_format structure embedded in the efd item. 276 * It is at this point that we assert that all of the extent 277 * slots in the efd item have been filled. 278 */ 279 STATIC void 280 xfs_efd_item_format( 281 struct xfs_log_item *lip, 282 struct xfs_log_vec *lv) 283 { 284 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 285 struct xfs_log_iovec *vecp = NULL; 286 287 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); 288 289 efdp->efd_format.efd_type = XFS_LI_EFD; 290 efdp->efd_format.efd_size = 1; 291 292 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT, 293 &efdp->efd_format, 294 xfs_efd_item_sizeof(efdp)); 295 } 296 297 /* 298 * The EFD is either committed or aborted if the transaction is cancelled. If 299 * the transaction is cancelled, drop our reference to the EFI and free the EFD. 300 */ 301 STATIC void 302 xfs_efd_item_release( 303 struct xfs_log_item *lip) 304 { 305 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 306 307 xfs_efi_release(efdp->efd_efip); 308 xfs_efd_item_free(efdp); 309 } 310 311 static const struct xfs_item_ops xfs_efd_item_ops = { 312 .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED, 313 .iop_size = xfs_efd_item_size, 314 .iop_format = xfs_efd_item_format, 315 .iop_release = xfs_efd_item_release, 316 }; 317 318 /* 319 * Allocate an "extent free done" log item that will hold nextents worth of 320 * extents. The caller must use all nextents extents, because we are not 321 * flexible about this at all. 322 */ 323 static struct xfs_efd_log_item * 324 xfs_trans_get_efd( 325 struct xfs_trans *tp, 326 struct xfs_efi_log_item *efip, 327 unsigned int nextents) 328 { 329 struct xfs_efd_log_item *efdp; 330 331 ASSERT(nextents > 0); 332 333 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) { 334 efdp = kmem_zalloc(sizeof(struct xfs_efd_log_item) + 335 (nextents - 1) * sizeof(struct xfs_extent), 336 KM_SLEEP); 337 } else { 338 efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP); 339 } 340 341 xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD, 342 &xfs_efd_item_ops); 343 efdp->efd_efip = efip; 344 efdp->efd_format.efd_nextents = nextents; 345 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; 346 347 xfs_trans_add_item(tp, &efdp->efd_item); 348 return efdp; 349 } 350 351 /* 352 * Free an extent and log it to the EFD. Note that the transaction is marked 353 * dirty regardless of whether the extent free succeeds or fails to support the 354 * EFI/EFD lifecycle rules. 355 */ 356 static int 357 xfs_trans_free_extent( 358 struct xfs_trans *tp, 359 struct xfs_efd_log_item *efdp, 360 xfs_fsblock_t start_block, 361 xfs_extlen_t ext_len, 362 const struct xfs_owner_info *oinfo, 363 bool skip_discard) 364 { 365 struct xfs_mount *mp = tp->t_mountp; 366 struct xfs_extent *extp; 367 uint next_extent; 368 xfs_agnumber_t agno = XFS_FSB_TO_AGNO(mp, start_block); 369 xfs_agblock_t agbno = XFS_FSB_TO_AGBNO(mp, 370 start_block); 371 int error; 372 373 trace_xfs_bmap_free_deferred(tp->t_mountp, agno, 0, agbno, ext_len); 374 375 error = __xfs_free_extent(tp, start_block, ext_len, 376 oinfo, XFS_AG_RESV_NONE, skip_discard); 377 /* 378 * Mark the transaction dirty, even on error. This ensures the 379 * transaction is aborted, which: 380 * 381 * 1.) releases the EFI and frees the EFD 382 * 2.) shuts down the filesystem 383 */ 384 tp->t_flags |= XFS_TRANS_DIRTY; 385 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); 386 387 next_extent = efdp->efd_next_extent; 388 ASSERT(next_extent < efdp->efd_format.efd_nextents); 389 extp = &(efdp->efd_format.efd_extents[next_extent]); 390 extp->ext_start = start_block; 391 extp->ext_len = ext_len; 392 efdp->efd_next_extent++; 393 394 return error; 395 } 396 397 /* Sort bmap items by AG. */ 398 static int 399 xfs_extent_free_diff_items( 400 void *priv, 401 struct list_head *a, 402 struct list_head *b) 403 { 404 struct xfs_mount *mp = priv; 405 struct xfs_extent_free_item *ra; 406 struct xfs_extent_free_item *rb; 407 408 ra = container_of(a, struct xfs_extent_free_item, xefi_list); 409 rb = container_of(b, struct xfs_extent_free_item, xefi_list); 410 return XFS_FSB_TO_AGNO(mp, ra->xefi_startblock) - 411 XFS_FSB_TO_AGNO(mp, rb->xefi_startblock); 412 } 413 414 /* Get an EFI. */ 415 STATIC void * 416 xfs_extent_free_create_intent( 417 struct xfs_trans *tp, 418 unsigned int count) 419 { 420 struct xfs_efi_log_item *efip; 421 422 ASSERT(tp != NULL); 423 ASSERT(count > 0); 424 425 efip = xfs_efi_init(tp->t_mountp, count); 426 ASSERT(efip != NULL); 427 428 /* 429 * Get a log_item_desc to point at the new item. 430 */ 431 xfs_trans_add_item(tp, &efip->efi_item); 432 return efip; 433 } 434 435 /* Log a free extent to the intent item. */ 436 STATIC void 437 xfs_extent_free_log_item( 438 struct xfs_trans *tp, 439 void *intent, 440 struct list_head *item) 441 { 442 struct xfs_efi_log_item *efip = intent; 443 struct xfs_extent_free_item *free; 444 uint next_extent; 445 struct xfs_extent *extp; 446 447 free = container_of(item, struct xfs_extent_free_item, xefi_list); 448 449 tp->t_flags |= XFS_TRANS_DIRTY; 450 set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags); 451 452 /* 453 * atomic_inc_return gives us the value after the increment; 454 * we want to use it as an array index so we need to subtract 1 from 455 * it. 456 */ 457 next_extent = atomic_inc_return(&efip->efi_next_extent) - 1; 458 ASSERT(next_extent < efip->efi_format.efi_nextents); 459 extp = &efip->efi_format.efi_extents[next_extent]; 460 extp->ext_start = free->xefi_startblock; 461 extp->ext_len = free->xefi_blockcount; 462 } 463 464 /* Get an EFD so we can process all the free extents. */ 465 STATIC void * 466 xfs_extent_free_create_done( 467 struct xfs_trans *tp, 468 void *intent, 469 unsigned int count) 470 { 471 return xfs_trans_get_efd(tp, intent, count); 472 } 473 474 /* Process a free extent. */ 475 STATIC int 476 xfs_extent_free_finish_item( 477 struct xfs_trans *tp, 478 struct list_head *item, 479 void *done_item, 480 void **state) 481 { 482 struct xfs_extent_free_item *free; 483 int error; 484 485 free = container_of(item, struct xfs_extent_free_item, xefi_list); 486 error = xfs_trans_free_extent(tp, done_item, 487 free->xefi_startblock, 488 free->xefi_blockcount, 489 &free->xefi_oinfo, free->xefi_skip_discard); 490 kmem_free(free); 491 return error; 492 } 493 494 /* Abort all pending EFIs. */ 495 STATIC void 496 xfs_extent_free_abort_intent( 497 void *intent) 498 { 499 xfs_efi_release(intent); 500 } 501 502 /* Cancel a free extent. */ 503 STATIC void 504 xfs_extent_free_cancel_item( 505 struct list_head *item) 506 { 507 struct xfs_extent_free_item *free; 508 509 free = container_of(item, struct xfs_extent_free_item, xefi_list); 510 kmem_free(free); 511 } 512 513 const struct xfs_defer_op_type xfs_extent_free_defer_type = { 514 .max_items = XFS_EFI_MAX_FAST_EXTENTS, 515 .diff_items = xfs_extent_free_diff_items, 516 .create_intent = xfs_extent_free_create_intent, 517 .abort_intent = xfs_extent_free_abort_intent, 518 .log_item = xfs_extent_free_log_item, 519 .create_done = xfs_extent_free_create_done, 520 .finish_item = xfs_extent_free_finish_item, 521 .cancel_item = xfs_extent_free_cancel_item, 522 }; 523 524 /* 525 * AGFL blocks are accounted differently in the reserve pools and are not 526 * inserted into the busy extent list. 527 */ 528 STATIC int 529 xfs_agfl_free_finish_item( 530 struct xfs_trans *tp, 531 struct list_head *item, 532 void *done_item, 533 void **state) 534 { 535 struct xfs_mount *mp = tp->t_mountp; 536 struct xfs_efd_log_item *efdp = done_item; 537 struct xfs_extent_free_item *free; 538 struct xfs_extent *extp; 539 struct xfs_buf *agbp; 540 int error; 541 xfs_agnumber_t agno; 542 xfs_agblock_t agbno; 543 uint next_extent; 544 545 free = container_of(item, struct xfs_extent_free_item, xefi_list); 546 ASSERT(free->xefi_blockcount == 1); 547 agno = XFS_FSB_TO_AGNO(mp, free->xefi_startblock); 548 agbno = XFS_FSB_TO_AGBNO(mp, free->xefi_startblock); 549 550 trace_xfs_agfl_free_deferred(mp, agno, 0, agbno, free->xefi_blockcount); 551 552 error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp); 553 if (!error) 554 error = xfs_free_agfl_block(tp, agno, agbno, agbp, 555 &free->xefi_oinfo); 556 557 /* 558 * Mark the transaction dirty, even on error. This ensures the 559 * transaction is aborted, which: 560 * 561 * 1.) releases the EFI and frees the EFD 562 * 2.) shuts down the filesystem 563 */ 564 tp->t_flags |= XFS_TRANS_DIRTY; 565 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); 566 567 next_extent = efdp->efd_next_extent; 568 ASSERT(next_extent < efdp->efd_format.efd_nextents); 569 extp = &(efdp->efd_format.efd_extents[next_extent]); 570 extp->ext_start = free->xefi_startblock; 571 extp->ext_len = free->xefi_blockcount; 572 efdp->efd_next_extent++; 573 574 kmem_free(free); 575 return error; 576 } 577 578 /* sub-type with special handling for AGFL deferred frees */ 579 const struct xfs_defer_op_type xfs_agfl_free_defer_type = { 580 .max_items = XFS_EFI_MAX_FAST_EXTENTS, 581 .diff_items = xfs_extent_free_diff_items, 582 .create_intent = xfs_extent_free_create_intent, 583 .abort_intent = xfs_extent_free_abort_intent, 584 .log_item = xfs_extent_free_log_item, 585 .create_done = xfs_extent_free_create_done, 586 .finish_item = xfs_agfl_free_finish_item, 587 .cancel_item = xfs_extent_free_cancel_item, 588 }; 589 590 /* 591 * Process an extent free intent item that was recovered from 592 * the log. We need to free the extents that it describes. 593 */ 594 int 595 xfs_efi_recover( 596 struct xfs_mount *mp, 597 struct xfs_efi_log_item *efip) 598 { 599 struct xfs_efd_log_item *efdp; 600 struct xfs_trans *tp; 601 int i; 602 int error = 0; 603 xfs_extent_t *extp; 604 xfs_fsblock_t startblock_fsb; 605 606 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)); 607 608 /* 609 * First check the validity of the extents described by the 610 * EFI. If any are bad, then assume that all are bad and 611 * just toss the EFI. 612 */ 613 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 614 extp = &efip->efi_format.efi_extents[i]; 615 startblock_fsb = XFS_BB_TO_FSB(mp, 616 XFS_FSB_TO_DADDR(mp, extp->ext_start)); 617 if (startblock_fsb == 0 || 618 extp->ext_len == 0 || 619 startblock_fsb >= mp->m_sb.sb_dblocks || 620 extp->ext_len >= mp->m_sb.sb_agblocks) { 621 /* 622 * This will pull the EFI from the AIL and 623 * free the memory associated with it. 624 */ 625 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); 626 xfs_efi_release(efip); 627 return -EIO; 628 } 629 } 630 631 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 632 if (error) 633 return error; 634 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 635 636 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 637 extp = &efip->efi_format.efi_extents[i]; 638 error = xfs_trans_free_extent(tp, efdp, extp->ext_start, 639 extp->ext_len, 640 &XFS_RMAP_OINFO_ANY_OWNER, false); 641 if (error) 642 goto abort_error; 643 644 } 645 646 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); 647 error = xfs_trans_commit(tp); 648 return error; 649 650 abort_error: 651 xfs_trans_cancel(tp); 652 return error; 653 } 654