xref: /openbmc/linux/fs/xfs/xfs_discard.c (revision f3dfffb3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010, 2023 Red Hat, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_shared.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_btree.h"
13 #include "xfs_alloc_btree.h"
14 #include "xfs_alloc.h"
15 #include "xfs_discard.h"
16 #include "xfs_error.h"
17 #include "xfs_extent_busy.h"
18 #include "xfs_trace.h"
19 #include "xfs_log.h"
20 #include "xfs_ag.h"
21 
22 /*
23  * Notes on an efficient, low latency fstrim algorithm
24  *
25  * We need to walk the filesystem free space and issue discards on the free
26  * space that meet the search criteria (size and location). We cannot issue
27  * discards on extents that might be in use, or are so recently in use they are
28  * still marked as busy. To serialise against extent state changes whilst we are
29  * gathering extents to trim, we must hold the AGF lock to lock out other
30  * allocations and extent free operations that might change extent state.
31  *
32  * However, we cannot just hold the AGF for the entire AG free space walk whilst
33  * we issue discards on each free space that is found. Storage devices can have
34  * extremely slow discard implementations (e.g. ceph RBD) and so walking a
35  * couple of million free extents and issuing synchronous discards on each
36  * extent can take a *long* time. Whilst we are doing this walk, nothing else
37  * can access the AGF, and we can stall transactions and hence the log whilst
38  * modifications wait for the AGF lock to be released. This can lead hung tasks
39  * kicking the hung task timer and rebooting the system. This is bad.
40  *
41  * Hence we need to take a leaf from the bulkstat playbook. It takes the AGI
42  * lock, gathers a range of inode cluster buffers that are allocated, drops the
43  * AGI lock and then reads all the inode cluster buffers and processes them. It
44  * loops doing this, using a cursor to keep track of where it is up to in the AG
45  * for each iteration to restart the INOBT lookup from.
46  *
47  * We can't do this exactly with free space - once we drop the AGF lock, the
48  * state of the free extent is out of our control and we cannot run a discard
49  * safely on it in this situation. Unless, of course, we've marked the free
50  * extent as busy and undergoing a discard operation whilst we held the AGF
51  * locked.
52  *
53  * This is exactly how online discard works - free extents are marked busy when
54  * they are freed, and once the extent free has been committed to the journal,
55  * the busy extent record is marked as "undergoing discard" and the discard is
56  * then issued on the free extent. Once the discard completes, the busy extent
57  * record is removed and the extent is able to be allocated again.
58  *
59  * In the context of fstrim, if we find a free extent we need to discard, we
60  * don't have to discard it immediately. All we need to do it record that free
61  * extent as being busy and under discard, and all the allocation routines will
62  * now avoid trying to allocate it. Hence if we mark the extent as busy under
63  * the AGF lock, we can safely discard it without holding the AGF lock because
64  * nothing will attempt to allocate that free space until the discard completes.
65  *
66  * This also allows us to issue discards asynchronously like we do with online
67  * discard, and so for fast devices fstrim will run much faster as we can have
68  * multiple discard operations in flight at once, as well as pipeline the free
69  * extent search so that it overlaps in flight discard IO.
70  */
71 
72 struct workqueue_struct *xfs_discard_wq;
73 
74 static void
75 xfs_discard_endio_work(
76 	struct work_struct	*work)
77 {
78 	struct xfs_busy_extents	*extents =
79 		container_of(work, struct xfs_busy_extents, endio_work);
80 
81 	xfs_extent_busy_clear(extents->mount, &extents->extent_list, false);
82 	kmem_free(extents->owner);
83 }
84 
85 /*
86  * Queue up the actual completion to a thread to avoid IRQ-safe locking for
87  * pagb_lock.
88  */
89 static void
90 xfs_discard_endio(
91 	struct bio		*bio)
92 {
93 	struct xfs_busy_extents	*extents = bio->bi_private;
94 
95 	INIT_WORK(&extents->endio_work, xfs_discard_endio_work);
96 	queue_work(xfs_discard_wq, &extents->endio_work);
97 	bio_put(bio);
98 }
99 
100 /*
101  * Walk the discard list and issue discards on all the busy extents in the
102  * list. We plug and chain the bios so that we only need a single completion
103  * call to clear all the busy extents once the discards are complete.
104  */
105 int
106 xfs_discard_extents(
107 	struct xfs_mount	*mp,
108 	struct xfs_busy_extents	*extents)
109 {
110 	struct xfs_extent_busy	*busyp;
111 	struct bio		*bio = NULL;
112 	struct blk_plug		plug;
113 	int			error = 0;
114 
115 	blk_start_plug(&plug);
116 	list_for_each_entry(busyp, &extents->extent_list, list) {
117 		trace_xfs_discard_extent(mp, busyp->agno, busyp->bno,
118 					 busyp->length);
119 
120 		error = __blkdev_issue_discard(mp->m_ddev_targp->bt_bdev,
121 				XFS_AGB_TO_DADDR(mp, busyp->agno, busyp->bno),
122 				XFS_FSB_TO_BB(mp, busyp->length),
123 				GFP_NOFS, &bio);
124 		if (error && error != -EOPNOTSUPP) {
125 			xfs_info(mp,
126 	 "discard failed for extent [0x%llx,%u], error %d",
127 				 (unsigned long long)busyp->bno,
128 				 busyp->length,
129 				 error);
130 			break;
131 		}
132 	}
133 
134 	if (bio) {
135 		bio->bi_private = extents;
136 		bio->bi_end_io = xfs_discard_endio;
137 		submit_bio(bio);
138 	} else {
139 		xfs_discard_endio_work(&extents->endio_work);
140 	}
141 	blk_finish_plug(&plug);
142 
143 	return error;
144 }
145 
146 
147 static int
148 xfs_trim_gather_extents(
149 	struct xfs_perag	*pag,
150 	xfs_daddr_t		start,
151 	xfs_daddr_t		end,
152 	xfs_daddr_t		minlen,
153 	struct xfs_alloc_rec_incore *tcur,
154 	struct xfs_busy_extents	*extents,
155 	uint64_t		*blocks_trimmed)
156 {
157 	struct xfs_mount	*mp = pag->pag_mount;
158 	struct xfs_btree_cur	*cur;
159 	struct xfs_buf		*agbp;
160 	int			error;
161 	int			i;
162 	int			batch = 100;
163 
164 	/*
165 	 * Force out the log.  This means any transactions that might have freed
166 	 * space before we take the AGF buffer lock are now on disk, and the
167 	 * volatile disk cache is flushed.
168 	 */
169 	xfs_log_force(mp, XFS_LOG_SYNC);
170 
171 	error = xfs_alloc_read_agf(pag, NULL, 0, &agbp);
172 	if (error)
173 		return error;
174 
175 	cur = xfs_allocbt_init_cursor(mp, NULL, agbp, pag, XFS_BTNUM_CNT);
176 
177 	/*
178 	 * Look up the extent length requested in the AGF and start with it.
179 	 */
180 	if (tcur->ar_startblock == NULLAGBLOCK)
181 		error = xfs_alloc_lookup_ge(cur, 0, tcur->ar_blockcount, &i);
182 	else
183 		error = xfs_alloc_lookup_le(cur, tcur->ar_startblock,
184 				tcur->ar_blockcount, &i);
185 	if (error)
186 		goto out_del_cursor;
187 	if (i == 0) {
188 		/* nothing of that length left in the AG, we are done */
189 		tcur->ar_blockcount = 0;
190 		goto out_del_cursor;
191 	}
192 
193 	/*
194 	 * Loop until we are done with all extents that are large
195 	 * enough to be worth discarding or we hit batch limits.
196 	 */
197 	while (i) {
198 		xfs_agblock_t	fbno;
199 		xfs_extlen_t	flen;
200 		xfs_daddr_t	dbno;
201 		xfs_extlen_t	dlen;
202 
203 		error = xfs_alloc_get_rec(cur, &fbno, &flen, &i);
204 		if (error)
205 			break;
206 		if (XFS_IS_CORRUPT(mp, i != 1)) {
207 			error = -EFSCORRUPTED;
208 			break;
209 		}
210 
211 		if (--batch <= 0) {
212 			/*
213 			 * Update the cursor to point at this extent so we
214 			 * restart the next batch from this extent.
215 			 */
216 			tcur->ar_startblock = fbno;
217 			tcur->ar_blockcount = flen;
218 			break;
219 		}
220 
221 		/*
222 		 * use daddr format for all range/len calculations as that is
223 		 * the format the range/len variables are supplied in by
224 		 * userspace.
225 		 */
226 		dbno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, fbno);
227 		dlen = XFS_FSB_TO_BB(mp, flen);
228 
229 		/*
230 		 * Too small?  Give up.
231 		 */
232 		if (dlen < minlen) {
233 			trace_xfs_discard_toosmall(mp, pag->pag_agno, fbno, flen);
234 			tcur->ar_blockcount = 0;
235 			break;
236 		}
237 
238 		/*
239 		 * If the extent is entirely outside of the range we are
240 		 * supposed to discard skip it.  Do not bother to trim
241 		 * down partially overlapping ranges for now.
242 		 */
243 		if (dbno + dlen < start || dbno > end) {
244 			trace_xfs_discard_exclude(mp, pag->pag_agno, fbno, flen);
245 			goto next_extent;
246 		}
247 
248 		/*
249 		 * If any blocks in the range are still busy, skip the
250 		 * discard and try again the next time.
251 		 */
252 		if (xfs_extent_busy_search(mp, pag, fbno, flen)) {
253 			trace_xfs_discard_busy(mp, pag->pag_agno, fbno, flen);
254 			goto next_extent;
255 		}
256 
257 		xfs_extent_busy_insert_discard(pag, fbno, flen,
258 				&extents->extent_list);
259 		*blocks_trimmed += flen;
260 next_extent:
261 		error = xfs_btree_decrement(cur, 0, &i);
262 		if (error)
263 			break;
264 
265 		/*
266 		 * If there's no more records in the tree, we are done. Set the
267 		 * cursor block count to 0 to indicate to the caller that there
268 		 * is no more extents to search.
269 		 */
270 		if (i == 0)
271 			tcur->ar_blockcount = 0;
272 	}
273 
274 	/*
275 	 * If there was an error, release all the gathered busy extents because
276 	 * we aren't going to issue a discard on them any more.
277 	 */
278 	if (error)
279 		xfs_extent_busy_clear(mp, &extents->extent_list, false);
280 out_del_cursor:
281 	xfs_btree_del_cursor(cur, error);
282 	xfs_buf_relse(agbp);
283 	return error;
284 }
285 
286 static bool
287 xfs_trim_should_stop(void)
288 {
289 	return fatal_signal_pending(current) || freezing(current);
290 }
291 
292 /*
293  * Iterate the free list gathering extents and discarding them. We need a cursor
294  * for the repeated iteration of gather/discard loop, so use the longest extent
295  * we found in the last batch as the key to start the next.
296  */
297 static int
298 xfs_trim_extents(
299 	struct xfs_perag	*pag,
300 	xfs_daddr_t		start,
301 	xfs_daddr_t		end,
302 	xfs_daddr_t		minlen,
303 	uint64_t		*blocks_trimmed)
304 {
305 	struct xfs_alloc_rec_incore tcur = {
306 		.ar_blockcount = pag->pagf_longest,
307 		.ar_startblock = NULLAGBLOCK,
308 	};
309 	int			error = 0;
310 
311 	do {
312 		struct xfs_busy_extents	*extents;
313 
314 		extents = kzalloc(sizeof(*extents), GFP_KERNEL);
315 		if (!extents) {
316 			error = -ENOMEM;
317 			break;
318 		}
319 
320 		extents->mount = pag->pag_mount;
321 		extents->owner = extents;
322 		INIT_LIST_HEAD(&extents->extent_list);
323 
324 		error = xfs_trim_gather_extents(pag, start, end, minlen,
325 				&tcur, extents, blocks_trimmed);
326 		if (error) {
327 			kfree(extents);
328 			break;
329 		}
330 
331 		/*
332 		 * We hand the extent list to the discard function here so the
333 		 * discarded extents can be removed from the busy extent list.
334 		 * This allows the discards to run asynchronously with gathering
335 		 * the next round of extents to discard.
336 		 *
337 		 * However, we must ensure that we do not reference the extent
338 		 * list  after this function call, as it may have been freed by
339 		 * the time control returns to us.
340 		 */
341 		error = xfs_discard_extents(pag->pag_mount, extents);
342 		if (error)
343 			break;
344 
345 		if (xfs_trim_should_stop())
346 			break;
347 
348 	} while (tcur.ar_blockcount != 0);
349 
350 	return error;
351 
352 }
353 
354 /*
355  * trim a range of the filesystem.
356  *
357  * Note: the parameters passed from userspace are byte ranges into the
358  * filesystem which does not match to the format we use for filesystem block
359  * addressing. FSB addressing is sparse (AGNO|AGBNO), while the incoming format
360  * is a linear address range. Hence we need to use DADDR based conversions and
361  * comparisons for determining the correct offset and regions to trim.
362  */
363 int
364 xfs_ioc_trim(
365 	struct xfs_mount		*mp,
366 	struct fstrim_range __user	*urange)
367 {
368 	struct xfs_perag	*pag;
369 	unsigned int		granularity =
370 		bdev_discard_granularity(mp->m_ddev_targp->bt_bdev);
371 	struct fstrim_range	range;
372 	xfs_daddr_t		start, end, minlen;
373 	xfs_agnumber_t		agno;
374 	uint64_t		blocks_trimmed = 0;
375 	int			error, last_error = 0;
376 
377 	if (!capable(CAP_SYS_ADMIN))
378 		return -EPERM;
379 	if (!bdev_max_discard_sectors(mp->m_ddev_targp->bt_bdev))
380 		return -EOPNOTSUPP;
381 
382 	/*
383 	 * We haven't recovered the log, so we cannot use our bnobt-guided
384 	 * storage zapping commands.
385 	 */
386 	if (xfs_has_norecovery(mp))
387 		return -EROFS;
388 
389 	if (copy_from_user(&range, urange, sizeof(range)))
390 		return -EFAULT;
391 
392 	range.minlen = max_t(u64, granularity, range.minlen);
393 	minlen = BTOBB(range.minlen);
394 	/*
395 	 * Truncating down the len isn't actually quite correct, but using
396 	 * BBTOB would mean we trivially get overflows for values
397 	 * of ULLONG_MAX or slightly lower.  And ULLONG_MAX is the default
398 	 * used by the fstrim application.  In the end it really doesn't
399 	 * matter as trimming blocks is an advisory interface.
400 	 */
401 	if (range.start >= XFS_FSB_TO_B(mp, mp->m_sb.sb_dblocks) ||
402 	    range.minlen > XFS_FSB_TO_B(mp, mp->m_ag_max_usable) ||
403 	    range.len < mp->m_sb.sb_blocksize)
404 		return -EINVAL;
405 
406 	start = BTOBB(range.start);
407 	end = start + BTOBBT(range.len) - 1;
408 
409 	if (end > XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) - 1)
410 		end = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) - 1;
411 
412 	agno = xfs_daddr_to_agno(mp, start);
413 	for_each_perag_range(mp, agno, xfs_daddr_to_agno(mp, end), pag) {
414 		error = xfs_trim_extents(pag, start, end, minlen,
415 					  &blocks_trimmed);
416 		if (error)
417 			last_error = error;
418 
419 		if (xfs_trim_should_stop()) {
420 			xfs_perag_rele(pag);
421 			break;
422 		}
423 	}
424 
425 	if (last_error)
426 		return last_error;
427 
428 	range.len = XFS_FSB_TO_B(mp, blocks_trimmed);
429 	if (copy_to_user(urange, &range, sizeof(range)))
430 		return -EFAULT;
431 	return 0;
432 }
433