xref: /openbmc/linux/fs/xfs/xfs_buf_item.c (revision f8523d0e83613ab8d082cd504dc53a09fbba4889)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_trans.h"
15 #include "xfs_buf_item.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_trace.h"
18 #include "xfs_log.h"
19 
20 
21 kmem_zone_t	*xfs_buf_item_zone;
22 
23 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
24 {
25 	return container_of(lip, struct xfs_buf_log_item, bli_item);
26 }
27 
28 STATIC void	xfs_buf_do_callbacks(struct xfs_buf *bp);
29 
30 /* Is this log iovec plausibly large enough to contain the buffer log format? */
31 bool
32 xfs_buf_log_check_iovec(
33 	struct xfs_log_iovec		*iovec)
34 {
35 	struct xfs_buf_log_format	*blfp = iovec->i_addr;
36 	char				*bmp_end;
37 	char				*item_end;
38 
39 	if (offsetof(struct xfs_buf_log_format, blf_data_map) > iovec->i_len)
40 		return false;
41 
42 	item_end = (char *)iovec->i_addr + iovec->i_len;
43 	bmp_end = (char *)&blfp->blf_data_map[blfp->blf_map_size];
44 	return bmp_end <= item_end;
45 }
46 
47 static inline int
48 xfs_buf_log_format_size(
49 	struct xfs_buf_log_format *blfp)
50 {
51 	return offsetof(struct xfs_buf_log_format, blf_data_map) +
52 			(blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
53 }
54 
55 /*
56  * This returns the number of log iovecs needed to log the
57  * given buf log item.
58  *
59  * It calculates this as 1 iovec for the buf log format structure
60  * and 1 for each stretch of non-contiguous chunks to be logged.
61  * Contiguous chunks are logged in a single iovec.
62  *
63  * If the XFS_BLI_STALE flag has been set, then log nothing.
64  */
65 STATIC void
66 xfs_buf_item_size_segment(
67 	struct xfs_buf_log_item		*bip,
68 	struct xfs_buf_log_format	*blfp,
69 	int				*nvecs,
70 	int				*nbytes)
71 {
72 	struct xfs_buf			*bp = bip->bli_buf;
73 	int				next_bit;
74 	int				last_bit;
75 
76 	last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
77 	if (last_bit == -1)
78 		return;
79 
80 	/*
81 	 * initial count for a dirty buffer is 2 vectors - the format structure
82 	 * and the first dirty region.
83 	 */
84 	*nvecs += 2;
85 	*nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
86 
87 	while (last_bit != -1) {
88 		/*
89 		 * This takes the bit number to start looking from and
90 		 * returns the next set bit from there.  It returns -1
91 		 * if there are no more bits set or the start bit is
92 		 * beyond the end of the bitmap.
93 		 */
94 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
95 					last_bit + 1);
96 		/*
97 		 * If we run out of bits, leave the loop,
98 		 * else if we find a new set of bits bump the number of vecs,
99 		 * else keep scanning the current set of bits.
100 		 */
101 		if (next_bit == -1) {
102 			break;
103 		} else if (next_bit != last_bit + 1) {
104 			last_bit = next_bit;
105 			(*nvecs)++;
106 		} else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
107 			   (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
108 			    XFS_BLF_CHUNK)) {
109 			last_bit = next_bit;
110 			(*nvecs)++;
111 		} else {
112 			last_bit++;
113 		}
114 		*nbytes += XFS_BLF_CHUNK;
115 	}
116 }
117 
118 /*
119  * This returns the number of log iovecs needed to log the given buf log item.
120  *
121  * It calculates this as 1 iovec for the buf log format structure and 1 for each
122  * stretch of non-contiguous chunks to be logged.  Contiguous chunks are logged
123  * in a single iovec.
124  *
125  * Discontiguous buffers need a format structure per region that that is being
126  * logged. This makes the changes in the buffer appear to log recovery as though
127  * they came from separate buffers, just like would occur if multiple buffers
128  * were used instead of a single discontiguous buffer. This enables
129  * discontiguous buffers to be in-memory constructs, completely transparent to
130  * what ends up on disk.
131  *
132  * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
133  * format structures.
134  */
135 STATIC void
136 xfs_buf_item_size(
137 	struct xfs_log_item	*lip,
138 	int			*nvecs,
139 	int			*nbytes)
140 {
141 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
142 	int			i;
143 
144 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
145 	if (bip->bli_flags & XFS_BLI_STALE) {
146 		/*
147 		 * The buffer is stale, so all we need to log
148 		 * is the buf log format structure with the
149 		 * cancel flag in it.
150 		 */
151 		trace_xfs_buf_item_size_stale(bip);
152 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
153 		*nvecs += bip->bli_format_count;
154 		for (i = 0; i < bip->bli_format_count; i++) {
155 			*nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
156 		}
157 		return;
158 	}
159 
160 	ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
161 
162 	if (bip->bli_flags & XFS_BLI_ORDERED) {
163 		/*
164 		 * The buffer has been logged just to order it.
165 		 * It is not being included in the transaction
166 		 * commit, so no vectors are used at all.
167 		 */
168 		trace_xfs_buf_item_size_ordered(bip);
169 		*nvecs = XFS_LOG_VEC_ORDERED;
170 		return;
171 	}
172 
173 	/*
174 	 * the vector count is based on the number of buffer vectors we have
175 	 * dirty bits in. This will only be greater than one when we have a
176 	 * compound buffer with more than one segment dirty. Hence for compound
177 	 * buffers we need to track which segment the dirty bits correspond to,
178 	 * and when we move from one segment to the next increment the vector
179 	 * count for the extra buf log format structure that will need to be
180 	 * written.
181 	 */
182 	for (i = 0; i < bip->bli_format_count; i++) {
183 		xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
184 					  nvecs, nbytes);
185 	}
186 	trace_xfs_buf_item_size(bip);
187 }
188 
189 static inline void
190 xfs_buf_item_copy_iovec(
191 	struct xfs_log_vec	*lv,
192 	struct xfs_log_iovec	**vecp,
193 	struct xfs_buf		*bp,
194 	uint			offset,
195 	int			first_bit,
196 	uint			nbits)
197 {
198 	offset += first_bit * XFS_BLF_CHUNK;
199 	xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
200 			xfs_buf_offset(bp, offset),
201 			nbits * XFS_BLF_CHUNK);
202 }
203 
204 static inline bool
205 xfs_buf_item_straddle(
206 	struct xfs_buf		*bp,
207 	uint			offset,
208 	int			next_bit,
209 	int			last_bit)
210 {
211 	return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) !=
212 		(xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) +
213 		 XFS_BLF_CHUNK);
214 }
215 
216 static void
217 xfs_buf_item_format_segment(
218 	struct xfs_buf_log_item	*bip,
219 	struct xfs_log_vec	*lv,
220 	struct xfs_log_iovec	**vecp,
221 	uint			offset,
222 	struct xfs_buf_log_format *blfp)
223 {
224 	struct xfs_buf		*bp = bip->bli_buf;
225 	uint			base_size;
226 	int			first_bit;
227 	int			last_bit;
228 	int			next_bit;
229 	uint			nbits;
230 
231 	/* copy the flags across from the base format item */
232 	blfp->blf_flags = bip->__bli_format.blf_flags;
233 
234 	/*
235 	 * Base size is the actual size of the ondisk structure - it reflects
236 	 * the actual size of the dirty bitmap rather than the size of the in
237 	 * memory structure.
238 	 */
239 	base_size = xfs_buf_log_format_size(blfp);
240 
241 	first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
242 	if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
243 		/*
244 		 * If the map is not be dirty in the transaction, mark
245 		 * the size as zero and do not advance the vector pointer.
246 		 */
247 		return;
248 	}
249 
250 	blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
251 	blfp->blf_size = 1;
252 
253 	if (bip->bli_flags & XFS_BLI_STALE) {
254 		/*
255 		 * The buffer is stale, so all we need to log
256 		 * is the buf log format structure with the
257 		 * cancel flag in it.
258 		 */
259 		trace_xfs_buf_item_format_stale(bip);
260 		ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
261 		return;
262 	}
263 
264 
265 	/*
266 	 * Fill in an iovec for each set of contiguous chunks.
267 	 */
268 	last_bit = first_bit;
269 	nbits = 1;
270 	for (;;) {
271 		/*
272 		 * This takes the bit number to start looking from and
273 		 * returns the next set bit from there.  It returns -1
274 		 * if there are no more bits set or the start bit is
275 		 * beyond the end of the bitmap.
276 		 */
277 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
278 					(uint)last_bit + 1);
279 		/*
280 		 * If we run out of bits fill in the last iovec and get out of
281 		 * the loop.  Else if we start a new set of bits then fill in
282 		 * the iovec for the series we were looking at and start
283 		 * counting the bits in the new one.  Else we're still in the
284 		 * same set of bits so just keep counting and scanning.
285 		 */
286 		if (next_bit == -1) {
287 			xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
288 						first_bit, nbits);
289 			blfp->blf_size++;
290 			break;
291 		} else if (next_bit != last_bit + 1 ||
292 		           xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) {
293 			xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
294 						first_bit, nbits);
295 			blfp->blf_size++;
296 			first_bit = next_bit;
297 			last_bit = next_bit;
298 			nbits = 1;
299 		} else {
300 			last_bit++;
301 			nbits++;
302 		}
303 	}
304 }
305 
306 /*
307  * This is called to fill in the vector of log iovecs for the
308  * given log buf item.  It fills the first entry with a buf log
309  * format structure, and the rest point to contiguous chunks
310  * within the buffer.
311  */
312 STATIC void
313 xfs_buf_item_format(
314 	struct xfs_log_item	*lip,
315 	struct xfs_log_vec	*lv)
316 {
317 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
318 	struct xfs_buf		*bp = bip->bli_buf;
319 	struct xfs_log_iovec	*vecp = NULL;
320 	uint			offset = 0;
321 	int			i;
322 
323 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
324 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
325 	       (bip->bli_flags & XFS_BLI_STALE));
326 	ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
327 	       (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
328 	        && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
329 	ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) ||
330 	       (bip->bli_flags & XFS_BLI_STALE));
331 
332 
333 	/*
334 	 * If it is an inode buffer, transfer the in-memory state to the
335 	 * format flags and clear the in-memory state.
336 	 *
337 	 * For buffer based inode allocation, we do not transfer
338 	 * this state if the inode buffer allocation has not yet been committed
339 	 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
340 	 * correct replay of the inode allocation.
341 	 *
342 	 * For icreate item based inode allocation, the buffers aren't written
343 	 * to the journal during allocation, and hence we should always tag the
344 	 * buffer as an inode buffer so that the correct unlinked list replay
345 	 * occurs during recovery.
346 	 */
347 	if (bip->bli_flags & XFS_BLI_INODE_BUF) {
348 		if (xfs_sb_version_has_v3inode(&lip->li_mountp->m_sb) ||
349 		    !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
350 		      xfs_log_item_in_current_chkpt(lip)))
351 			bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
352 		bip->bli_flags &= ~XFS_BLI_INODE_BUF;
353 	}
354 
355 	for (i = 0; i < bip->bli_format_count; i++) {
356 		xfs_buf_item_format_segment(bip, lv, &vecp, offset,
357 					    &bip->bli_formats[i]);
358 		offset += BBTOB(bp->b_maps[i].bm_len);
359 	}
360 
361 	/*
362 	 * Check to make sure everything is consistent.
363 	 */
364 	trace_xfs_buf_item_format(bip);
365 }
366 
367 /*
368  * This is called to pin the buffer associated with the buf log item in memory
369  * so it cannot be written out.
370  *
371  * We also always take a reference to the buffer log item here so that the bli
372  * is held while the item is pinned in memory. This means that we can
373  * unconditionally drop the reference count a transaction holds when the
374  * transaction is completed.
375  */
376 STATIC void
377 xfs_buf_item_pin(
378 	struct xfs_log_item	*lip)
379 {
380 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
381 
382 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
383 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
384 	       (bip->bli_flags & XFS_BLI_ORDERED) ||
385 	       (bip->bli_flags & XFS_BLI_STALE));
386 
387 	trace_xfs_buf_item_pin(bip);
388 
389 	atomic_inc(&bip->bli_refcount);
390 	atomic_inc(&bip->bli_buf->b_pin_count);
391 }
392 
393 /*
394  * This is called to unpin the buffer associated with the buf log
395  * item which was previously pinned with a call to xfs_buf_item_pin().
396  *
397  * Also drop the reference to the buf item for the current transaction.
398  * If the XFS_BLI_STALE flag is set and we are the last reference,
399  * then free up the buf log item and unlock the buffer.
400  *
401  * If the remove flag is set we are called from uncommit in the
402  * forced-shutdown path.  If that is true and the reference count on
403  * the log item is going to drop to zero we need to free the item's
404  * descriptor in the transaction.
405  */
406 STATIC void
407 xfs_buf_item_unpin(
408 	struct xfs_log_item	*lip,
409 	int			remove)
410 {
411 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
412 	xfs_buf_t		*bp = bip->bli_buf;
413 	int			stale = bip->bli_flags & XFS_BLI_STALE;
414 	int			freed;
415 
416 	ASSERT(bp->b_log_item == bip);
417 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
418 
419 	trace_xfs_buf_item_unpin(bip);
420 
421 	freed = atomic_dec_and_test(&bip->bli_refcount);
422 
423 	if (atomic_dec_and_test(&bp->b_pin_count))
424 		wake_up_all(&bp->b_waiters);
425 
426 	if (freed && stale) {
427 		ASSERT(bip->bli_flags & XFS_BLI_STALE);
428 		ASSERT(xfs_buf_islocked(bp));
429 		ASSERT(bp->b_flags & XBF_STALE);
430 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
431 
432 		trace_xfs_buf_item_unpin_stale(bip);
433 
434 		if (remove) {
435 			/*
436 			 * If we are in a transaction context, we have to
437 			 * remove the log item from the transaction as we are
438 			 * about to release our reference to the buffer.  If we
439 			 * don't, the unlock that occurs later in
440 			 * xfs_trans_uncommit() will try to reference the
441 			 * buffer which we no longer have a hold on.
442 			 */
443 			if (!list_empty(&lip->li_trans))
444 				xfs_trans_del_item(lip);
445 
446 			/*
447 			 * Since the transaction no longer refers to the buffer,
448 			 * the buffer should no longer refer to the transaction.
449 			 */
450 			bp->b_transp = NULL;
451 		}
452 
453 		/*
454 		 * If we get called here because of an IO error, we may or may
455 		 * not have the item on the AIL. xfs_trans_ail_delete() will
456 		 * take care of that situation. xfs_trans_ail_delete() drops
457 		 * the AIL lock.
458 		 */
459 		if (bip->bli_flags & XFS_BLI_STALE_INODE) {
460 			xfs_buf_do_callbacks(bp);
461 			bp->b_log_item = NULL;
462 			list_del_init(&bp->b_li_list);
463 			bp->b_iodone = NULL;
464 		} else {
465 			xfs_trans_ail_delete(lip, SHUTDOWN_LOG_IO_ERROR);
466 			xfs_buf_item_relse(bp);
467 			ASSERT(bp->b_log_item == NULL);
468 		}
469 		xfs_buf_relse(bp);
470 	} else if (freed && remove) {
471 		/*
472 		 * The buffer must be locked and held by the caller to simulate
473 		 * an async I/O failure.
474 		 */
475 		xfs_buf_lock(bp);
476 		xfs_buf_hold(bp);
477 		bp->b_flags |= XBF_ASYNC;
478 		xfs_buf_ioend_fail(bp);
479 	}
480 }
481 
482 STATIC uint
483 xfs_buf_item_push(
484 	struct xfs_log_item	*lip,
485 	struct list_head	*buffer_list)
486 {
487 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
488 	struct xfs_buf		*bp = bip->bli_buf;
489 	uint			rval = XFS_ITEM_SUCCESS;
490 
491 	if (xfs_buf_ispinned(bp))
492 		return XFS_ITEM_PINNED;
493 	if (!xfs_buf_trylock(bp)) {
494 		/*
495 		 * If we have just raced with a buffer being pinned and it has
496 		 * been marked stale, we could end up stalling until someone else
497 		 * issues a log force to unpin the stale buffer. Check for the
498 		 * race condition here so xfsaild recognizes the buffer is pinned
499 		 * and queues a log force to move it along.
500 		 */
501 		if (xfs_buf_ispinned(bp))
502 			return XFS_ITEM_PINNED;
503 		return XFS_ITEM_LOCKED;
504 	}
505 
506 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
507 
508 	trace_xfs_buf_item_push(bip);
509 
510 	/* has a previous flush failed due to IO errors? */
511 	if (bp->b_flags & XBF_WRITE_FAIL) {
512 		xfs_buf_alert_ratelimited(bp, "XFS: Failing async write",
513 	    "Failing async write on buffer block 0x%llx. Retrying async write.",
514 					  (long long)bp->b_bn);
515 	}
516 
517 	if (!xfs_buf_delwri_queue(bp, buffer_list))
518 		rval = XFS_ITEM_FLUSHING;
519 	xfs_buf_unlock(bp);
520 	return rval;
521 }
522 
523 /*
524  * Drop the buffer log item refcount and take appropriate action. This helper
525  * determines whether the bli must be freed or not, since a decrement to zero
526  * does not necessarily mean the bli is unused.
527  *
528  * Return true if the bli is freed, false otherwise.
529  */
530 bool
531 xfs_buf_item_put(
532 	struct xfs_buf_log_item	*bip)
533 {
534 	struct xfs_log_item	*lip = &bip->bli_item;
535 	bool			aborted;
536 	bool			dirty;
537 
538 	/* drop the bli ref and return if it wasn't the last one */
539 	if (!atomic_dec_and_test(&bip->bli_refcount))
540 		return false;
541 
542 	/*
543 	 * We dropped the last ref and must free the item if clean or aborted.
544 	 * If the bli is dirty and non-aborted, the buffer was clean in the
545 	 * transaction but still awaiting writeback from previous changes. In
546 	 * that case, the bli is freed on buffer writeback completion.
547 	 */
548 	aborted = test_bit(XFS_LI_ABORTED, &lip->li_flags) ||
549 		  XFS_FORCED_SHUTDOWN(lip->li_mountp);
550 	dirty = bip->bli_flags & XFS_BLI_DIRTY;
551 	if (dirty && !aborted)
552 		return false;
553 
554 	/*
555 	 * The bli is aborted or clean. An aborted item may be in the AIL
556 	 * regardless of dirty state.  For example, consider an aborted
557 	 * transaction that invalidated a dirty bli and cleared the dirty
558 	 * state.
559 	 */
560 	if (aborted)
561 		xfs_trans_ail_delete(lip, 0);
562 	xfs_buf_item_relse(bip->bli_buf);
563 	return true;
564 }
565 
566 /*
567  * Release the buffer associated with the buf log item.  If there is no dirty
568  * logged data associated with the buffer recorded in the buf log item, then
569  * free the buf log item and remove the reference to it in the buffer.
570  *
571  * This call ignores the recursion count.  It is only called when the buffer
572  * should REALLY be unlocked, regardless of the recursion count.
573  *
574  * We unconditionally drop the transaction's reference to the log item. If the
575  * item was logged, then another reference was taken when it was pinned, so we
576  * can safely drop the transaction reference now.  This also allows us to avoid
577  * potential races with the unpin code freeing the bli by not referencing the
578  * bli after we've dropped the reference count.
579  *
580  * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
581  * if necessary but do not unlock the buffer.  This is for support of
582  * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
583  * free the item.
584  */
585 STATIC void
586 xfs_buf_item_release(
587 	struct xfs_log_item	*lip)
588 {
589 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
590 	struct xfs_buf		*bp = bip->bli_buf;
591 	bool			released;
592 	bool			hold = bip->bli_flags & XFS_BLI_HOLD;
593 	bool			stale = bip->bli_flags & XFS_BLI_STALE;
594 #if defined(DEBUG) || defined(XFS_WARN)
595 	bool			ordered = bip->bli_flags & XFS_BLI_ORDERED;
596 	bool			dirty = bip->bli_flags & XFS_BLI_DIRTY;
597 	bool			aborted = test_bit(XFS_LI_ABORTED,
598 						   &lip->li_flags);
599 #endif
600 
601 	trace_xfs_buf_item_release(bip);
602 
603 	/*
604 	 * The bli dirty state should match whether the blf has logged segments
605 	 * except for ordered buffers, where only the bli should be dirty.
606 	 */
607 	ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) ||
608 	       (ordered && dirty && !xfs_buf_item_dirty_format(bip)));
609 	ASSERT(!stale || (bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
610 
611 	/*
612 	 * Clear the buffer's association with this transaction and
613 	 * per-transaction state from the bli, which has been copied above.
614 	 */
615 	bp->b_transp = NULL;
616 	bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
617 
618 	/*
619 	 * Unref the item and unlock the buffer unless held or stale. Stale
620 	 * buffers remain locked until final unpin unless the bli is freed by
621 	 * the unref call. The latter implies shutdown because buffer
622 	 * invalidation dirties the bli and transaction.
623 	 */
624 	released = xfs_buf_item_put(bip);
625 	if (hold || (stale && !released))
626 		return;
627 	ASSERT(!stale || aborted);
628 	xfs_buf_relse(bp);
629 }
630 
631 STATIC void
632 xfs_buf_item_committing(
633 	struct xfs_log_item	*lip,
634 	xfs_lsn_t		commit_lsn)
635 {
636 	return xfs_buf_item_release(lip);
637 }
638 
639 /*
640  * This is called to find out where the oldest active copy of the
641  * buf log item in the on disk log resides now that the last log
642  * write of it completed at the given lsn.
643  * We always re-log all the dirty data in a buffer, so usually the
644  * latest copy in the on disk log is the only one that matters.  For
645  * those cases we simply return the given lsn.
646  *
647  * The one exception to this is for buffers full of newly allocated
648  * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
649  * flag set, indicating that only the di_next_unlinked fields from the
650  * inodes in the buffers will be replayed during recovery.  If the
651  * original newly allocated inode images have not yet been flushed
652  * when the buffer is so relogged, then we need to make sure that we
653  * keep the old images in the 'active' portion of the log.  We do this
654  * by returning the original lsn of that transaction here rather than
655  * the current one.
656  */
657 STATIC xfs_lsn_t
658 xfs_buf_item_committed(
659 	struct xfs_log_item	*lip,
660 	xfs_lsn_t		lsn)
661 {
662 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
663 
664 	trace_xfs_buf_item_committed(bip);
665 
666 	if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
667 		return lip->li_lsn;
668 	return lsn;
669 }
670 
671 static const struct xfs_item_ops xfs_buf_item_ops = {
672 	.iop_size	= xfs_buf_item_size,
673 	.iop_format	= xfs_buf_item_format,
674 	.iop_pin	= xfs_buf_item_pin,
675 	.iop_unpin	= xfs_buf_item_unpin,
676 	.iop_release	= xfs_buf_item_release,
677 	.iop_committing	= xfs_buf_item_committing,
678 	.iop_committed	= xfs_buf_item_committed,
679 	.iop_push	= xfs_buf_item_push,
680 };
681 
682 STATIC void
683 xfs_buf_item_get_format(
684 	struct xfs_buf_log_item	*bip,
685 	int			count)
686 {
687 	ASSERT(bip->bli_formats == NULL);
688 	bip->bli_format_count = count;
689 
690 	if (count == 1) {
691 		bip->bli_formats = &bip->__bli_format;
692 		return;
693 	}
694 
695 	bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
696 				0);
697 }
698 
699 STATIC void
700 xfs_buf_item_free_format(
701 	struct xfs_buf_log_item	*bip)
702 {
703 	if (bip->bli_formats != &bip->__bli_format) {
704 		kmem_free(bip->bli_formats);
705 		bip->bli_formats = NULL;
706 	}
707 }
708 
709 /*
710  * Allocate a new buf log item to go with the given buffer.
711  * Set the buffer's b_log_item field to point to the new
712  * buf log item.
713  */
714 int
715 xfs_buf_item_init(
716 	struct xfs_buf	*bp,
717 	struct xfs_mount *mp)
718 {
719 	struct xfs_buf_log_item	*bip = bp->b_log_item;
720 	int			chunks;
721 	int			map_size;
722 	int			i;
723 
724 	/*
725 	 * Check to see if there is already a buf log item for
726 	 * this buffer. If we do already have one, there is
727 	 * nothing to do here so return.
728 	 */
729 	ASSERT(bp->b_mount == mp);
730 	if (bip) {
731 		ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
732 		ASSERT(!bp->b_transp);
733 		ASSERT(bip->bli_buf == bp);
734 		return 0;
735 	}
736 
737 	bip = kmem_zone_zalloc(xfs_buf_item_zone, 0);
738 	xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
739 	bip->bli_buf = bp;
740 
741 	/*
742 	 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
743 	 * can be divided into. Make sure not to truncate any pieces.
744 	 * map_size is the size of the bitmap needed to describe the
745 	 * chunks of the buffer.
746 	 *
747 	 * Discontiguous buffer support follows the layout of the underlying
748 	 * buffer. This makes the implementation as simple as possible.
749 	 */
750 	xfs_buf_item_get_format(bip, bp->b_map_count);
751 
752 	for (i = 0; i < bip->bli_format_count; i++) {
753 		chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
754 				      XFS_BLF_CHUNK);
755 		map_size = DIV_ROUND_UP(chunks, NBWORD);
756 
757 		if (map_size > XFS_BLF_DATAMAP_SIZE) {
758 			kmem_cache_free(xfs_buf_item_zone, bip);
759 			xfs_err(mp,
760 	"buffer item dirty bitmap (%u uints) too small to reflect %u bytes!",
761 					map_size,
762 					BBTOB(bp->b_maps[i].bm_len));
763 			return -EFSCORRUPTED;
764 		}
765 
766 		bip->bli_formats[i].blf_type = XFS_LI_BUF;
767 		bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
768 		bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
769 		bip->bli_formats[i].blf_map_size = map_size;
770 	}
771 
772 	bp->b_log_item = bip;
773 	xfs_buf_hold(bp);
774 	return 0;
775 }
776 
777 
778 /*
779  * Mark bytes first through last inclusive as dirty in the buf
780  * item's bitmap.
781  */
782 static void
783 xfs_buf_item_log_segment(
784 	uint			first,
785 	uint			last,
786 	uint			*map)
787 {
788 	uint		first_bit;
789 	uint		last_bit;
790 	uint		bits_to_set;
791 	uint		bits_set;
792 	uint		word_num;
793 	uint		*wordp;
794 	uint		bit;
795 	uint		end_bit;
796 	uint		mask;
797 
798 	ASSERT(first < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
799 	ASSERT(last < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
800 
801 	/*
802 	 * Convert byte offsets to bit numbers.
803 	 */
804 	first_bit = first >> XFS_BLF_SHIFT;
805 	last_bit = last >> XFS_BLF_SHIFT;
806 
807 	/*
808 	 * Calculate the total number of bits to be set.
809 	 */
810 	bits_to_set = last_bit - first_bit + 1;
811 
812 	/*
813 	 * Get a pointer to the first word in the bitmap
814 	 * to set a bit in.
815 	 */
816 	word_num = first_bit >> BIT_TO_WORD_SHIFT;
817 	wordp = &map[word_num];
818 
819 	/*
820 	 * Calculate the starting bit in the first word.
821 	 */
822 	bit = first_bit & (uint)(NBWORD - 1);
823 
824 	/*
825 	 * First set any bits in the first word of our range.
826 	 * If it starts at bit 0 of the word, it will be
827 	 * set below rather than here.  That is what the variable
828 	 * bit tells us. The variable bits_set tracks the number
829 	 * of bits that have been set so far.  End_bit is the number
830 	 * of the last bit to be set in this word plus one.
831 	 */
832 	if (bit) {
833 		end_bit = min(bit + bits_to_set, (uint)NBWORD);
834 		mask = ((1U << (end_bit - bit)) - 1) << bit;
835 		*wordp |= mask;
836 		wordp++;
837 		bits_set = end_bit - bit;
838 	} else {
839 		bits_set = 0;
840 	}
841 
842 	/*
843 	 * Now set bits a whole word at a time that are between
844 	 * first_bit and last_bit.
845 	 */
846 	while ((bits_to_set - bits_set) >= NBWORD) {
847 		*wordp = 0xffffffff;
848 		bits_set += NBWORD;
849 		wordp++;
850 	}
851 
852 	/*
853 	 * Finally, set any bits left to be set in one last partial word.
854 	 */
855 	end_bit = bits_to_set - bits_set;
856 	if (end_bit) {
857 		mask = (1U << end_bit) - 1;
858 		*wordp |= mask;
859 	}
860 }
861 
862 /*
863  * Mark bytes first through last inclusive as dirty in the buf
864  * item's bitmap.
865  */
866 void
867 xfs_buf_item_log(
868 	struct xfs_buf_log_item	*bip,
869 	uint			first,
870 	uint			last)
871 {
872 	int			i;
873 	uint			start;
874 	uint			end;
875 	struct xfs_buf		*bp = bip->bli_buf;
876 
877 	/*
878 	 * walk each buffer segment and mark them dirty appropriately.
879 	 */
880 	start = 0;
881 	for (i = 0; i < bip->bli_format_count; i++) {
882 		if (start > last)
883 			break;
884 		end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
885 
886 		/* skip to the map that includes the first byte to log */
887 		if (first > end) {
888 			start += BBTOB(bp->b_maps[i].bm_len);
889 			continue;
890 		}
891 
892 		/*
893 		 * Trim the range to this segment and mark it in the bitmap.
894 		 * Note that we must convert buffer offsets to segment relative
895 		 * offsets (e.g., the first byte of each segment is byte 0 of
896 		 * that segment).
897 		 */
898 		if (first < start)
899 			first = start;
900 		if (end > last)
901 			end = last;
902 		xfs_buf_item_log_segment(first - start, end - start,
903 					 &bip->bli_formats[i].blf_data_map[0]);
904 
905 		start += BBTOB(bp->b_maps[i].bm_len);
906 	}
907 }
908 
909 
910 /*
911  * Return true if the buffer has any ranges logged/dirtied by a transaction,
912  * false otherwise.
913  */
914 bool
915 xfs_buf_item_dirty_format(
916 	struct xfs_buf_log_item	*bip)
917 {
918 	int			i;
919 
920 	for (i = 0; i < bip->bli_format_count; i++) {
921 		if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
922 			     bip->bli_formats[i].blf_map_size))
923 			return true;
924 	}
925 
926 	return false;
927 }
928 
929 STATIC void
930 xfs_buf_item_free(
931 	struct xfs_buf_log_item	*bip)
932 {
933 	xfs_buf_item_free_format(bip);
934 	kmem_free(bip->bli_item.li_lv_shadow);
935 	kmem_cache_free(xfs_buf_item_zone, bip);
936 }
937 
938 /*
939  * This is called when the buf log item is no longer needed.  It should
940  * free the buf log item associated with the given buffer and clear
941  * the buffer's pointer to the buf log item.  If there are no more
942  * items in the list, clear the b_iodone field of the buffer (see
943  * xfs_buf_attach_iodone() below).
944  */
945 void
946 xfs_buf_item_relse(
947 	xfs_buf_t	*bp)
948 {
949 	struct xfs_buf_log_item	*bip = bp->b_log_item;
950 
951 	trace_xfs_buf_item_relse(bp, _RET_IP_);
952 	ASSERT(!test_bit(XFS_LI_IN_AIL, &bip->bli_item.li_flags));
953 
954 	bp->b_log_item = NULL;
955 	if (list_empty(&bp->b_li_list))
956 		bp->b_iodone = NULL;
957 
958 	xfs_buf_rele(bp);
959 	xfs_buf_item_free(bip);
960 }
961 
962 
963 /*
964  * Add the given log item with its callback to the list of callbacks
965  * to be called when the buffer's I/O completes.  If it is not set
966  * already, set the buffer's b_iodone() routine to be
967  * xfs_buf_iodone_callbacks() and link the log item into the list of
968  * items rooted at b_li_list.
969  */
970 void
971 xfs_buf_attach_iodone(
972 	struct xfs_buf		*bp,
973 	void			(*cb)(struct xfs_buf *, struct xfs_log_item *),
974 	struct xfs_log_item	*lip)
975 {
976 	ASSERT(xfs_buf_islocked(bp));
977 
978 	lip->li_cb = cb;
979 	list_add_tail(&lip->li_bio_list, &bp->b_li_list);
980 
981 	ASSERT(bp->b_iodone == NULL ||
982 	       bp->b_iodone == xfs_buf_iodone_callbacks);
983 	bp->b_iodone = xfs_buf_iodone_callbacks;
984 }
985 
986 /*
987  * We can have many callbacks on a buffer. Running the callbacks individually
988  * can cause a lot of contention on the AIL lock, so we allow for a single
989  * callback to be able to scan the remaining items in bp->b_li_list for other
990  * items of the same type and callback to be processed in the first call.
991  *
992  * As a result, the loop walking the callback list below will also modify the
993  * list. it removes the first item from the list and then runs the callback.
994  * The loop then restarts from the new first item int the list. This allows the
995  * callback to scan and modify the list attached to the buffer and we don't
996  * have to care about maintaining a next item pointer.
997  */
998 STATIC void
999 xfs_buf_do_callbacks(
1000 	struct xfs_buf		*bp)
1001 {
1002 	struct xfs_buf_log_item *blip = bp->b_log_item;
1003 	struct xfs_log_item	*lip;
1004 
1005 	/* If there is a buf_log_item attached, run its callback */
1006 	if (blip) {
1007 		lip = &blip->bli_item;
1008 		lip->li_cb(bp, lip);
1009 	}
1010 
1011 	while (!list_empty(&bp->b_li_list)) {
1012 		lip = list_first_entry(&bp->b_li_list, struct xfs_log_item,
1013 				       li_bio_list);
1014 
1015 		/*
1016 		 * Remove the item from the list, so we don't have any
1017 		 * confusion if the item is added to another buf.
1018 		 * Don't touch the log item after calling its
1019 		 * callback, because it could have freed itself.
1020 		 */
1021 		list_del_init(&lip->li_bio_list);
1022 		lip->li_cb(bp, lip);
1023 	}
1024 }
1025 
1026 /*
1027  * Invoke the error state callback for each log item affected by the failed I/O.
1028  *
1029  * If a metadata buffer write fails with a non-permanent error, the buffer is
1030  * eventually resubmitted and so the completion callbacks are not run. The error
1031  * state may need to be propagated to the log items attached to the buffer,
1032  * however, so the next AIL push of the item knows hot to handle it correctly.
1033  */
1034 STATIC void
1035 xfs_buf_do_callbacks_fail(
1036 	struct xfs_buf		*bp)
1037 {
1038 	struct xfs_log_item	*lip;
1039 	struct xfs_ail		*ailp;
1040 
1041 	/*
1042 	 * Buffer log item errors are handled directly by xfs_buf_item_push()
1043 	 * and xfs_buf_iodone_callback_error, and they have no IO error
1044 	 * callbacks. Check only for items in b_li_list.
1045 	 */
1046 	if (list_empty(&bp->b_li_list))
1047 		return;
1048 
1049 	lip = list_first_entry(&bp->b_li_list, struct xfs_log_item,
1050 			li_bio_list);
1051 	ailp = lip->li_ailp;
1052 	spin_lock(&ailp->ail_lock);
1053 	list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
1054 		if (lip->li_ops->iop_error)
1055 			lip->li_ops->iop_error(lip, bp);
1056 	}
1057 	spin_unlock(&ailp->ail_lock);
1058 }
1059 
1060 static bool
1061 xfs_buf_iodone_callback_error(
1062 	struct xfs_buf		*bp)
1063 {
1064 	struct xfs_buf_log_item	*bip = bp->b_log_item;
1065 	struct xfs_log_item	*lip;
1066 	struct xfs_mount	*mp;
1067 	static ulong		lasttime;
1068 	static xfs_buftarg_t	*lasttarg;
1069 	struct xfs_error_cfg	*cfg;
1070 
1071 	/*
1072 	 * The failed buffer might not have a buf_log_item attached or the
1073 	 * log_item list might be empty. Get the mp from the available
1074 	 * xfs_log_item
1075 	 */
1076 	lip = list_first_entry_or_null(&bp->b_li_list, struct xfs_log_item,
1077 				       li_bio_list);
1078 	mp = lip ? lip->li_mountp : bip->bli_item.li_mountp;
1079 
1080 	/*
1081 	 * If we've already decided to shutdown the filesystem because of
1082 	 * I/O errors, there's no point in giving this a retry.
1083 	 */
1084 	if (XFS_FORCED_SHUTDOWN(mp))
1085 		goto out_stale;
1086 
1087 	if (bp->b_target != lasttarg ||
1088 	    time_after(jiffies, (lasttime + 5*HZ))) {
1089 		lasttime = jiffies;
1090 		xfs_buf_ioerror_alert(bp, __this_address);
1091 	}
1092 	lasttarg = bp->b_target;
1093 
1094 	/* synchronous writes will have callers process the error */
1095 	if (!(bp->b_flags & XBF_ASYNC))
1096 		goto out_stale;
1097 
1098 	trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1099 	ASSERT(bp->b_iodone != NULL);
1100 
1101 	cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1102 
1103 	/*
1104 	 * If the write was asynchronous then no one will be looking for the
1105 	 * error.  If this is the first failure of this type, clear the error
1106 	 * state and write the buffer out again. This means we always retry an
1107 	 * async write failure at least once, but we also need to set the buffer
1108 	 * up to behave correctly now for repeated failures.
1109 	 */
1110 	if (!(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL)) ||
1111 	     bp->b_last_error != bp->b_error) {
1112 		bp->b_flags |= (XBF_WRITE | XBF_DONE | XBF_WRITE_FAIL);
1113 		bp->b_last_error = bp->b_error;
1114 		if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1115 		    !bp->b_first_retry_time)
1116 			bp->b_first_retry_time = jiffies;
1117 
1118 		xfs_buf_ioerror(bp, 0);
1119 		xfs_buf_submit(bp);
1120 		return true;
1121 	}
1122 
1123 	/*
1124 	 * Repeated failure on an async write. Take action according to the
1125 	 * error configuration we have been set up to use.
1126 	 */
1127 
1128 	if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1129 	    ++bp->b_retries > cfg->max_retries)
1130 			goto permanent_error;
1131 	if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1132 	    time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1133 			goto permanent_error;
1134 
1135 	/* At unmount we may treat errors differently */
1136 	if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount)
1137 		goto permanent_error;
1138 
1139 	/*
1140 	 * Still a transient error, run IO completion failure callbacks and let
1141 	 * the higher layers retry the buffer.
1142 	 */
1143 	xfs_buf_do_callbacks_fail(bp);
1144 	xfs_buf_ioerror(bp, 0);
1145 	xfs_buf_relse(bp);
1146 	return true;
1147 
1148 	/*
1149 	 * Permanent error - we need to trigger a shutdown if we haven't already
1150 	 * to indicate that inconsistency will result from this action.
1151 	 */
1152 permanent_error:
1153 	xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1154 out_stale:
1155 	xfs_buf_stale(bp);
1156 	bp->b_flags |= XBF_DONE;
1157 	trace_xfs_buf_error_relse(bp, _RET_IP_);
1158 	return false;
1159 }
1160 
1161 /*
1162  * This is the iodone() function for buffers which have had callbacks attached
1163  * to them by xfs_buf_attach_iodone(). We need to iterate the items on the
1164  * callback list, mark the buffer as having no more callbacks and then push the
1165  * buffer through IO completion processing.
1166  */
1167 void
1168 xfs_buf_iodone_callbacks(
1169 	struct xfs_buf		*bp)
1170 {
1171 	/*
1172 	 * If there is an error, process it. Some errors require us
1173 	 * to run callbacks after failure processing is done so we
1174 	 * detect that and take appropriate action.
1175 	 */
1176 	if (bp->b_error && xfs_buf_iodone_callback_error(bp))
1177 		return;
1178 
1179 	/*
1180 	 * Successful IO or permanent error. Either way, we can clear the
1181 	 * retry state here in preparation for the next error that may occur.
1182 	 */
1183 	bp->b_last_error = 0;
1184 	bp->b_retries = 0;
1185 	bp->b_first_retry_time = 0;
1186 
1187 	xfs_buf_do_callbacks(bp);
1188 	bp->b_log_item = NULL;
1189 	list_del_init(&bp->b_li_list);
1190 	bp->b_iodone = NULL;
1191 	xfs_buf_ioend(bp);
1192 }
1193 
1194 /*
1195  * This is the iodone() function for buffers which have been
1196  * logged.  It is called when they are eventually flushed out.
1197  * It should remove the buf item from the AIL, and free the buf item.
1198  * It is called by xfs_buf_iodone_callbacks() above which will take
1199  * care of cleaning up the buffer itself.
1200  */
1201 void
1202 xfs_buf_iodone(
1203 	struct xfs_buf		*bp,
1204 	struct xfs_log_item	*lip)
1205 {
1206 	ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1207 
1208 	xfs_buf_rele(bp);
1209 
1210 	/*
1211 	 * If we are forcibly shutting down, this may well be off the AIL
1212 	 * already. That's because we simulate the log-committed callbacks to
1213 	 * unpin these buffers. Or we may never have put this item on AIL
1214 	 * because of the transaction was aborted forcibly.
1215 	 * xfs_trans_ail_delete() takes care of these.
1216 	 *
1217 	 * Either way, AIL is useless if we're forcing a shutdown.
1218 	 */
1219 	xfs_trans_ail_delete(lip, SHUTDOWN_CORRUPT_INCORE);
1220 	xfs_buf_item_free(BUF_ITEM(lip));
1221 }
1222