xref: /openbmc/linux/fs/xfs/xfs_buf_item.c (revision f5ad1c74)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_inode.h"
18 #include "xfs_inode_item.h"
19 #include "xfs_quota.h"
20 #include "xfs_dquot_item.h"
21 #include "xfs_dquot.h"
22 #include "xfs_trace.h"
23 #include "xfs_log.h"
24 
25 
26 kmem_zone_t	*xfs_buf_item_zone;
27 
28 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
29 {
30 	return container_of(lip, struct xfs_buf_log_item, bli_item);
31 }
32 
33 /* Is this log iovec plausibly large enough to contain the buffer log format? */
34 bool
35 xfs_buf_log_check_iovec(
36 	struct xfs_log_iovec		*iovec)
37 {
38 	struct xfs_buf_log_format	*blfp = iovec->i_addr;
39 	char				*bmp_end;
40 	char				*item_end;
41 
42 	if (offsetof(struct xfs_buf_log_format, blf_data_map) > iovec->i_len)
43 		return false;
44 
45 	item_end = (char *)iovec->i_addr + iovec->i_len;
46 	bmp_end = (char *)&blfp->blf_data_map[blfp->blf_map_size];
47 	return bmp_end <= item_end;
48 }
49 
50 static inline int
51 xfs_buf_log_format_size(
52 	struct xfs_buf_log_format *blfp)
53 {
54 	return offsetof(struct xfs_buf_log_format, blf_data_map) +
55 			(blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
56 }
57 
58 /*
59  * This returns the number of log iovecs needed to log the
60  * given buf log item.
61  *
62  * It calculates this as 1 iovec for the buf log format structure
63  * and 1 for each stretch of non-contiguous chunks to be logged.
64  * Contiguous chunks are logged in a single iovec.
65  *
66  * If the XFS_BLI_STALE flag has been set, then log nothing.
67  */
68 STATIC void
69 xfs_buf_item_size_segment(
70 	struct xfs_buf_log_item		*bip,
71 	struct xfs_buf_log_format	*blfp,
72 	int				*nvecs,
73 	int				*nbytes)
74 {
75 	struct xfs_buf			*bp = bip->bli_buf;
76 	int				next_bit;
77 	int				last_bit;
78 
79 	last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
80 	if (last_bit == -1)
81 		return;
82 
83 	/*
84 	 * initial count for a dirty buffer is 2 vectors - the format structure
85 	 * and the first dirty region.
86 	 */
87 	*nvecs += 2;
88 	*nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
89 
90 	while (last_bit != -1) {
91 		/*
92 		 * This takes the bit number to start looking from and
93 		 * returns the next set bit from there.  It returns -1
94 		 * if there are no more bits set or the start bit is
95 		 * beyond the end of the bitmap.
96 		 */
97 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
98 					last_bit + 1);
99 		/*
100 		 * If we run out of bits, leave the loop,
101 		 * else if we find a new set of bits bump the number of vecs,
102 		 * else keep scanning the current set of bits.
103 		 */
104 		if (next_bit == -1) {
105 			break;
106 		} else if (next_bit != last_bit + 1) {
107 			last_bit = next_bit;
108 			(*nvecs)++;
109 		} else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
110 			   (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
111 			    XFS_BLF_CHUNK)) {
112 			last_bit = next_bit;
113 			(*nvecs)++;
114 		} else {
115 			last_bit++;
116 		}
117 		*nbytes += XFS_BLF_CHUNK;
118 	}
119 }
120 
121 /*
122  * This returns the number of log iovecs needed to log the given buf log item.
123  *
124  * It calculates this as 1 iovec for the buf log format structure and 1 for each
125  * stretch of non-contiguous chunks to be logged.  Contiguous chunks are logged
126  * in a single iovec.
127  *
128  * Discontiguous buffers need a format structure per region that is being
129  * logged. This makes the changes in the buffer appear to log recovery as though
130  * they came from separate buffers, just like would occur if multiple buffers
131  * were used instead of a single discontiguous buffer. This enables
132  * discontiguous buffers to be in-memory constructs, completely transparent to
133  * what ends up on disk.
134  *
135  * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
136  * format structures.
137  */
138 STATIC void
139 xfs_buf_item_size(
140 	struct xfs_log_item	*lip,
141 	int			*nvecs,
142 	int			*nbytes)
143 {
144 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
145 	int			i;
146 
147 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
148 	if (bip->bli_flags & XFS_BLI_STALE) {
149 		/*
150 		 * The buffer is stale, so all we need to log
151 		 * is the buf log format structure with the
152 		 * cancel flag in it.
153 		 */
154 		trace_xfs_buf_item_size_stale(bip);
155 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
156 		*nvecs += bip->bli_format_count;
157 		for (i = 0; i < bip->bli_format_count; i++) {
158 			*nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
159 		}
160 		return;
161 	}
162 
163 	ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
164 
165 	if (bip->bli_flags & XFS_BLI_ORDERED) {
166 		/*
167 		 * The buffer has been logged just to order it.
168 		 * It is not being included in the transaction
169 		 * commit, so no vectors are used at all.
170 		 */
171 		trace_xfs_buf_item_size_ordered(bip);
172 		*nvecs = XFS_LOG_VEC_ORDERED;
173 		return;
174 	}
175 
176 	/*
177 	 * the vector count is based on the number of buffer vectors we have
178 	 * dirty bits in. This will only be greater than one when we have a
179 	 * compound buffer with more than one segment dirty. Hence for compound
180 	 * buffers we need to track which segment the dirty bits correspond to,
181 	 * and when we move from one segment to the next increment the vector
182 	 * count for the extra buf log format structure that will need to be
183 	 * written.
184 	 */
185 	for (i = 0; i < bip->bli_format_count; i++) {
186 		xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
187 					  nvecs, nbytes);
188 	}
189 	trace_xfs_buf_item_size(bip);
190 }
191 
192 static inline void
193 xfs_buf_item_copy_iovec(
194 	struct xfs_log_vec	*lv,
195 	struct xfs_log_iovec	**vecp,
196 	struct xfs_buf		*bp,
197 	uint			offset,
198 	int			first_bit,
199 	uint			nbits)
200 {
201 	offset += first_bit * XFS_BLF_CHUNK;
202 	xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
203 			xfs_buf_offset(bp, offset),
204 			nbits * XFS_BLF_CHUNK);
205 }
206 
207 static inline bool
208 xfs_buf_item_straddle(
209 	struct xfs_buf		*bp,
210 	uint			offset,
211 	int			next_bit,
212 	int			last_bit)
213 {
214 	return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) !=
215 		(xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) +
216 		 XFS_BLF_CHUNK);
217 }
218 
219 static void
220 xfs_buf_item_format_segment(
221 	struct xfs_buf_log_item	*bip,
222 	struct xfs_log_vec	*lv,
223 	struct xfs_log_iovec	**vecp,
224 	uint			offset,
225 	struct xfs_buf_log_format *blfp)
226 {
227 	struct xfs_buf		*bp = bip->bli_buf;
228 	uint			base_size;
229 	int			first_bit;
230 	int			last_bit;
231 	int			next_bit;
232 	uint			nbits;
233 
234 	/* copy the flags across from the base format item */
235 	blfp->blf_flags = bip->__bli_format.blf_flags;
236 
237 	/*
238 	 * Base size is the actual size of the ondisk structure - it reflects
239 	 * the actual size of the dirty bitmap rather than the size of the in
240 	 * memory structure.
241 	 */
242 	base_size = xfs_buf_log_format_size(blfp);
243 
244 	first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
245 	if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
246 		/*
247 		 * If the map is not be dirty in the transaction, mark
248 		 * the size as zero and do not advance the vector pointer.
249 		 */
250 		return;
251 	}
252 
253 	blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
254 	blfp->blf_size = 1;
255 
256 	if (bip->bli_flags & XFS_BLI_STALE) {
257 		/*
258 		 * The buffer is stale, so all we need to log
259 		 * is the buf log format structure with the
260 		 * cancel flag in it.
261 		 */
262 		trace_xfs_buf_item_format_stale(bip);
263 		ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
264 		return;
265 	}
266 
267 
268 	/*
269 	 * Fill in an iovec for each set of contiguous chunks.
270 	 */
271 	last_bit = first_bit;
272 	nbits = 1;
273 	for (;;) {
274 		/*
275 		 * This takes the bit number to start looking from and
276 		 * returns the next set bit from there.  It returns -1
277 		 * if there are no more bits set or the start bit is
278 		 * beyond the end of the bitmap.
279 		 */
280 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
281 					(uint)last_bit + 1);
282 		/*
283 		 * If we run out of bits fill in the last iovec and get out of
284 		 * the loop.  Else if we start a new set of bits then fill in
285 		 * the iovec for the series we were looking at and start
286 		 * counting the bits in the new one.  Else we're still in the
287 		 * same set of bits so just keep counting and scanning.
288 		 */
289 		if (next_bit == -1) {
290 			xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
291 						first_bit, nbits);
292 			blfp->blf_size++;
293 			break;
294 		} else if (next_bit != last_bit + 1 ||
295 		           xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) {
296 			xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
297 						first_bit, nbits);
298 			blfp->blf_size++;
299 			first_bit = next_bit;
300 			last_bit = next_bit;
301 			nbits = 1;
302 		} else {
303 			last_bit++;
304 			nbits++;
305 		}
306 	}
307 }
308 
309 /*
310  * This is called to fill in the vector of log iovecs for the
311  * given log buf item.  It fills the first entry with a buf log
312  * format structure, and the rest point to contiguous chunks
313  * within the buffer.
314  */
315 STATIC void
316 xfs_buf_item_format(
317 	struct xfs_log_item	*lip,
318 	struct xfs_log_vec	*lv)
319 {
320 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
321 	struct xfs_buf		*bp = bip->bli_buf;
322 	struct xfs_log_iovec	*vecp = NULL;
323 	uint			offset = 0;
324 	int			i;
325 
326 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
327 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
328 	       (bip->bli_flags & XFS_BLI_STALE));
329 	ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
330 	       (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
331 	        && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
332 	ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) ||
333 	       (bip->bli_flags & XFS_BLI_STALE));
334 
335 
336 	/*
337 	 * If it is an inode buffer, transfer the in-memory state to the
338 	 * format flags and clear the in-memory state.
339 	 *
340 	 * For buffer based inode allocation, we do not transfer
341 	 * this state if the inode buffer allocation has not yet been committed
342 	 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
343 	 * correct replay of the inode allocation.
344 	 *
345 	 * For icreate item based inode allocation, the buffers aren't written
346 	 * to the journal during allocation, and hence we should always tag the
347 	 * buffer as an inode buffer so that the correct unlinked list replay
348 	 * occurs during recovery.
349 	 */
350 	if (bip->bli_flags & XFS_BLI_INODE_BUF) {
351 		if (xfs_sb_version_has_v3inode(&lip->li_mountp->m_sb) ||
352 		    !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
353 		      xfs_log_item_in_current_chkpt(lip)))
354 			bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
355 		bip->bli_flags &= ~XFS_BLI_INODE_BUF;
356 	}
357 
358 	for (i = 0; i < bip->bli_format_count; i++) {
359 		xfs_buf_item_format_segment(bip, lv, &vecp, offset,
360 					    &bip->bli_formats[i]);
361 		offset += BBTOB(bp->b_maps[i].bm_len);
362 	}
363 
364 	/*
365 	 * Check to make sure everything is consistent.
366 	 */
367 	trace_xfs_buf_item_format(bip);
368 }
369 
370 /*
371  * This is called to pin the buffer associated with the buf log item in memory
372  * so it cannot be written out.
373  *
374  * We also always take a reference to the buffer log item here so that the bli
375  * is held while the item is pinned in memory. This means that we can
376  * unconditionally drop the reference count a transaction holds when the
377  * transaction is completed.
378  */
379 STATIC void
380 xfs_buf_item_pin(
381 	struct xfs_log_item	*lip)
382 {
383 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
384 
385 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
386 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
387 	       (bip->bli_flags & XFS_BLI_ORDERED) ||
388 	       (bip->bli_flags & XFS_BLI_STALE));
389 
390 	trace_xfs_buf_item_pin(bip);
391 
392 	atomic_inc(&bip->bli_refcount);
393 	atomic_inc(&bip->bli_buf->b_pin_count);
394 }
395 
396 /*
397  * This is called to unpin the buffer associated with the buf log
398  * item which was previously pinned with a call to xfs_buf_item_pin().
399  *
400  * Also drop the reference to the buf item for the current transaction.
401  * If the XFS_BLI_STALE flag is set and we are the last reference,
402  * then free up the buf log item and unlock the buffer.
403  *
404  * If the remove flag is set we are called from uncommit in the
405  * forced-shutdown path.  If that is true and the reference count on
406  * the log item is going to drop to zero we need to free the item's
407  * descriptor in the transaction.
408  */
409 STATIC void
410 xfs_buf_item_unpin(
411 	struct xfs_log_item	*lip,
412 	int			remove)
413 {
414 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
415 	xfs_buf_t		*bp = bip->bli_buf;
416 	int			stale = bip->bli_flags & XFS_BLI_STALE;
417 	int			freed;
418 
419 	ASSERT(bp->b_log_item == bip);
420 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
421 
422 	trace_xfs_buf_item_unpin(bip);
423 
424 	freed = atomic_dec_and_test(&bip->bli_refcount);
425 
426 	if (atomic_dec_and_test(&bp->b_pin_count))
427 		wake_up_all(&bp->b_waiters);
428 
429 	if (freed && stale) {
430 		ASSERT(bip->bli_flags & XFS_BLI_STALE);
431 		ASSERT(xfs_buf_islocked(bp));
432 		ASSERT(bp->b_flags & XBF_STALE);
433 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
434 
435 		trace_xfs_buf_item_unpin_stale(bip);
436 
437 		if (remove) {
438 			/*
439 			 * If we are in a transaction context, we have to
440 			 * remove the log item from the transaction as we are
441 			 * about to release our reference to the buffer.  If we
442 			 * don't, the unlock that occurs later in
443 			 * xfs_trans_uncommit() will try to reference the
444 			 * buffer which we no longer have a hold on.
445 			 */
446 			if (!list_empty(&lip->li_trans))
447 				xfs_trans_del_item(lip);
448 
449 			/*
450 			 * Since the transaction no longer refers to the buffer,
451 			 * the buffer should no longer refer to the transaction.
452 			 */
453 			bp->b_transp = NULL;
454 		}
455 
456 		/*
457 		 * If we get called here because of an IO error, we may or may
458 		 * not have the item on the AIL. xfs_trans_ail_delete() will
459 		 * take care of that situation. xfs_trans_ail_delete() drops
460 		 * the AIL lock.
461 		 */
462 		if (bip->bli_flags & XFS_BLI_STALE_INODE) {
463 			xfs_buf_item_done(bp);
464 			xfs_buf_inode_iodone(bp);
465 			ASSERT(list_empty(&bp->b_li_list));
466 		} else {
467 			xfs_trans_ail_delete(lip, SHUTDOWN_LOG_IO_ERROR);
468 			xfs_buf_item_relse(bp);
469 			ASSERT(bp->b_log_item == NULL);
470 		}
471 		xfs_buf_relse(bp);
472 	} else if (freed && remove) {
473 		/*
474 		 * The buffer must be locked and held by the caller to simulate
475 		 * an async I/O failure.
476 		 */
477 		xfs_buf_lock(bp);
478 		xfs_buf_hold(bp);
479 		bp->b_flags |= XBF_ASYNC;
480 		xfs_buf_ioend_fail(bp);
481 	}
482 }
483 
484 STATIC uint
485 xfs_buf_item_push(
486 	struct xfs_log_item	*lip,
487 	struct list_head	*buffer_list)
488 {
489 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
490 	struct xfs_buf		*bp = bip->bli_buf;
491 	uint			rval = XFS_ITEM_SUCCESS;
492 
493 	if (xfs_buf_ispinned(bp))
494 		return XFS_ITEM_PINNED;
495 	if (!xfs_buf_trylock(bp)) {
496 		/*
497 		 * If we have just raced with a buffer being pinned and it has
498 		 * been marked stale, we could end up stalling until someone else
499 		 * issues a log force to unpin the stale buffer. Check for the
500 		 * race condition here so xfsaild recognizes the buffer is pinned
501 		 * and queues a log force to move it along.
502 		 */
503 		if (xfs_buf_ispinned(bp))
504 			return XFS_ITEM_PINNED;
505 		return XFS_ITEM_LOCKED;
506 	}
507 
508 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
509 
510 	trace_xfs_buf_item_push(bip);
511 
512 	/* has a previous flush failed due to IO errors? */
513 	if (bp->b_flags & XBF_WRITE_FAIL) {
514 		xfs_buf_alert_ratelimited(bp, "XFS: Failing async write",
515 	    "Failing async write on buffer block 0x%llx. Retrying async write.",
516 					  (long long)bp->b_bn);
517 	}
518 
519 	if (!xfs_buf_delwri_queue(bp, buffer_list))
520 		rval = XFS_ITEM_FLUSHING;
521 	xfs_buf_unlock(bp);
522 	return rval;
523 }
524 
525 /*
526  * Drop the buffer log item refcount and take appropriate action. This helper
527  * determines whether the bli must be freed or not, since a decrement to zero
528  * does not necessarily mean the bli is unused.
529  *
530  * Return true if the bli is freed, false otherwise.
531  */
532 bool
533 xfs_buf_item_put(
534 	struct xfs_buf_log_item	*bip)
535 {
536 	struct xfs_log_item	*lip = &bip->bli_item;
537 	bool			aborted;
538 	bool			dirty;
539 
540 	/* drop the bli ref and return if it wasn't the last one */
541 	if (!atomic_dec_and_test(&bip->bli_refcount))
542 		return false;
543 
544 	/*
545 	 * We dropped the last ref and must free the item if clean or aborted.
546 	 * If the bli is dirty and non-aborted, the buffer was clean in the
547 	 * transaction but still awaiting writeback from previous changes. In
548 	 * that case, the bli is freed on buffer writeback completion.
549 	 */
550 	aborted = test_bit(XFS_LI_ABORTED, &lip->li_flags) ||
551 		  XFS_FORCED_SHUTDOWN(lip->li_mountp);
552 	dirty = bip->bli_flags & XFS_BLI_DIRTY;
553 	if (dirty && !aborted)
554 		return false;
555 
556 	/*
557 	 * The bli is aborted or clean. An aborted item may be in the AIL
558 	 * regardless of dirty state.  For example, consider an aborted
559 	 * transaction that invalidated a dirty bli and cleared the dirty
560 	 * state.
561 	 */
562 	if (aborted)
563 		xfs_trans_ail_delete(lip, 0);
564 	xfs_buf_item_relse(bip->bli_buf);
565 	return true;
566 }
567 
568 /*
569  * Release the buffer associated with the buf log item.  If there is no dirty
570  * logged data associated with the buffer recorded in the buf log item, then
571  * free the buf log item and remove the reference to it in the buffer.
572  *
573  * This call ignores the recursion count.  It is only called when the buffer
574  * should REALLY be unlocked, regardless of the recursion count.
575  *
576  * We unconditionally drop the transaction's reference to the log item. If the
577  * item was logged, then another reference was taken when it was pinned, so we
578  * can safely drop the transaction reference now.  This also allows us to avoid
579  * potential races with the unpin code freeing the bli by not referencing the
580  * bli after we've dropped the reference count.
581  *
582  * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
583  * if necessary but do not unlock the buffer.  This is for support of
584  * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
585  * free the item.
586  */
587 STATIC void
588 xfs_buf_item_release(
589 	struct xfs_log_item	*lip)
590 {
591 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
592 	struct xfs_buf		*bp = bip->bli_buf;
593 	bool			released;
594 	bool			hold = bip->bli_flags & XFS_BLI_HOLD;
595 	bool			stale = bip->bli_flags & XFS_BLI_STALE;
596 #if defined(DEBUG) || defined(XFS_WARN)
597 	bool			ordered = bip->bli_flags & XFS_BLI_ORDERED;
598 	bool			dirty = bip->bli_flags & XFS_BLI_DIRTY;
599 	bool			aborted = test_bit(XFS_LI_ABORTED,
600 						   &lip->li_flags);
601 #endif
602 
603 	trace_xfs_buf_item_release(bip);
604 
605 	/*
606 	 * The bli dirty state should match whether the blf has logged segments
607 	 * except for ordered buffers, where only the bli should be dirty.
608 	 */
609 	ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) ||
610 	       (ordered && dirty && !xfs_buf_item_dirty_format(bip)));
611 	ASSERT(!stale || (bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
612 
613 	/*
614 	 * Clear the buffer's association with this transaction and
615 	 * per-transaction state from the bli, which has been copied above.
616 	 */
617 	bp->b_transp = NULL;
618 	bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
619 
620 	/*
621 	 * Unref the item and unlock the buffer unless held or stale. Stale
622 	 * buffers remain locked until final unpin unless the bli is freed by
623 	 * the unref call. The latter implies shutdown because buffer
624 	 * invalidation dirties the bli and transaction.
625 	 */
626 	released = xfs_buf_item_put(bip);
627 	if (hold || (stale && !released))
628 		return;
629 	ASSERT(!stale || aborted);
630 	xfs_buf_relse(bp);
631 }
632 
633 STATIC void
634 xfs_buf_item_committing(
635 	struct xfs_log_item	*lip,
636 	xfs_lsn_t		commit_lsn)
637 {
638 	return xfs_buf_item_release(lip);
639 }
640 
641 /*
642  * This is called to find out where the oldest active copy of the
643  * buf log item in the on disk log resides now that the last log
644  * write of it completed at the given lsn.
645  * We always re-log all the dirty data in a buffer, so usually the
646  * latest copy in the on disk log is the only one that matters.  For
647  * those cases we simply return the given lsn.
648  *
649  * The one exception to this is for buffers full of newly allocated
650  * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
651  * flag set, indicating that only the di_next_unlinked fields from the
652  * inodes in the buffers will be replayed during recovery.  If the
653  * original newly allocated inode images have not yet been flushed
654  * when the buffer is so relogged, then we need to make sure that we
655  * keep the old images in the 'active' portion of the log.  We do this
656  * by returning the original lsn of that transaction here rather than
657  * the current one.
658  */
659 STATIC xfs_lsn_t
660 xfs_buf_item_committed(
661 	struct xfs_log_item	*lip,
662 	xfs_lsn_t		lsn)
663 {
664 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
665 
666 	trace_xfs_buf_item_committed(bip);
667 
668 	if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
669 		return lip->li_lsn;
670 	return lsn;
671 }
672 
673 static const struct xfs_item_ops xfs_buf_item_ops = {
674 	.iop_size	= xfs_buf_item_size,
675 	.iop_format	= xfs_buf_item_format,
676 	.iop_pin	= xfs_buf_item_pin,
677 	.iop_unpin	= xfs_buf_item_unpin,
678 	.iop_release	= xfs_buf_item_release,
679 	.iop_committing	= xfs_buf_item_committing,
680 	.iop_committed	= xfs_buf_item_committed,
681 	.iop_push	= xfs_buf_item_push,
682 };
683 
684 STATIC void
685 xfs_buf_item_get_format(
686 	struct xfs_buf_log_item	*bip,
687 	int			count)
688 {
689 	ASSERT(bip->bli_formats == NULL);
690 	bip->bli_format_count = count;
691 
692 	if (count == 1) {
693 		bip->bli_formats = &bip->__bli_format;
694 		return;
695 	}
696 
697 	bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
698 				0);
699 }
700 
701 STATIC void
702 xfs_buf_item_free_format(
703 	struct xfs_buf_log_item	*bip)
704 {
705 	if (bip->bli_formats != &bip->__bli_format) {
706 		kmem_free(bip->bli_formats);
707 		bip->bli_formats = NULL;
708 	}
709 }
710 
711 /*
712  * Allocate a new buf log item to go with the given buffer.
713  * Set the buffer's b_log_item field to point to the new
714  * buf log item.
715  */
716 int
717 xfs_buf_item_init(
718 	struct xfs_buf	*bp,
719 	struct xfs_mount *mp)
720 {
721 	struct xfs_buf_log_item	*bip = bp->b_log_item;
722 	int			chunks;
723 	int			map_size;
724 	int			i;
725 
726 	/*
727 	 * Check to see if there is already a buf log item for
728 	 * this buffer. If we do already have one, there is
729 	 * nothing to do here so return.
730 	 */
731 	ASSERT(bp->b_mount == mp);
732 	if (bip) {
733 		ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
734 		ASSERT(!bp->b_transp);
735 		ASSERT(bip->bli_buf == bp);
736 		return 0;
737 	}
738 
739 	bip = kmem_cache_zalloc(xfs_buf_item_zone, GFP_KERNEL | __GFP_NOFAIL);
740 	xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
741 	bip->bli_buf = bp;
742 
743 	/*
744 	 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
745 	 * can be divided into. Make sure not to truncate any pieces.
746 	 * map_size is the size of the bitmap needed to describe the
747 	 * chunks of the buffer.
748 	 *
749 	 * Discontiguous buffer support follows the layout of the underlying
750 	 * buffer. This makes the implementation as simple as possible.
751 	 */
752 	xfs_buf_item_get_format(bip, bp->b_map_count);
753 
754 	for (i = 0; i < bip->bli_format_count; i++) {
755 		chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
756 				      XFS_BLF_CHUNK);
757 		map_size = DIV_ROUND_UP(chunks, NBWORD);
758 
759 		if (map_size > XFS_BLF_DATAMAP_SIZE) {
760 			kmem_cache_free(xfs_buf_item_zone, bip);
761 			xfs_err(mp,
762 	"buffer item dirty bitmap (%u uints) too small to reflect %u bytes!",
763 					map_size,
764 					BBTOB(bp->b_maps[i].bm_len));
765 			return -EFSCORRUPTED;
766 		}
767 
768 		bip->bli_formats[i].blf_type = XFS_LI_BUF;
769 		bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
770 		bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
771 		bip->bli_formats[i].blf_map_size = map_size;
772 	}
773 
774 	bp->b_log_item = bip;
775 	xfs_buf_hold(bp);
776 	return 0;
777 }
778 
779 
780 /*
781  * Mark bytes first through last inclusive as dirty in the buf
782  * item's bitmap.
783  */
784 static void
785 xfs_buf_item_log_segment(
786 	uint			first,
787 	uint			last,
788 	uint			*map)
789 {
790 	uint		first_bit;
791 	uint		last_bit;
792 	uint		bits_to_set;
793 	uint		bits_set;
794 	uint		word_num;
795 	uint		*wordp;
796 	uint		bit;
797 	uint		end_bit;
798 	uint		mask;
799 
800 	ASSERT(first < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
801 	ASSERT(last < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
802 
803 	/*
804 	 * Convert byte offsets to bit numbers.
805 	 */
806 	first_bit = first >> XFS_BLF_SHIFT;
807 	last_bit = last >> XFS_BLF_SHIFT;
808 
809 	/*
810 	 * Calculate the total number of bits to be set.
811 	 */
812 	bits_to_set = last_bit - first_bit + 1;
813 
814 	/*
815 	 * Get a pointer to the first word in the bitmap
816 	 * to set a bit in.
817 	 */
818 	word_num = first_bit >> BIT_TO_WORD_SHIFT;
819 	wordp = &map[word_num];
820 
821 	/*
822 	 * Calculate the starting bit in the first word.
823 	 */
824 	bit = first_bit & (uint)(NBWORD - 1);
825 
826 	/*
827 	 * First set any bits in the first word of our range.
828 	 * If it starts at bit 0 of the word, it will be
829 	 * set below rather than here.  That is what the variable
830 	 * bit tells us. The variable bits_set tracks the number
831 	 * of bits that have been set so far.  End_bit is the number
832 	 * of the last bit to be set in this word plus one.
833 	 */
834 	if (bit) {
835 		end_bit = min(bit + bits_to_set, (uint)NBWORD);
836 		mask = ((1U << (end_bit - bit)) - 1) << bit;
837 		*wordp |= mask;
838 		wordp++;
839 		bits_set = end_bit - bit;
840 	} else {
841 		bits_set = 0;
842 	}
843 
844 	/*
845 	 * Now set bits a whole word at a time that are between
846 	 * first_bit and last_bit.
847 	 */
848 	while ((bits_to_set - bits_set) >= NBWORD) {
849 		*wordp = 0xffffffff;
850 		bits_set += NBWORD;
851 		wordp++;
852 	}
853 
854 	/*
855 	 * Finally, set any bits left to be set in one last partial word.
856 	 */
857 	end_bit = bits_to_set - bits_set;
858 	if (end_bit) {
859 		mask = (1U << end_bit) - 1;
860 		*wordp |= mask;
861 	}
862 }
863 
864 /*
865  * Mark bytes first through last inclusive as dirty in the buf
866  * item's bitmap.
867  */
868 void
869 xfs_buf_item_log(
870 	struct xfs_buf_log_item	*bip,
871 	uint			first,
872 	uint			last)
873 {
874 	int			i;
875 	uint			start;
876 	uint			end;
877 	struct xfs_buf		*bp = bip->bli_buf;
878 
879 	/*
880 	 * walk each buffer segment and mark them dirty appropriately.
881 	 */
882 	start = 0;
883 	for (i = 0; i < bip->bli_format_count; i++) {
884 		if (start > last)
885 			break;
886 		end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
887 
888 		/* skip to the map that includes the first byte to log */
889 		if (first > end) {
890 			start += BBTOB(bp->b_maps[i].bm_len);
891 			continue;
892 		}
893 
894 		/*
895 		 * Trim the range to this segment and mark it in the bitmap.
896 		 * Note that we must convert buffer offsets to segment relative
897 		 * offsets (e.g., the first byte of each segment is byte 0 of
898 		 * that segment).
899 		 */
900 		if (first < start)
901 			first = start;
902 		if (end > last)
903 			end = last;
904 		xfs_buf_item_log_segment(first - start, end - start,
905 					 &bip->bli_formats[i].blf_data_map[0]);
906 
907 		start += BBTOB(bp->b_maps[i].bm_len);
908 	}
909 }
910 
911 
912 /*
913  * Return true if the buffer has any ranges logged/dirtied by a transaction,
914  * false otherwise.
915  */
916 bool
917 xfs_buf_item_dirty_format(
918 	struct xfs_buf_log_item	*bip)
919 {
920 	int			i;
921 
922 	for (i = 0; i < bip->bli_format_count; i++) {
923 		if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
924 			     bip->bli_formats[i].blf_map_size))
925 			return true;
926 	}
927 
928 	return false;
929 }
930 
931 STATIC void
932 xfs_buf_item_free(
933 	struct xfs_buf_log_item	*bip)
934 {
935 	xfs_buf_item_free_format(bip);
936 	kmem_free(bip->bli_item.li_lv_shadow);
937 	kmem_cache_free(xfs_buf_item_zone, bip);
938 }
939 
940 /*
941  * xfs_buf_item_relse() is called when the buf log item is no longer needed.
942  */
943 void
944 xfs_buf_item_relse(
945 	xfs_buf_t	*bp)
946 {
947 	struct xfs_buf_log_item	*bip = bp->b_log_item;
948 
949 	trace_xfs_buf_item_relse(bp, _RET_IP_);
950 	ASSERT(!test_bit(XFS_LI_IN_AIL, &bip->bli_item.li_flags));
951 
952 	bp->b_log_item = NULL;
953 	xfs_buf_rele(bp);
954 	xfs_buf_item_free(bip);
955 }
956 
957 void
958 xfs_buf_item_done(
959 	struct xfs_buf		*bp)
960 {
961 	/*
962 	 * If we are forcibly shutting down, this may well be off the AIL
963 	 * already. That's because we simulate the log-committed callbacks to
964 	 * unpin these buffers. Or we may never have put this item on AIL
965 	 * because of the transaction was aborted forcibly.
966 	 * xfs_trans_ail_delete() takes care of these.
967 	 *
968 	 * Either way, AIL is useless if we're forcing a shutdown.
969 	 *
970 	 * Note that log recovery writes might have buffer items that are not on
971 	 * the AIL even when the file system is not shut down.
972 	 */
973 	xfs_trans_ail_delete(&bp->b_log_item->bli_item,
974 			     (bp->b_flags & _XBF_LOGRECOVERY) ? 0 :
975 			     SHUTDOWN_CORRUPT_INCORE);
976 	xfs_buf_item_relse(bp);
977 }
978