xref: /openbmc/linux/fs/xfs/xfs_buf_item.c (revision ee89bd6b)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_error.h"
30 #include "xfs_trace.h"
31 
32 
33 kmem_zone_t	*xfs_buf_item_zone;
34 
35 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
36 {
37 	return container_of(lip, struct xfs_buf_log_item, bli_item);
38 }
39 
40 STATIC void	xfs_buf_do_callbacks(struct xfs_buf *bp);
41 
42 /*
43  * This returns the number of log iovecs needed to log the
44  * given buf log item.
45  *
46  * It calculates this as 1 iovec for the buf log format structure
47  * and 1 for each stretch of non-contiguous chunks to be logged.
48  * Contiguous chunks are logged in a single iovec.
49  *
50  * If the XFS_BLI_STALE flag has been set, then log nothing.
51  */
52 STATIC uint
53 xfs_buf_item_size_segment(
54 	struct xfs_buf_log_item	*bip,
55 	struct xfs_buf_log_format *blfp)
56 {
57 	struct xfs_buf		*bp = bip->bli_buf;
58 	uint			nvecs;
59 	int			next_bit;
60 	int			last_bit;
61 
62 	last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
63 	if (last_bit == -1)
64 		return 0;
65 
66 	/*
67 	 * initial count for a dirty buffer is 2 vectors - the format structure
68 	 * and the first dirty region.
69 	 */
70 	nvecs = 2;
71 
72 	while (last_bit != -1) {
73 		/*
74 		 * This takes the bit number to start looking from and
75 		 * returns the next set bit from there.  It returns -1
76 		 * if there are no more bits set or the start bit is
77 		 * beyond the end of the bitmap.
78 		 */
79 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
80 					last_bit + 1);
81 		/*
82 		 * If we run out of bits, leave the loop,
83 		 * else if we find a new set of bits bump the number of vecs,
84 		 * else keep scanning the current set of bits.
85 		 */
86 		if (next_bit == -1) {
87 			break;
88 		} else if (next_bit != last_bit + 1) {
89 			last_bit = next_bit;
90 			nvecs++;
91 		} else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
92 			   (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
93 			    XFS_BLF_CHUNK)) {
94 			last_bit = next_bit;
95 			nvecs++;
96 		} else {
97 			last_bit++;
98 		}
99 	}
100 
101 	return nvecs;
102 }
103 
104 /*
105  * This returns the number of log iovecs needed to log the given buf log item.
106  *
107  * It calculates this as 1 iovec for the buf log format structure and 1 for each
108  * stretch of non-contiguous chunks to be logged.  Contiguous chunks are logged
109  * in a single iovec.
110  *
111  * Discontiguous buffers need a format structure per region that that is being
112  * logged. This makes the changes in the buffer appear to log recovery as though
113  * they came from separate buffers, just like would occur if multiple buffers
114  * were used instead of a single discontiguous buffer. This enables
115  * discontiguous buffers to be in-memory constructs, completely transparent to
116  * what ends up on disk.
117  *
118  * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
119  * format structures.
120  */
121 STATIC uint
122 xfs_buf_item_size(
123 	struct xfs_log_item	*lip)
124 {
125 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
126 	uint			nvecs;
127 	int			i;
128 
129 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
130 	if (bip->bli_flags & XFS_BLI_STALE) {
131 		/*
132 		 * The buffer is stale, so all we need to log
133 		 * is the buf log format structure with the
134 		 * cancel flag in it.
135 		 */
136 		trace_xfs_buf_item_size_stale(bip);
137 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
138 		return bip->bli_format_count;
139 	}
140 
141 	ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
142 
143 	/*
144 	 * the vector count is based on the number of buffer vectors we have
145 	 * dirty bits in. This will only be greater than one when we have a
146 	 * compound buffer with more than one segment dirty. Hence for compound
147 	 * buffers we need to track which segment the dirty bits correspond to,
148 	 * and when we move from one segment to the next increment the vector
149 	 * count for the extra buf log format structure that will need to be
150 	 * written.
151 	 */
152 	nvecs = 0;
153 	for (i = 0; i < bip->bli_format_count; i++) {
154 		nvecs += xfs_buf_item_size_segment(bip, &bip->bli_formats[i]);
155 	}
156 
157 	trace_xfs_buf_item_size(bip);
158 	return nvecs;
159 }
160 
161 static struct xfs_log_iovec *
162 xfs_buf_item_format_segment(
163 	struct xfs_buf_log_item	*bip,
164 	struct xfs_log_iovec	*vecp,
165 	uint			offset,
166 	struct xfs_buf_log_format *blfp)
167 {
168 	struct xfs_buf	*bp = bip->bli_buf;
169 	uint		base_size;
170 	uint		nvecs;
171 	int		first_bit;
172 	int		last_bit;
173 	int		next_bit;
174 	uint		nbits;
175 	uint		buffer_offset;
176 
177 	/* copy the flags across from the base format item */
178 	blfp->blf_flags = bip->__bli_format.blf_flags;
179 
180 	/*
181 	 * Base size is the actual size of the ondisk structure - it reflects
182 	 * the actual size of the dirty bitmap rather than the size of the in
183 	 * memory structure.
184 	 */
185 	base_size = offsetof(struct xfs_buf_log_format, blf_data_map) +
186 			(blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
187 
188 	nvecs = 0;
189 	first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
190 	if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
191 		/*
192 		 * If the map is not be dirty in the transaction, mark
193 		 * the size as zero and do not advance the vector pointer.
194 		 */
195 		goto out;
196 	}
197 
198 	vecp->i_addr = blfp;
199 	vecp->i_len = base_size;
200 	vecp->i_type = XLOG_REG_TYPE_BFORMAT;
201 	vecp++;
202 	nvecs = 1;
203 
204 	if (bip->bli_flags & XFS_BLI_STALE) {
205 		/*
206 		 * The buffer is stale, so all we need to log
207 		 * is the buf log format structure with the
208 		 * cancel flag in it.
209 		 */
210 		trace_xfs_buf_item_format_stale(bip);
211 		ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
212 		goto out;
213 	}
214 
215 	/*
216 	 * Fill in an iovec for each set of contiguous chunks.
217 	 */
218 
219 	last_bit = first_bit;
220 	nbits = 1;
221 	for (;;) {
222 		/*
223 		 * This takes the bit number to start looking from and
224 		 * returns the next set bit from there.  It returns -1
225 		 * if there are no more bits set or the start bit is
226 		 * beyond the end of the bitmap.
227 		 */
228 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
229 					(uint)last_bit + 1);
230 		/*
231 		 * If we run out of bits fill in the last iovec and get
232 		 * out of the loop.
233 		 * Else if we start a new set of bits then fill in the
234 		 * iovec for the series we were looking at and start
235 		 * counting the bits in the new one.
236 		 * Else we're still in the same set of bits so just
237 		 * keep counting and scanning.
238 		 */
239 		if (next_bit == -1) {
240 			buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
241 			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
242 			vecp->i_len = nbits * XFS_BLF_CHUNK;
243 			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
244 			nvecs++;
245 			break;
246 		} else if (next_bit != last_bit + 1) {
247 			buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
248 			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
249 			vecp->i_len = nbits * XFS_BLF_CHUNK;
250 			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
251 			nvecs++;
252 			vecp++;
253 			first_bit = next_bit;
254 			last_bit = next_bit;
255 			nbits = 1;
256 		} else if (xfs_buf_offset(bp, offset +
257 					      (next_bit << XFS_BLF_SHIFT)) !=
258 			   (xfs_buf_offset(bp, offset +
259 					       (last_bit << XFS_BLF_SHIFT)) +
260 			    XFS_BLF_CHUNK)) {
261 			buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
262 			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
263 			vecp->i_len = nbits * XFS_BLF_CHUNK;
264 			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
265 			nvecs++;
266 			vecp++;
267 			first_bit = next_bit;
268 			last_bit = next_bit;
269 			nbits = 1;
270 		} else {
271 			last_bit++;
272 			nbits++;
273 		}
274 	}
275 out:
276 	blfp->blf_size = nvecs;
277 	return vecp;
278 }
279 
280 /*
281  * This is called to fill in the vector of log iovecs for the
282  * given log buf item.  It fills the first entry with a buf log
283  * format structure, and the rest point to contiguous chunks
284  * within the buffer.
285  */
286 STATIC void
287 xfs_buf_item_format(
288 	struct xfs_log_item	*lip,
289 	struct xfs_log_iovec	*vecp)
290 {
291 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
292 	struct xfs_buf		*bp = bip->bli_buf;
293 	uint			offset = 0;
294 	int			i;
295 
296 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
297 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
298 	       (bip->bli_flags & XFS_BLI_STALE));
299 
300 	/*
301 	 * If it is an inode buffer, transfer the in-memory state to the
302 	 * format flags and clear the in-memory state. We do not transfer
303 	 * this state if the inode buffer allocation has not yet been committed
304 	 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
305 	 * correct replay of the inode allocation.
306 	 */
307 	if (bip->bli_flags & XFS_BLI_INODE_BUF) {
308 		if (!((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
309 		      xfs_log_item_in_current_chkpt(lip)))
310 			bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
311 		bip->bli_flags &= ~XFS_BLI_INODE_BUF;
312 	}
313 
314 	for (i = 0; i < bip->bli_format_count; i++) {
315 		vecp = xfs_buf_item_format_segment(bip, vecp, offset,
316 						&bip->bli_formats[i]);
317 		offset += bp->b_maps[i].bm_len;
318 	}
319 
320 	/*
321 	 * Check to make sure everything is consistent.
322 	 */
323 	trace_xfs_buf_item_format(bip);
324 }
325 
326 /*
327  * This is called to pin the buffer associated with the buf log item in memory
328  * so it cannot be written out.
329  *
330  * We also always take a reference to the buffer log item here so that the bli
331  * is held while the item is pinned in memory. This means that we can
332  * unconditionally drop the reference count a transaction holds when the
333  * transaction is completed.
334  */
335 STATIC void
336 xfs_buf_item_pin(
337 	struct xfs_log_item	*lip)
338 {
339 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
340 
341 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
342 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
343 	       (bip->bli_flags & XFS_BLI_STALE));
344 
345 	trace_xfs_buf_item_pin(bip);
346 
347 	atomic_inc(&bip->bli_refcount);
348 	atomic_inc(&bip->bli_buf->b_pin_count);
349 }
350 
351 /*
352  * This is called to unpin the buffer associated with the buf log
353  * item which was previously pinned with a call to xfs_buf_item_pin().
354  *
355  * Also drop the reference to the buf item for the current transaction.
356  * If the XFS_BLI_STALE flag is set and we are the last reference,
357  * then free up the buf log item and unlock the buffer.
358  *
359  * If the remove flag is set we are called from uncommit in the
360  * forced-shutdown path.  If that is true and the reference count on
361  * the log item is going to drop to zero we need to free the item's
362  * descriptor in the transaction.
363  */
364 STATIC void
365 xfs_buf_item_unpin(
366 	struct xfs_log_item	*lip,
367 	int			remove)
368 {
369 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
370 	xfs_buf_t	*bp = bip->bli_buf;
371 	struct xfs_ail	*ailp = lip->li_ailp;
372 	int		stale = bip->bli_flags & XFS_BLI_STALE;
373 	int		freed;
374 
375 	ASSERT(bp->b_fspriv == bip);
376 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
377 
378 	trace_xfs_buf_item_unpin(bip);
379 
380 	freed = atomic_dec_and_test(&bip->bli_refcount);
381 
382 	if (atomic_dec_and_test(&bp->b_pin_count))
383 		wake_up_all(&bp->b_waiters);
384 
385 	if (freed && stale) {
386 		ASSERT(bip->bli_flags & XFS_BLI_STALE);
387 		ASSERT(xfs_buf_islocked(bp));
388 		ASSERT(XFS_BUF_ISSTALE(bp));
389 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
390 
391 		trace_xfs_buf_item_unpin_stale(bip);
392 
393 		if (remove) {
394 			/*
395 			 * If we are in a transaction context, we have to
396 			 * remove the log item from the transaction as we are
397 			 * about to release our reference to the buffer.  If we
398 			 * don't, the unlock that occurs later in
399 			 * xfs_trans_uncommit() will try to reference the
400 			 * buffer which we no longer have a hold on.
401 			 */
402 			if (lip->li_desc)
403 				xfs_trans_del_item(lip);
404 
405 			/*
406 			 * Since the transaction no longer refers to the buffer,
407 			 * the buffer should no longer refer to the transaction.
408 			 */
409 			bp->b_transp = NULL;
410 		}
411 
412 		/*
413 		 * If we get called here because of an IO error, we may
414 		 * or may not have the item on the AIL. xfs_trans_ail_delete()
415 		 * will take care of that situation.
416 		 * xfs_trans_ail_delete() drops the AIL lock.
417 		 */
418 		if (bip->bli_flags & XFS_BLI_STALE_INODE) {
419 			xfs_buf_do_callbacks(bp);
420 			bp->b_fspriv = NULL;
421 			bp->b_iodone = NULL;
422 		} else {
423 			spin_lock(&ailp->xa_lock);
424 			xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
425 			xfs_buf_item_relse(bp);
426 			ASSERT(bp->b_fspriv == NULL);
427 		}
428 		xfs_buf_relse(bp);
429 	} else if (freed && remove) {
430 		/*
431 		 * There are currently two references to the buffer - the active
432 		 * LRU reference and the buf log item. What we are about to do
433 		 * here - simulate a failed IO completion - requires 3
434 		 * references.
435 		 *
436 		 * The LRU reference is removed by the xfs_buf_stale() call. The
437 		 * buf item reference is removed by the xfs_buf_iodone()
438 		 * callback that is run by xfs_buf_do_callbacks() during ioend
439 		 * processing (via the bp->b_iodone callback), and then finally
440 		 * the ioend processing will drop the IO reference if the buffer
441 		 * is marked XBF_ASYNC.
442 		 *
443 		 * Hence we need to take an additional reference here so that IO
444 		 * completion processing doesn't free the buffer prematurely.
445 		 */
446 		xfs_buf_lock(bp);
447 		xfs_buf_hold(bp);
448 		bp->b_flags |= XBF_ASYNC;
449 		xfs_buf_ioerror(bp, EIO);
450 		XFS_BUF_UNDONE(bp);
451 		xfs_buf_stale(bp);
452 		xfs_buf_ioend(bp, 0);
453 	}
454 }
455 
456 STATIC uint
457 xfs_buf_item_push(
458 	struct xfs_log_item	*lip,
459 	struct list_head	*buffer_list)
460 {
461 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
462 	struct xfs_buf		*bp = bip->bli_buf;
463 	uint			rval = XFS_ITEM_SUCCESS;
464 
465 	if (xfs_buf_ispinned(bp))
466 		return XFS_ITEM_PINNED;
467 	if (!xfs_buf_trylock(bp)) {
468 		/*
469 		 * If we have just raced with a buffer being pinned and it has
470 		 * been marked stale, we could end up stalling until someone else
471 		 * issues a log force to unpin the stale buffer. Check for the
472 		 * race condition here so xfsaild recognizes the buffer is pinned
473 		 * and queues a log force to move it along.
474 		 */
475 		if (xfs_buf_ispinned(bp))
476 			return XFS_ITEM_PINNED;
477 		return XFS_ITEM_LOCKED;
478 	}
479 
480 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
481 
482 	trace_xfs_buf_item_push(bip);
483 
484 	if (!xfs_buf_delwri_queue(bp, buffer_list))
485 		rval = XFS_ITEM_FLUSHING;
486 	xfs_buf_unlock(bp);
487 	return rval;
488 }
489 
490 /*
491  * Release the buffer associated with the buf log item.  If there is no dirty
492  * logged data associated with the buffer recorded in the buf log item, then
493  * free the buf log item and remove the reference to it in the buffer.
494  *
495  * This call ignores the recursion count.  It is only called when the buffer
496  * should REALLY be unlocked, regardless of the recursion count.
497  *
498  * We unconditionally drop the transaction's reference to the log item. If the
499  * item was logged, then another reference was taken when it was pinned, so we
500  * can safely drop the transaction reference now.  This also allows us to avoid
501  * potential races with the unpin code freeing the bli by not referencing the
502  * bli after we've dropped the reference count.
503  *
504  * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
505  * if necessary but do not unlock the buffer.  This is for support of
506  * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
507  * free the item.
508  */
509 STATIC void
510 xfs_buf_item_unlock(
511 	struct xfs_log_item	*lip)
512 {
513 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
514 	struct xfs_buf		*bp = bip->bli_buf;
515 	int			aborted, clean, i;
516 	uint			hold;
517 
518 	/* Clear the buffer's association with this transaction. */
519 	bp->b_transp = NULL;
520 
521 	/*
522 	 * If this is a transaction abort, don't return early.  Instead, allow
523 	 * the brelse to happen.  Normally it would be done for stale
524 	 * (cancelled) buffers at unpin time, but we'll never go through the
525 	 * pin/unpin cycle if we abort inside commit.
526 	 */
527 	aborted = (lip->li_flags & XFS_LI_ABORTED) != 0;
528 
529 	/*
530 	 * Before possibly freeing the buf item, determine if we should
531 	 * release the buffer at the end of this routine.
532 	 */
533 	hold = bip->bli_flags & XFS_BLI_HOLD;
534 
535 	/* Clear the per transaction state. */
536 	bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD);
537 
538 	/*
539 	 * If the buf item is marked stale, then don't do anything.  We'll
540 	 * unlock the buffer and free the buf item when the buffer is unpinned
541 	 * for the last time.
542 	 */
543 	if (bip->bli_flags & XFS_BLI_STALE) {
544 		trace_xfs_buf_item_unlock_stale(bip);
545 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
546 		if (!aborted) {
547 			atomic_dec(&bip->bli_refcount);
548 			return;
549 		}
550 	}
551 
552 	trace_xfs_buf_item_unlock(bip);
553 
554 	/*
555 	 * If the buf item isn't tracking any data, free it, otherwise drop the
556 	 * reference we hold to it. If we are aborting the transaction, this may
557 	 * be the only reference to the buf item, so we free it anyway
558 	 * regardless of whether it is dirty or not. A dirty abort implies a
559 	 * shutdown, anyway.
560 	 */
561 	clean = 1;
562 	for (i = 0; i < bip->bli_format_count; i++) {
563 		if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
564 			     bip->bli_formats[i].blf_map_size)) {
565 			clean = 0;
566 			break;
567 		}
568 	}
569 	if (clean)
570 		xfs_buf_item_relse(bp);
571 	else if (aborted) {
572 		if (atomic_dec_and_test(&bip->bli_refcount)) {
573 			ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp));
574 			xfs_buf_item_relse(bp);
575 		}
576 	} else
577 		atomic_dec(&bip->bli_refcount);
578 
579 	if (!hold)
580 		xfs_buf_relse(bp);
581 }
582 
583 /*
584  * This is called to find out where the oldest active copy of the
585  * buf log item in the on disk log resides now that the last log
586  * write of it completed at the given lsn.
587  * We always re-log all the dirty data in a buffer, so usually the
588  * latest copy in the on disk log is the only one that matters.  For
589  * those cases we simply return the given lsn.
590  *
591  * The one exception to this is for buffers full of newly allocated
592  * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
593  * flag set, indicating that only the di_next_unlinked fields from the
594  * inodes in the buffers will be replayed during recovery.  If the
595  * original newly allocated inode images have not yet been flushed
596  * when the buffer is so relogged, then we need to make sure that we
597  * keep the old images in the 'active' portion of the log.  We do this
598  * by returning the original lsn of that transaction here rather than
599  * the current one.
600  */
601 STATIC xfs_lsn_t
602 xfs_buf_item_committed(
603 	struct xfs_log_item	*lip,
604 	xfs_lsn_t		lsn)
605 {
606 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
607 
608 	trace_xfs_buf_item_committed(bip);
609 
610 	if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
611 		return lip->li_lsn;
612 	return lsn;
613 }
614 
615 STATIC void
616 xfs_buf_item_committing(
617 	struct xfs_log_item	*lip,
618 	xfs_lsn_t		commit_lsn)
619 {
620 }
621 
622 /*
623  * This is the ops vector shared by all buf log items.
624  */
625 static const struct xfs_item_ops xfs_buf_item_ops = {
626 	.iop_size	= xfs_buf_item_size,
627 	.iop_format	= xfs_buf_item_format,
628 	.iop_pin	= xfs_buf_item_pin,
629 	.iop_unpin	= xfs_buf_item_unpin,
630 	.iop_unlock	= xfs_buf_item_unlock,
631 	.iop_committed	= xfs_buf_item_committed,
632 	.iop_push	= xfs_buf_item_push,
633 	.iop_committing = xfs_buf_item_committing
634 };
635 
636 STATIC int
637 xfs_buf_item_get_format(
638 	struct xfs_buf_log_item	*bip,
639 	int			count)
640 {
641 	ASSERT(bip->bli_formats == NULL);
642 	bip->bli_format_count = count;
643 
644 	if (count == 1) {
645 		bip->bli_formats = &bip->__bli_format;
646 		return 0;
647 	}
648 
649 	bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
650 				KM_SLEEP);
651 	if (!bip->bli_formats)
652 		return ENOMEM;
653 	return 0;
654 }
655 
656 STATIC void
657 xfs_buf_item_free_format(
658 	struct xfs_buf_log_item	*bip)
659 {
660 	if (bip->bli_formats != &bip->__bli_format) {
661 		kmem_free(bip->bli_formats);
662 		bip->bli_formats = NULL;
663 	}
664 }
665 
666 /*
667  * Allocate a new buf log item to go with the given buffer.
668  * Set the buffer's b_fsprivate field to point to the new
669  * buf log item.  If there are other item's attached to the
670  * buffer (see xfs_buf_attach_iodone() below), then put the
671  * buf log item at the front.
672  */
673 void
674 xfs_buf_item_init(
675 	xfs_buf_t	*bp,
676 	xfs_mount_t	*mp)
677 {
678 	xfs_log_item_t		*lip = bp->b_fspriv;
679 	xfs_buf_log_item_t	*bip;
680 	int			chunks;
681 	int			map_size;
682 	int			error;
683 	int			i;
684 
685 	/*
686 	 * Check to see if there is already a buf log item for
687 	 * this buffer.  If there is, it is guaranteed to be
688 	 * the first.  If we do already have one, there is
689 	 * nothing to do here so return.
690 	 */
691 	ASSERT(bp->b_target->bt_mount == mp);
692 	if (lip != NULL && lip->li_type == XFS_LI_BUF)
693 		return;
694 
695 	bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
696 	xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
697 	bip->bli_buf = bp;
698 	xfs_buf_hold(bp);
699 
700 	/*
701 	 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
702 	 * can be divided into. Make sure not to truncate any pieces.
703 	 * map_size is the size of the bitmap needed to describe the
704 	 * chunks of the buffer.
705 	 *
706 	 * Discontiguous buffer support follows the layout of the underlying
707 	 * buffer. This makes the implementation as simple as possible.
708 	 */
709 	error = xfs_buf_item_get_format(bip, bp->b_map_count);
710 	ASSERT(error == 0);
711 
712 	for (i = 0; i < bip->bli_format_count; i++) {
713 		chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
714 				      XFS_BLF_CHUNK);
715 		map_size = DIV_ROUND_UP(chunks, NBWORD);
716 
717 		bip->bli_formats[i].blf_type = XFS_LI_BUF;
718 		bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
719 		bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
720 		bip->bli_formats[i].blf_map_size = map_size;
721 	}
722 
723 #ifdef XFS_TRANS_DEBUG
724 	/*
725 	 * Allocate the arrays for tracking what needs to be logged
726 	 * and what our callers request to be logged.  bli_orig
727 	 * holds a copy of the original, clean buffer for comparison
728 	 * against, and bli_logged keeps a 1 bit flag per byte in
729 	 * the buffer to indicate which bytes the callers have asked
730 	 * to have logged.
731 	 */
732 	bip->bli_orig = kmem_alloc(BBTOB(bp->b_length), KM_SLEEP);
733 	memcpy(bip->bli_orig, bp->b_addr, BBTOB(bp->b_length));
734 	bip->bli_logged = kmem_zalloc(BBTOB(bp->b_length) / NBBY, KM_SLEEP);
735 #endif
736 
737 	/*
738 	 * Put the buf item into the list of items attached to the
739 	 * buffer at the front.
740 	 */
741 	if (bp->b_fspriv)
742 		bip->bli_item.li_bio_list = bp->b_fspriv;
743 	bp->b_fspriv = bip;
744 }
745 
746 
747 /*
748  * Mark bytes first through last inclusive as dirty in the buf
749  * item's bitmap.
750  */
751 void
752 xfs_buf_item_log_segment(
753 	struct xfs_buf_log_item	*bip,
754 	uint			first,
755 	uint			last,
756 	uint			*map)
757 {
758 	uint		first_bit;
759 	uint		last_bit;
760 	uint		bits_to_set;
761 	uint		bits_set;
762 	uint		word_num;
763 	uint		*wordp;
764 	uint		bit;
765 	uint		end_bit;
766 	uint		mask;
767 
768 	/*
769 	 * Convert byte offsets to bit numbers.
770 	 */
771 	first_bit = first >> XFS_BLF_SHIFT;
772 	last_bit = last >> XFS_BLF_SHIFT;
773 
774 	/*
775 	 * Calculate the total number of bits to be set.
776 	 */
777 	bits_to_set = last_bit - first_bit + 1;
778 
779 	/*
780 	 * Get a pointer to the first word in the bitmap
781 	 * to set a bit in.
782 	 */
783 	word_num = first_bit >> BIT_TO_WORD_SHIFT;
784 	wordp = &map[word_num];
785 
786 	/*
787 	 * Calculate the starting bit in the first word.
788 	 */
789 	bit = first_bit & (uint)(NBWORD - 1);
790 
791 	/*
792 	 * First set any bits in the first word of our range.
793 	 * If it starts at bit 0 of the word, it will be
794 	 * set below rather than here.  That is what the variable
795 	 * bit tells us. The variable bits_set tracks the number
796 	 * of bits that have been set so far.  End_bit is the number
797 	 * of the last bit to be set in this word plus one.
798 	 */
799 	if (bit) {
800 		end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
801 		mask = ((1 << (end_bit - bit)) - 1) << bit;
802 		*wordp |= mask;
803 		wordp++;
804 		bits_set = end_bit - bit;
805 	} else {
806 		bits_set = 0;
807 	}
808 
809 	/*
810 	 * Now set bits a whole word at a time that are between
811 	 * first_bit and last_bit.
812 	 */
813 	while ((bits_to_set - bits_set) >= NBWORD) {
814 		*wordp |= 0xffffffff;
815 		bits_set += NBWORD;
816 		wordp++;
817 	}
818 
819 	/*
820 	 * Finally, set any bits left to be set in one last partial word.
821 	 */
822 	end_bit = bits_to_set - bits_set;
823 	if (end_bit) {
824 		mask = (1 << end_bit) - 1;
825 		*wordp |= mask;
826 	}
827 }
828 
829 /*
830  * Mark bytes first through last inclusive as dirty in the buf
831  * item's bitmap.
832  */
833 void
834 xfs_buf_item_log(
835 	xfs_buf_log_item_t	*bip,
836 	uint			first,
837 	uint			last)
838 {
839 	int			i;
840 	uint			start;
841 	uint			end;
842 	struct xfs_buf		*bp = bip->bli_buf;
843 
844 	/*
845 	 * Mark the item as having some dirty data for
846 	 * quick reference in xfs_buf_item_dirty.
847 	 */
848 	bip->bli_flags |= XFS_BLI_DIRTY;
849 
850 	/*
851 	 * walk each buffer segment and mark them dirty appropriately.
852 	 */
853 	start = 0;
854 	for (i = 0; i < bip->bli_format_count; i++) {
855 		if (start > last)
856 			break;
857 		end = start + BBTOB(bp->b_maps[i].bm_len);
858 		if (first > end) {
859 			start += BBTOB(bp->b_maps[i].bm_len);
860 			continue;
861 		}
862 		if (first < start)
863 			first = start;
864 		if (end > last)
865 			end = last;
866 
867 		xfs_buf_item_log_segment(bip, first, end,
868 					 &bip->bli_formats[i].blf_data_map[0]);
869 
870 		start += bp->b_maps[i].bm_len;
871 	}
872 }
873 
874 
875 /*
876  * Return 1 if the buffer has some data that has been logged (at any
877  * point, not just the current transaction) and 0 if not.
878  */
879 uint
880 xfs_buf_item_dirty(
881 	xfs_buf_log_item_t	*bip)
882 {
883 	return (bip->bli_flags & XFS_BLI_DIRTY);
884 }
885 
886 STATIC void
887 xfs_buf_item_free(
888 	xfs_buf_log_item_t	*bip)
889 {
890 #ifdef XFS_TRANS_DEBUG
891 	kmem_free(bip->bli_orig);
892 	kmem_free(bip->bli_logged);
893 #endif /* XFS_TRANS_DEBUG */
894 
895 	xfs_buf_item_free_format(bip);
896 	kmem_zone_free(xfs_buf_item_zone, bip);
897 }
898 
899 /*
900  * This is called when the buf log item is no longer needed.  It should
901  * free the buf log item associated with the given buffer and clear
902  * the buffer's pointer to the buf log item.  If there are no more
903  * items in the list, clear the b_iodone field of the buffer (see
904  * xfs_buf_attach_iodone() below).
905  */
906 void
907 xfs_buf_item_relse(
908 	xfs_buf_t	*bp)
909 {
910 	xfs_buf_log_item_t	*bip;
911 
912 	trace_xfs_buf_item_relse(bp, _RET_IP_);
913 
914 	bip = bp->b_fspriv;
915 	bp->b_fspriv = bip->bli_item.li_bio_list;
916 	if (bp->b_fspriv == NULL)
917 		bp->b_iodone = NULL;
918 
919 	xfs_buf_rele(bp);
920 	xfs_buf_item_free(bip);
921 }
922 
923 
924 /*
925  * Add the given log item with its callback to the list of callbacks
926  * to be called when the buffer's I/O completes.  If it is not set
927  * already, set the buffer's b_iodone() routine to be
928  * xfs_buf_iodone_callbacks() and link the log item into the list of
929  * items rooted at b_fsprivate.  Items are always added as the second
930  * entry in the list if there is a first, because the buf item code
931  * assumes that the buf log item is first.
932  */
933 void
934 xfs_buf_attach_iodone(
935 	xfs_buf_t	*bp,
936 	void		(*cb)(xfs_buf_t *, xfs_log_item_t *),
937 	xfs_log_item_t	*lip)
938 {
939 	xfs_log_item_t	*head_lip;
940 
941 	ASSERT(xfs_buf_islocked(bp));
942 
943 	lip->li_cb = cb;
944 	head_lip = bp->b_fspriv;
945 	if (head_lip) {
946 		lip->li_bio_list = head_lip->li_bio_list;
947 		head_lip->li_bio_list = lip;
948 	} else {
949 		bp->b_fspriv = lip;
950 	}
951 
952 	ASSERT(bp->b_iodone == NULL ||
953 	       bp->b_iodone == xfs_buf_iodone_callbacks);
954 	bp->b_iodone = xfs_buf_iodone_callbacks;
955 }
956 
957 /*
958  * We can have many callbacks on a buffer. Running the callbacks individually
959  * can cause a lot of contention on the AIL lock, so we allow for a single
960  * callback to be able to scan the remaining lip->li_bio_list for other items
961  * of the same type and callback to be processed in the first call.
962  *
963  * As a result, the loop walking the callback list below will also modify the
964  * list. it removes the first item from the list and then runs the callback.
965  * The loop then restarts from the new head of the list. This allows the
966  * callback to scan and modify the list attached to the buffer and we don't
967  * have to care about maintaining a next item pointer.
968  */
969 STATIC void
970 xfs_buf_do_callbacks(
971 	struct xfs_buf		*bp)
972 {
973 	struct xfs_log_item	*lip;
974 
975 	while ((lip = bp->b_fspriv) != NULL) {
976 		bp->b_fspriv = lip->li_bio_list;
977 		ASSERT(lip->li_cb != NULL);
978 		/*
979 		 * Clear the next pointer so we don't have any
980 		 * confusion if the item is added to another buf.
981 		 * Don't touch the log item after calling its
982 		 * callback, because it could have freed itself.
983 		 */
984 		lip->li_bio_list = NULL;
985 		lip->li_cb(bp, lip);
986 	}
987 }
988 
989 /*
990  * This is the iodone() function for buffers which have had callbacks
991  * attached to them by xfs_buf_attach_iodone().  It should remove each
992  * log item from the buffer's list and call the callback of each in turn.
993  * When done, the buffer's fsprivate field is set to NULL and the buffer
994  * is unlocked with a call to iodone().
995  */
996 void
997 xfs_buf_iodone_callbacks(
998 	struct xfs_buf		*bp)
999 {
1000 	struct xfs_log_item	*lip = bp->b_fspriv;
1001 	struct xfs_mount	*mp = lip->li_mountp;
1002 	static ulong		lasttime;
1003 	static xfs_buftarg_t	*lasttarg;
1004 
1005 	if (likely(!xfs_buf_geterror(bp)))
1006 		goto do_callbacks;
1007 
1008 	/*
1009 	 * If we've already decided to shutdown the filesystem because of
1010 	 * I/O errors, there's no point in giving this a retry.
1011 	 */
1012 	if (XFS_FORCED_SHUTDOWN(mp)) {
1013 		xfs_buf_stale(bp);
1014 		XFS_BUF_DONE(bp);
1015 		trace_xfs_buf_item_iodone(bp, _RET_IP_);
1016 		goto do_callbacks;
1017 	}
1018 
1019 	if (bp->b_target != lasttarg ||
1020 	    time_after(jiffies, (lasttime + 5*HZ))) {
1021 		lasttime = jiffies;
1022 		xfs_buf_ioerror_alert(bp, __func__);
1023 	}
1024 	lasttarg = bp->b_target;
1025 
1026 	/*
1027 	 * If the write was asynchronous then no one will be looking for the
1028 	 * error.  Clear the error state and write the buffer out again.
1029 	 *
1030 	 * XXX: This helps against transient write errors, but we need to find
1031 	 * a way to shut the filesystem down if the writes keep failing.
1032 	 *
1033 	 * In practice we'll shut the filesystem down soon as non-transient
1034 	 * erorrs tend to affect the whole device and a failing log write
1035 	 * will make us give up.  But we really ought to do better here.
1036 	 */
1037 	if (XFS_BUF_ISASYNC(bp)) {
1038 		ASSERT(bp->b_iodone != NULL);
1039 
1040 		trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1041 
1042 		xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */
1043 
1044 		if (!XFS_BUF_ISSTALE(bp)) {
1045 			bp->b_flags |= XBF_WRITE | XBF_ASYNC | XBF_DONE;
1046 			xfs_buf_iorequest(bp);
1047 		} else {
1048 			xfs_buf_relse(bp);
1049 		}
1050 
1051 		return;
1052 	}
1053 
1054 	/*
1055 	 * If the write of the buffer was synchronous, we want to make
1056 	 * sure to return the error to the caller of xfs_bwrite().
1057 	 */
1058 	xfs_buf_stale(bp);
1059 	XFS_BUF_DONE(bp);
1060 
1061 	trace_xfs_buf_error_relse(bp, _RET_IP_);
1062 
1063 do_callbacks:
1064 	xfs_buf_do_callbacks(bp);
1065 	bp->b_fspriv = NULL;
1066 	bp->b_iodone = NULL;
1067 	xfs_buf_ioend(bp, 0);
1068 }
1069 
1070 /*
1071  * This is the iodone() function for buffers which have been
1072  * logged.  It is called when they are eventually flushed out.
1073  * It should remove the buf item from the AIL, and free the buf item.
1074  * It is called by xfs_buf_iodone_callbacks() above which will take
1075  * care of cleaning up the buffer itself.
1076  */
1077 void
1078 xfs_buf_iodone(
1079 	struct xfs_buf		*bp,
1080 	struct xfs_log_item	*lip)
1081 {
1082 	struct xfs_ail		*ailp = lip->li_ailp;
1083 
1084 	ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1085 
1086 	xfs_buf_rele(bp);
1087 
1088 	/*
1089 	 * If we are forcibly shutting down, this may well be
1090 	 * off the AIL already. That's because we simulate the
1091 	 * log-committed callbacks to unpin these buffers. Or we may never
1092 	 * have put this item on AIL because of the transaction was
1093 	 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1094 	 *
1095 	 * Either way, AIL is useless if we're forcing a shutdown.
1096 	 */
1097 	spin_lock(&ailp->xa_lock);
1098 	xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
1099 	xfs_buf_item_free(BUF_ITEM(lip));
1100 }
1101