1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_trans.h" 24 #include "xfs_sb.h" 25 #include "xfs_ag.h" 26 #include "xfs_mount.h" 27 #include "xfs_buf_item.h" 28 #include "xfs_trans_priv.h" 29 #include "xfs_error.h" 30 #include "xfs_trace.h" 31 32 33 kmem_zone_t *xfs_buf_item_zone; 34 35 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip) 36 { 37 return container_of(lip, struct xfs_buf_log_item, bli_item); 38 } 39 40 STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp); 41 42 /* 43 * This returns the number of log iovecs needed to log the 44 * given buf log item. 45 * 46 * It calculates this as 1 iovec for the buf log format structure 47 * and 1 for each stretch of non-contiguous chunks to be logged. 48 * Contiguous chunks are logged in a single iovec. 49 * 50 * If the XFS_BLI_STALE flag has been set, then log nothing. 51 */ 52 STATIC uint 53 xfs_buf_item_size_segment( 54 struct xfs_buf_log_item *bip, 55 struct xfs_buf_log_format *blfp) 56 { 57 struct xfs_buf *bp = bip->bli_buf; 58 uint nvecs; 59 int next_bit; 60 int last_bit; 61 62 last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0); 63 if (last_bit == -1) 64 return 0; 65 66 /* 67 * initial count for a dirty buffer is 2 vectors - the format structure 68 * and the first dirty region. 69 */ 70 nvecs = 2; 71 72 while (last_bit != -1) { 73 /* 74 * This takes the bit number to start looking from and 75 * returns the next set bit from there. It returns -1 76 * if there are no more bits set or the start bit is 77 * beyond the end of the bitmap. 78 */ 79 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 80 last_bit + 1); 81 /* 82 * If we run out of bits, leave the loop, 83 * else if we find a new set of bits bump the number of vecs, 84 * else keep scanning the current set of bits. 85 */ 86 if (next_bit == -1) { 87 break; 88 } else if (next_bit != last_bit + 1) { 89 last_bit = next_bit; 90 nvecs++; 91 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) != 92 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) + 93 XFS_BLF_CHUNK)) { 94 last_bit = next_bit; 95 nvecs++; 96 } else { 97 last_bit++; 98 } 99 } 100 101 return nvecs; 102 } 103 104 /* 105 * This returns the number of log iovecs needed to log the given buf log item. 106 * 107 * It calculates this as 1 iovec for the buf log format structure and 1 for each 108 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged 109 * in a single iovec. 110 * 111 * Discontiguous buffers need a format structure per region that that is being 112 * logged. This makes the changes in the buffer appear to log recovery as though 113 * they came from separate buffers, just like would occur if multiple buffers 114 * were used instead of a single discontiguous buffer. This enables 115 * discontiguous buffers to be in-memory constructs, completely transparent to 116 * what ends up on disk. 117 * 118 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log 119 * format structures. 120 */ 121 STATIC uint 122 xfs_buf_item_size( 123 struct xfs_log_item *lip) 124 { 125 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 126 uint nvecs; 127 int i; 128 129 ASSERT(atomic_read(&bip->bli_refcount) > 0); 130 if (bip->bli_flags & XFS_BLI_STALE) { 131 /* 132 * The buffer is stale, so all we need to log 133 * is the buf log format structure with the 134 * cancel flag in it. 135 */ 136 trace_xfs_buf_item_size_stale(bip); 137 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 138 return bip->bli_format_count; 139 } 140 141 ASSERT(bip->bli_flags & XFS_BLI_LOGGED); 142 143 /* 144 * the vector count is based on the number of buffer vectors we have 145 * dirty bits in. This will only be greater than one when we have a 146 * compound buffer with more than one segment dirty. Hence for compound 147 * buffers we need to track which segment the dirty bits correspond to, 148 * and when we move from one segment to the next increment the vector 149 * count for the extra buf log format structure that will need to be 150 * written. 151 */ 152 nvecs = 0; 153 for (i = 0; i < bip->bli_format_count; i++) { 154 nvecs += xfs_buf_item_size_segment(bip, &bip->bli_formats[i]); 155 } 156 157 trace_xfs_buf_item_size(bip); 158 return nvecs; 159 } 160 161 static struct xfs_log_iovec * 162 xfs_buf_item_format_segment( 163 struct xfs_buf_log_item *bip, 164 struct xfs_log_iovec *vecp, 165 uint offset, 166 struct xfs_buf_log_format *blfp) 167 { 168 struct xfs_buf *bp = bip->bli_buf; 169 uint base_size; 170 uint nvecs; 171 int first_bit; 172 int last_bit; 173 int next_bit; 174 uint nbits; 175 uint buffer_offset; 176 177 /* copy the flags across from the base format item */ 178 blfp->blf_flags = bip->__bli_format.blf_flags; 179 180 /* 181 * Base size is the actual size of the ondisk structure - it reflects 182 * the actual size of the dirty bitmap rather than the size of the in 183 * memory structure. 184 */ 185 base_size = offsetof(struct xfs_buf_log_format, blf_data_map) + 186 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0])); 187 188 nvecs = 0; 189 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0); 190 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) { 191 /* 192 * If the map is not be dirty in the transaction, mark 193 * the size as zero and do not advance the vector pointer. 194 */ 195 goto out; 196 } 197 198 vecp->i_addr = blfp; 199 vecp->i_len = base_size; 200 vecp->i_type = XLOG_REG_TYPE_BFORMAT; 201 vecp++; 202 nvecs = 1; 203 204 if (bip->bli_flags & XFS_BLI_STALE) { 205 /* 206 * The buffer is stale, so all we need to log 207 * is the buf log format structure with the 208 * cancel flag in it. 209 */ 210 trace_xfs_buf_item_format_stale(bip); 211 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL); 212 goto out; 213 } 214 215 /* 216 * Fill in an iovec for each set of contiguous chunks. 217 */ 218 219 last_bit = first_bit; 220 nbits = 1; 221 for (;;) { 222 /* 223 * This takes the bit number to start looking from and 224 * returns the next set bit from there. It returns -1 225 * if there are no more bits set or the start bit is 226 * beyond the end of the bitmap. 227 */ 228 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 229 (uint)last_bit + 1); 230 /* 231 * If we run out of bits fill in the last iovec and get 232 * out of the loop. 233 * Else if we start a new set of bits then fill in the 234 * iovec for the series we were looking at and start 235 * counting the bits in the new one. 236 * Else we're still in the same set of bits so just 237 * keep counting and scanning. 238 */ 239 if (next_bit == -1) { 240 buffer_offset = offset + first_bit * XFS_BLF_CHUNK; 241 vecp->i_addr = xfs_buf_offset(bp, buffer_offset); 242 vecp->i_len = nbits * XFS_BLF_CHUNK; 243 vecp->i_type = XLOG_REG_TYPE_BCHUNK; 244 nvecs++; 245 break; 246 } else if (next_bit != last_bit + 1) { 247 buffer_offset = offset + first_bit * XFS_BLF_CHUNK; 248 vecp->i_addr = xfs_buf_offset(bp, buffer_offset); 249 vecp->i_len = nbits * XFS_BLF_CHUNK; 250 vecp->i_type = XLOG_REG_TYPE_BCHUNK; 251 nvecs++; 252 vecp++; 253 first_bit = next_bit; 254 last_bit = next_bit; 255 nbits = 1; 256 } else if (xfs_buf_offset(bp, offset + 257 (next_bit << XFS_BLF_SHIFT)) != 258 (xfs_buf_offset(bp, offset + 259 (last_bit << XFS_BLF_SHIFT)) + 260 XFS_BLF_CHUNK)) { 261 buffer_offset = offset + first_bit * XFS_BLF_CHUNK; 262 vecp->i_addr = xfs_buf_offset(bp, buffer_offset); 263 vecp->i_len = nbits * XFS_BLF_CHUNK; 264 vecp->i_type = XLOG_REG_TYPE_BCHUNK; 265 nvecs++; 266 vecp++; 267 first_bit = next_bit; 268 last_bit = next_bit; 269 nbits = 1; 270 } else { 271 last_bit++; 272 nbits++; 273 } 274 } 275 out: 276 blfp->blf_size = nvecs; 277 return vecp; 278 } 279 280 /* 281 * This is called to fill in the vector of log iovecs for the 282 * given log buf item. It fills the first entry with a buf log 283 * format structure, and the rest point to contiguous chunks 284 * within the buffer. 285 */ 286 STATIC void 287 xfs_buf_item_format( 288 struct xfs_log_item *lip, 289 struct xfs_log_iovec *vecp) 290 { 291 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 292 struct xfs_buf *bp = bip->bli_buf; 293 uint offset = 0; 294 int i; 295 296 ASSERT(atomic_read(&bip->bli_refcount) > 0); 297 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || 298 (bip->bli_flags & XFS_BLI_STALE)); 299 300 /* 301 * If it is an inode buffer, transfer the in-memory state to the 302 * format flags and clear the in-memory state. We do not transfer 303 * this state if the inode buffer allocation has not yet been committed 304 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent 305 * correct replay of the inode allocation. 306 */ 307 if (bip->bli_flags & XFS_BLI_INODE_BUF) { 308 if (!((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && 309 xfs_log_item_in_current_chkpt(lip))) 310 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF; 311 bip->bli_flags &= ~XFS_BLI_INODE_BUF; 312 } 313 314 for (i = 0; i < bip->bli_format_count; i++) { 315 vecp = xfs_buf_item_format_segment(bip, vecp, offset, 316 &bip->bli_formats[i]); 317 offset += bp->b_maps[i].bm_len; 318 } 319 320 /* 321 * Check to make sure everything is consistent. 322 */ 323 trace_xfs_buf_item_format(bip); 324 } 325 326 /* 327 * This is called to pin the buffer associated with the buf log item in memory 328 * so it cannot be written out. 329 * 330 * We also always take a reference to the buffer log item here so that the bli 331 * is held while the item is pinned in memory. This means that we can 332 * unconditionally drop the reference count a transaction holds when the 333 * transaction is completed. 334 */ 335 STATIC void 336 xfs_buf_item_pin( 337 struct xfs_log_item *lip) 338 { 339 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 340 341 ASSERT(atomic_read(&bip->bli_refcount) > 0); 342 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || 343 (bip->bli_flags & XFS_BLI_STALE)); 344 345 trace_xfs_buf_item_pin(bip); 346 347 atomic_inc(&bip->bli_refcount); 348 atomic_inc(&bip->bli_buf->b_pin_count); 349 } 350 351 /* 352 * This is called to unpin the buffer associated with the buf log 353 * item which was previously pinned with a call to xfs_buf_item_pin(). 354 * 355 * Also drop the reference to the buf item for the current transaction. 356 * If the XFS_BLI_STALE flag is set and we are the last reference, 357 * then free up the buf log item and unlock the buffer. 358 * 359 * If the remove flag is set we are called from uncommit in the 360 * forced-shutdown path. If that is true and the reference count on 361 * the log item is going to drop to zero we need to free the item's 362 * descriptor in the transaction. 363 */ 364 STATIC void 365 xfs_buf_item_unpin( 366 struct xfs_log_item *lip, 367 int remove) 368 { 369 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 370 xfs_buf_t *bp = bip->bli_buf; 371 struct xfs_ail *ailp = lip->li_ailp; 372 int stale = bip->bli_flags & XFS_BLI_STALE; 373 int freed; 374 375 ASSERT(bp->b_fspriv == bip); 376 ASSERT(atomic_read(&bip->bli_refcount) > 0); 377 378 trace_xfs_buf_item_unpin(bip); 379 380 freed = atomic_dec_and_test(&bip->bli_refcount); 381 382 if (atomic_dec_and_test(&bp->b_pin_count)) 383 wake_up_all(&bp->b_waiters); 384 385 if (freed && stale) { 386 ASSERT(bip->bli_flags & XFS_BLI_STALE); 387 ASSERT(xfs_buf_islocked(bp)); 388 ASSERT(XFS_BUF_ISSTALE(bp)); 389 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 390 391 trace_xfs_buf_item_unpin_stale(bip); 392 393 if (remove) { 394 /* 395 * If we are in a transaction context, we have to 396 * remove the log item from the transaction as we are 397 * about to release our reference to the buffer. If we 398 * don't, the unlock that occurs later in 399 * xfs_trans_uncommit() will try to reference the 400 * buffer which we no longer have a hold on. 401 */ 402 if (lip->li_desc) 403 xfs_trans_del_item(lip); 404 405 /* 406 * Since the transaction no longer refers to the buffer, 407 * the buffer should no longer refer to the transaction. 408 */ 409 bp->b_transp = NULL; 410 } 411 412 /* 413 * If we get called here because of an IO error, we may 414 * or may not have the item on the AIL. xfs_trans_ail_delete() 415 * will take care of that situation. 416 * xfs_trans_ail_delete() drops the AIL lock. 417 */ 418 if (bip->bli_flags & XFS_BLI_STALE_INODE) { 419 xfs_buf_do_callbacks(bp); 420 bp->b_fspriv = NULL; 421 bp->b_iodone = NULL; 422 } else { 423 spin_lock(&ailp->xa_lock); 424 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR); 425 xfs_buf_item_relse(bp); 426 ASSERT(bp->b_fspriv == NULL); 427 } 428 xfs_buf_relse(bp); 429 } else if (freed && remove) { 430 /* 431 * There are currently two references to the buffer - the active 432 * LRU reference and the buf log item. What we are about to do 433 * here - simulate a failed IO completion - requires 3 434 * references. 435 * 436 * The LRU reference is removed by the xfs_buf_stale() call. The 437 * buf item reference is removed by the xfs_buf_iodone() 438 * callback that is run by xfs_buf_do_callbacks() during ioend 439 * processing (via the bp->b_iodone callback), and then finally 440 * the ioend processing will drop the IO reference if the buffer 441 * is marked XBF_ASYNC. 442 * 443 * Hence we need to take an additional reference here so that IO 444 * completion processing doesn't free the buffer prematurely. 445 */ 446 xfs_buf_lock(bp); 447 xfs_buf_hold(bp); 448 bp->b_flags |= XBF_ASYNC; 449 xfs_buf_ioerror(bp, EIO); 450 XFS_BUF_UNDONE(bp); 451 xfs_buf_stale(bp); 452 xfs_buf_ioend(bp, 0); 453 } 454 } 455 456 STATIC uint 457 xfs_buf_item_push( 458 struct xfs_log_item *lip, 459 struct list_head *buffer_list) 460 { 461 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 462 struct xfs_buf *bp = bip->bli_buf; 463 uint rval = XFS_ITEM_SUCCESS; 464 465 if (xfs_buf_ispinned(bp)) 466 return XFS_ITEM_PINNED; 467 if (!xfs_buf_trylock(bp)) { 468 /* 469 * If we have just raced with a buffer being pinned and it has 470 * been marked stale, we could end up stalling until someone else 471 * issues a log force to unpin the stale buffer. Check for the 472 * race condition here so xfsaild recognizes the buffer is pinned 473 * and queues a log force to move it along. 474 */ 475 if (xfs_buf_ispinned(bp)) 476 return XFS_ITEM_PINNED; 477 return XFS_ITEM_LOCKED; 478 } 479 480 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 481 482 trace_xfs_buf_item_push(bip); 483 484 if (!xfs_buf_delwri_queue(bp, buffer_list)) 485 rval = XFS_ITEM_FLUSHING; 486 xfs_buf_unlock(bp); 487 return rval; 488 } 489 490 /* 491 * Release the buffer associated with the buf log item. If there is no dirty 492 * logged data associated with the buffer recorded in the buf log item, then 493 * free the buf log item and remove the reference to it in the buffer. 494 * 495 * This call ignores the recursion count. It is only called when the buffer 496 * should REALLY be unlocked, regardless of the recursion count. 497 * 498 * We unconditionally drop the transaction's reference to the log item. If the 499 * item was logged, then another reference was taken when it was pinned, so we 500 * can safely drop the transaction reference now. This also allows us to avoid 501 * potential races with the unpin code freeing the bli by not referencing the 502 * bli after we've dropped the reference count. 503 * 504 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item 505 * if necessary but do not unlock the buffer. This is for support of 506 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't 507 * free the item. 508 */ 509 STATIC void 510 xfs_buf_item_unlock( 511 struct xfs_log_item *lip) 512 { 513 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 514 struct xfs_buf *bp = bip->bli_buf; 515 int aborted, clean, i; 516 uint hold; 517 518 /* Clear the buffer's association with this transaction. */ 519 bp->b_transp = NULL; 520 521 /* 522 * If this is a transaction abort, don't return early. Instead, allow 523 * the brelse to happen. Normally it would be done for stale 524 * (cancelled) buffers at unpin time, but we'll never go through the 525 * pin/unpin cycle if we abort inside commit. 526 */ 527 aborted = (lip->li_flags & XFS_LI_ABORTED) != 0; 528 529 /* 530 * Before possibly freeing the buf item, determine if we should 531 * release the buffer at the end of this routine. 532 */ 533 hold = bip->bli_flags & XFS_BLI_HOLD; 534 535 /* Clear the per transaction state. */ 536 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD); 537 538 /* 539 * If the buf item is marked stale, then don't do anything. We'll 540 * unlock the buffer and free the buf item when the buffer is unpinned 541 * for the last time. 542 */ 543 if (bip->bli_flags & XFS_BLI_STALE) { 544 trace_xfs_buf_item_unlock_stale(bip); 545 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 546 if (!aborted) { 547 atomic_dec(&bip->bli_refcount); 548 return; 549 } 550 } 551 552 trace_xfs_buf_item_unlock(bip); 553 554 /* 555 * If the buf item isn't tracking any data, free it, otherwise drop the 556 * reference we hold to it. If we are aborting the transaction, this may 557 * be the only reference to the buf item, so we free it anyway 558 * regardless of whether it is dirty or not. A dirty abort implies a 559 * shutdown, anyway. 560 */ 561 clean = 1; 562 for (i = 0; i < bip->bli_format_count; i++) { 563 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map, 564 bip->bli_formats[i].blf_map_size)) { 565 clean = 0; 566 break; 567 } 568 } 569 if (clean) 570 xfs_buf_item_relse(bp); 571 else if (aborted) { 572 if (atomic_dec_and_test(&bip->bli_refcount)) { 573 ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp)); 574 xfs_buf_item_relse(bp); 575 } 576 } else 577 atomic_dec(&bip->bli_refcount); 578 579 if (!hold) 580 xfs_buf_relse(bp); 581 } 582 583 /* 584 * This is called to find out where the oldest active copy of the 585 * buf log item in the on disk log resides now that the last log 586 * write of it completed at the given lsn. 587 * We always re-log all the dirty data in a buffer, so usually the 588 * latest copy in the on disk log is the only one that matters. For 589 * those cases we simply return the given lsn. 590 * 591 * The one exception to this is for buffers full of newly allocated 592 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF 593 * flag set, indicating that only the di_next_unlinked fields from the 594 * inodes in the buffers will be replayed during recovery. If the 595 * original newly allocated inode images have not yet been flushed 596 * when the buffer is so relogged, then we need to make sure that we 597 * keep the old images in the 'active' portion of the log. We do this 598 * by returning the original lsn of that transaction here rather than 599 * the current one. 600 */ 601 STATIC xfs_lsn_t 602 xfs_buf_item_committed( 603 struct xfs_log_item *lip, 604 xfs_lsn_t lsn) 605 { 606 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 607 608 trace_xfs_buf_item_committed(bip); 609 610 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0) 611 return lip->li_lsn; 612 return lsn; 613 } 614 615 STATIC void 616 xfs_buf_item_committing( 617 struct xfs_log_item *lip, 618 xfs_lsn_t commit_lsn) 619 { 620 } 621 622 /* 623 * This is the ops vector shared by all buf log items. 624 */ 625 static const struct xfs_item_ops xfs_buf_item_ops = { 626 .iop_size = xfs_buf_item_size, 627 .iop_format = xfs_buf_item_format, 628 .iop_pin = xfs_buf_item_pin, 629 .iop_unpin = xfs_buf_item_unpin, 630 .iop_unlock = xfs_buf_item_unlock, 631 .iop_committed = xfs_buf_item_committed, 632 .iop_push = xfs_buf_item_push, 633 .iop_committing = xfs_buf_item_committing 634 }; 635 636 STATIC int 637 xfs_buf_item_get_format( 638 struct xfs_buf_log_item *bip, 639 int count) 640 { 641 ASSERT(bip->bli_formats == NULL); 642 bip->bli_format_count = count; 643 644 if (count == 1) { 645 bip->bli_formats = &bip->__bli_format; 646 return 0; 647 } 648 649 bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format), 650 KM_SLEEP); 651 if (!bip->bli_formats) 652 return ENOMEM; 653 return 0; 654 } 655 656 STATIC void 657 xfs_buf_item_free_format( 658 struct xfs_buf_log_item *bip) 659 { 660 if (bip->bli_formats != &bip->__bli_format) { 661 kmem_free(bip->bli_formats); 662 bip->bli_formats = NULL; 663 } 664 } 665 666 /* 667 * Allocate a new buf log item to go with the given buffer. 668 * Set the buffer's b_fsprivate field to point to the new 669 * buf log item. If there are other item's attached to the 670 * buffer (see xfs_buf_attach_iodone() below), then put the 671 * buf log item at the front. 672 */ 673 void 674 xfs_buf_item_init( 675 xfs_buf_t *bp, 676 xfs_mount_t *mp) 677 { 678 xfs_log_item_t *lip = bp->b_fspriv; 679 xfs_buf_log_item_t *bip; 680 int chunks; 681 int map_size; 682 int error; 683 int i; 684 685 /* 686 * Check to see if there is already a buf log item for 687 * this buffer. If there is, it is guaranteed to be 688 * the first. If we do already have one, there is 689 * nothing to do here so return. 690 */ 691 ASSERT(bp->b_target->bt_mount == mp); 692 if (lip != NULL && lip->li_type == XFS_LI_BUF) 693 return; 694 695 bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP); 696 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops); 697 bip->bli_buf = bp; 698 xfs_buf_hold(bp); 699 700 /* 701 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer 702 * can be divided into. Make sure not to truncate any pieces. 703 * map_size is the size of the bitmap needed to describe the 704 * chunks of the buffer. 705 * 706 * Discontiguous buffer support follows the layout of the underlying 707 * buffer. This makes the implementation as simple as possible. 708 */ 709 error = xfs_buf_item_get_format(bip, bp->b_map_count); 710 ASSERT(error == 0); 711 712 for (i = 0; i < bip->bli_format_count; i++) { 713 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len), 714 XFS_BLF_CHUNK); 715 map_size = DIV_ROUND_UP(chunks, NBWORD); 716 717 bip->bli_formats[i].blf_type = XFS_LI_BUF; 718 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn; 719 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len; 720 bip->bli_formats[i].blf_map_size = map_size; 721 } 722 723 #ifdef XFS_TRANS_DEBUG 724 /* 725 * Allocate the arrays for tracking what needs to be logged 726 * and what our callers request to be logged. bli_orig 727 * holds a copy of the original, clean buffer for comparison 728 * against, and bli_logged keeps a 1 bit flag per byte in 729 * the buffer to indicate which bytes the callers have asked 730 * to have logged. 731 */ 732 bip->bli_orig = kmem_alloc(BBTOB(bp->b_length), KM_SLEEP); 733 memcpy(bip->bli_orig, bp->b_addr, BBTOB(bp->b_length)); 734 bip->bli_logged = kmem_zalloc(BBTOB(bp->b_length) / NBBY, KM_SLEEP); 735 #endif 736 737 /* 738 * Put the buf item into the list of items attached to the 739 * buffer at the front. 740 */ 741 if (bp->b_fspriv) 742 bip->bli_item.li_bio_list = bp->b_fspriv; 743 bp->b_fspriv = bip; 744 } 745 746 747 /* 748 * Mark bytes first through last inclusive as dirty in the buf 749 * item's bitmap. 750 */ 751 void 752 xfs_buf_item_log_segment( 753 struct xfs_buf_log_item *bip, 754 uint first, 755 uint last, 756 uint *map) 757 { 758 uint first_bit; 759 uint last_bit; 760 uint bits_to_set; 761 uint bits_set; 762 uint word_num; 763 uint *wordp; 764 uint bit; 765 uint end_bit; 766 uint mask; 767 768 /* 769 * Convert byte offsets to bit numbers. 770 */ 771 first_bit = first >> XFS_BLF_SHIFT; 772 last_bit = last >> XFS_BLF_SHIFT; 773 774 /* 775 * Calculate the total number of bits to be set. 776 */ 777 bits_to_set = last_bit - first_bit + 1; 778 779 /* 780 * Get a pointer to the first word in the bitmap 781 * to set a bit in. 782 */ 783 word_num = first_bit >> BIT_TO_WORD_SHIFT; 784 wordp = &map[word_num]; 785 786 /* 787 * Calculate the starting bit in the first word. 788 */ 789 bit = first_bit & (uint)(NBWORD - 1); 790 791 /* 792 * First set any bits in the first word of our range. 793 * If it starts at bit 0 of the word, it will be 794 * set below rather than here. That is what the variable 795 * bit tells us. The variable bits_set tracks the number 796 * of bits that have been set so far. End_bit is the number 797 * of the last bit to be set in this word plus one. 798 */ 799 if (bit) { 800 end_bit = MIN(bit + bits_to_set, (uint)NBWORD); 801 mask = ((1 << (end_bit - bit)) - 1) << bit; 802 *wordp |= mask; 803 wordp++; 804 bits_set = end_bit - bit; 805 } else { 806 bits_set = 0; 807 } 808 809 /* 810 * Now set bits a whole word at a time that are between 811 * first_bit and last_bit. 812 */ 813 while ((bits_to_set - bits_set) >= NBWORD) { 814 *wordp |= 0xffffffff; 815 bits_set += NBWORD; 816 wordp++; 817 } 818 819 /* 820 * Finally, set any bits left to be set in one last partial word. 821 */ 822 end_bit = bits_to_set - bits_set; 823 if (end_bit) { 824 mask = (1 << end_bit) - 1; 825 *wordp |= mask; 826 } 827 } 828 829 /* 830 * Mark bytes first through last inclusive as dirty in the buf 831 * item's bitmap. 832 */ 833 void 834 xfs_buf_item_log( 835 xfs_buf_log_item_t *bip, 836 uint first, 837 uint last) 838 { 839 int i; 840 uint start; 841 uint end; 842 struct xfs_buf *bp = bip->bli_buf; 843 844 /* 845 * Mark the item as having some dirty data for 846 * quick reference in xfs_buf_item_dirty. 847 */ 848 bip->bli_flags |= XFS_BLI_DIRTY; 849 850 /* 851 * walk each buffer segment and mark them dirty appropriately. 852 */ 853 start = 0; 854 for (i = 0; i < bip->bli_format_count; i++) { 855 if (start > last) 856 break; 857 end = start + BBTOB(bp->b_maps[i].bm_len); 858 if (first > end) { 859 start += BBTOB(bp->b_maps[i].bm_len); 860 continue; 861 } 862 if (first < start) 863 first = start; 864 if (end > last) 865 end = last; 866 867 xfs_buf_item_log_segment(bip, first, end, 868 &bip->bli_formats[i].blf_data_map[0]); 869 870 start += bp->b_maps[i].bm_len; 871 } 872 } 873 874 875 /* 876 * Return 1 if the buffer has some data that has been logged (at any 877 * point, not just the current transaction) and 0 if not. 878 */ 879 uint 880 xfs_buf_item_dirty( 881 xfs_buf_log_item_t *bip) 882 { 883 return (bip->bli_flags & XFS_BLI_DIRTY); 884 } 885 886 STATIC void 887 xfs_buf_item_free( 888 xfs_buf_log_item_t *bip) 889 { 890 #ifdef XFS_TRANS_DEBUG 891 kmem_free(bip->bli_orig); 892 kmem_free(bip->bli_logged); 893 #endif /* XFS_TRANS_DEBUG */ 894 895 xfs_buf_item_free_format(bip); 896 kmem_zone_free(xfs_buf_item_zone, bip); 897 } 898 899 /* 900 * This is called when the buf log item is no longer needed. It should 901 * free the buf log item associated with the given buffer and clear 902 * the buffer's pointer to the buf log item. If there are no more 903 * items in the list, clear the b_iodone field of the buffer (see 904 * xfs_buf_attach_iodone() below). 905 */ 906 void 907 xfs_buf_item_relse( 908 xfs_buf_t *bp) 909 { 910 xfs_buf_log_item_t *bip; 911 912 trace_xfs_buf_item_relse(bp, _RET_IP_); 913 914 bip = bp->b_fspriv; 915 bp->b_fspriv = bip->bli_item.li_bio_list; 916 if (bp->b_fspriv == NULL) 917 bp->b_iodone = NULL; 918 919 xfs_buf_rele(bp); 920 xfs_buf_item_free(bip); 921 } 922 923 924 /* 925 * Add the given log item with its callback to the list of callbacks 926 * to be called when the buffer's I/O completes. If it is not set 927 * already, set the buffer's b_iodone() routine to be 928 * xfs_buf_iodone_callbacks() and link the log item into the list of 929 * items rooted at b_fsprivate. Items are always added as the second 930 * entry in the list if there is a first, because the buf item code 931 * assumes that the buf log item is first. 932 */ 933 void 934 xfs_buf_attach_iodone( 935 xfs_buf_t *bp, 936 void (*cb)(xfs_buf_t *, xfs_log_item_t *), 937 xfs_log_item_t *lip) 938 { 939 xfs_log_item_t *head_lip; 940 941 ASSERT(xfs_buf_islocked(bp)); 942 943 lip->li_cb = cb; 944 head_lip = bp->b_fspriv; 945 if (head_lip) { 946 lip->li_bio_list = head_lip->li_bio_list; 947 head_lip->li_bio_list = lip; 948 } else { 949 bp->b_fspriv = lip; 950 } 951 952 ASSERT(bp->b_iodone == NULL || 953 bp->b_iodone == xfs_buf_iodone_callbacks); 954 bp->b_iodone = xfs_buf_iodone_callbacks; 955 } 956 957 /* 958 * We can have many callbacks on a buffer. Running the callbacks individually 959 * can cause a lot of contention on the AIL lock, so we allow for a single 960 * callback to be able to scan the remaining lip->li_bio_list for other items 961 * of the same type and callback to be processed in the first call. 962 * 963 * As a result, the loop walking the callback list below will also modify the 964 * list. it removes the first item from the list and then runs the callback. 965 * The loop then restarts from the new head of the list. This allows the 966 * callback to scan and modify the list attached to the buffer and we don't 967 * have to care about maintaining a next item pointer. 968 */ 969 STATIC void 970 xfs_buf_do_callbacks( 971 struct xfs_buf *bp) 972 { 973 struct xfs_log_item *lip; 974 975 while ((lip = bp->b_fspriv) != NULL) { 976 bp->b_fspriv = lip->li_bio_list; 977 ASSERT(lip->li_cb != NULL); 978 /* 979 * Clear the next pointer so we don't have any 980 * confusion if the item is added to another buf. 981 * Don't touch the log item after calling its 982 * callback, because it could have freed itself. 983 */ 984 lip->li_bio_list = NULL; 985 lip->li_cb(bp, lip); 986 } 987 } 988 989 /* 990 * This is the iodone() function for buffers which have had callbacks 991 * attached to them by xfs_buf_attach_iodone(). It should remove each 992 * log item from the buffer's list and call the callback of each in turn. 993 * When done, the buffer's fsprivate field is set to NULL and the buffer 994 * is unlocked with a call to iodone(). 995 */ 996 void 997 xfs_buf_iodone_callbacks( 998 struct xfs_buf *bp) 999 { 1000 struct xfs_log_item *lip = bp->b_fspriv; 1001 struct xfs_mount *mp = lip->li_mountp; 1002 static ulong lasttime; 1003 static xfs_buftarg_t *lasttarg; 1004 1005 if (likely(!xfs_buf_geterror(bp))) 1006 goto do_callbacks; 1007 1008 /* 1009 * If we've already decided to shutdown the filesystem because of 1010 * I/O errors, there's no point in giving this a retry. 1011 */ 1012 if (XFS_FORCED_SHUTDOWN(mp)) { 1013 xfs_buf_stale(bp); 1014 XFS_BUF_DONE(bp); 1015 trace_xfs_buf_item_iodone(bp, _RET_IP_); 1016 goto do_callbacks; 1017 } 1018 1019 if (bp->b_target != lasttarg || 1020 time_after(jiffies, (lasttime + 5*HZ))) { 1021 lasttime = jiffies; 1022 xfs_buf_ioerror_alert(bp, __func__); 1023 } 1024 lasttarg = bp->b_target; 1025 1026 /* 1027 * If the write was asynchronous then no one will be looking for the 1028 * error. Clear the error state and write the buffer out again. 1029 * 1030 * XXX: This helps against transient write errors, but we need to find 1031 * a way to shut the filesystem down if the writes keep failing. 1032 * 1033 * In practice we'll shut the filesystem down soon as non-transient 1034 * erorrs tend to affect the whole device and a failing log write 1035 * will make us give up. But we really ought to do better here. 1036 */ 1037 if (XFS_BUF_ISASYNC(bp)) { 1038 ASSERT(bp->b_iodone != NULL); 1039 1040 trace_xfs_buf_item_iodone_async(bp, _RET_IP_); 1041 1042 xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */ 1043 1044 if (!XFS_BUF_ISSTALE(bp)) { 1045 bp->b_flags |= XBF_WRITE | XBF_ASYNC | XBF_DONE; 1046 xfs_buf_iorequest(bp); 1047 } else { 1048 xfs_buf_relse(bp); 1049 } 1050 1051 return; 1052 } 1053 1054 /* 1055 * If the write of the buffer was synchronous, we want to make 1056 * sure to return the error to the caller of xfs_bwrite(). 1057 */ 1058 xfs_buf_stale(bp); 1059 XFS_BUF_DONE(bp); 1060 1061 trace_xfs_buf_error_relse(bp, _RET_IP_); 1062 1063 do_callbacks: 1064 xfs_buf_do_callbacks(bp); 1065 bp->b_fspriv = NULL; 1066 bp->b_iodone = NULL; 1067 xfs_buf_ioend(bp, 0); 1068 } 1069 1070 /* 1071 * This is the iodone() function for buffers which have been 1072 * logged. It is called when they are eventually flushed out. 1073 * It should remove the buf item from the AIL, and free the buf item. 1074 * It is called by xfs_buf_iodone_callbacks() above which will take 1075 * care of cleaning up the buffer itself. 1076 */ 1077 void 1078 xfs_buf_iodone( 1079 struct xfs_buf *bp, 1080 struct xfs_log_item *lip) 1081 { 1082 struct xfs_ail *ailp = lip->li_ailp; 1083 1084 ASSERT(BUF_ITEM(lip)->bli_buf == bp); 1085 1086 xfs_buf_rele(bp); 1087 1088 /* 1089 * If we are forcibly shutting down, this may well be 1090 * off the AIL already. That's because we simulate the 1091 * log-committed callbacks to unpin these buffers. Or we may never 1092 * have put this item on AIL because of the transaction was 1093 * aborted forcibly. xfs_trans_ail_delete() takes care of these. 1094 * 1095 * Either way, AIL is useless if we're forcing a shutdown. 1096 */ 1097 spin_lock(&ailp->xa_lock); 1098 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE); 1099 xfs_buf_item_free(BUF_ITEM(lip)); 1100 } 1101