xref: /openbmc/linux/fs/xfs/xfs_buf_item.c (revision e23feb16)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_error.h"
30 #include "xfs_trace.h"
31 
32 
33 kmem_zone_t	*xfs_buf_item_zone;
34 
35 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
36 {
37 	return container_of(lip, struct xfs_buf_log_item, bli_item);
38 }
39 
40 STATIC void	xfs_buf_do_callbacks(struct xfs_buf *bp);
41 
42 static inline int
43 xfs_buf_log_format_size(
44 	struct xfs_buf_log_format *blfp)
45 {
46 	return offsetof(struct xfs_buf_log_format, blf_data_map) +
47 			(blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
48 }
49 
50 /*
51  * This returns the number of log iovecs needed to log the
52  * given buf log item.
53  *
54  * It calculates this as 1 iovec for the buf log format structure
55  * and 1 for each stretch of non-contiguous chunks to be logged.
56  * Contiguous chunks are logged in a single iovec.
57  *
58  * If the XFS_BLI_STALE flag has been set, then log nothing.
59  */
60 STATIC void
61 xfs_buf_item_size_segment(
62 	struct xfs_buf_log_item	*bip,
63 	struct xfs_buf_log_format *blfp,
64 	int			*nvecs,
65 	int			*nbytes)
66 {
67 	struct xfs_buf		*bp = bip->bli_buf;
68 	int			next_bit;
69 	int			last_bit;
70 
71 	last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
72 	if (last_bit == -1)
73 		return;
74 
75 	/*
76 	 * initial count for a dirty buffer is 2 vectors - the format structure
77 	 * and the first dirty region.
78 	 */
79 	*nvecs += 2;
80 	*nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
81 
82 	while (last_bit != -1) {
83 		/*
84 		 * This takes the bit number to start looking from and
85 		 * returns the next set bit from there.  It returns -1
86 		 * if there are no more bits set or the start bit is
87 		 * beyond the end of the bitmap.
88 		 */
89 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
90 					last_bit + 1);
91 		/*
92 		 * If we run out of bits, leave the loop,
93 		 * else if we find a new set of bits bump the number of vecs,
94 		 * else keep scanning the current set of bits.
95 		 */
96 		if (next_bit == -1) {
97 			break;
98 		} else if (next_bit != last_bit + 1) {
99 			last_bit = next_bit;
100 			(*nvecs)++;
101 		} else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
102 			   (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
103 			    XFS_BLF_CHUNK)) {
104 			last_bit = next_bit;
105 			(*nvecs)++;
106 		} else {
107 			last_bit++;
108 		}
109 		*nbytes += XFS_BLF_CHUNK;
110 	}
111 }
112 
113 /*
114  * This returns the number of log iovecs needed to log the given buf log item.
115  *
116  * It calculates this as 1 iovec for the buf log format structure and 1 for each
117  * stretch of non-contiguous chunks to be logged.  Contiguous chunks are logged
118  * in a single iovec.
119  *
120  * Discontiguous buffers need a format structure per region that that is being
121  * logged. This makes the changes in the buffer appear to log recovery as though
122  * they came from separate buffers, just like would occur if multiple buffers
123  * were used instead of a single discontiguous buffer. This enables
124  * discontiguous buffers to be in-memory constructs, completely transparent to
125  * what ends up on disk.
126  *
127  * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
128  * format structures.
129  */
130 STATIC void
131 xfs_buf_item_size(
132 	struct xfs_log_item	*lip,
133 	int			*nvecs,
134 	int			*nbytes)
135 {
136 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
137 	int			i;
138 
139 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
140 	if (bip->bli_flags & XFS_BLI_STALE) {
141 		/*
142 		 * The buffer is stale, so all we need to log
143 		 * is the buf log format structure with the
144 		 * cancel flag in it.
145 		 */
146 		trace_xfs_buf_item_size_stale(bip);
147 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
148 		*nvecs += bip->bli_format_count;
149 		for (i = 0; i < bip->bli_format_count; i++) {
150 			*nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
151 		}
152 		return;
153 	}
154 
155 	ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
156 
157 	if (bip->bli_flags & XFS_BLI_ORDERED) {
158 		/*
159 		 * The buffer has been logged just to order it.
160 		 * It is not being included in the transaction
161 		 * commit, so no vectors are used at all.
162 		 */
163 		trace_xfs_buf_item_size_ordered(bip);
164 		*nvecs = XFS_LOG_VEC_ORDERED;
165 		return;
166 	}
167 
168 	/*
169 	 * the vector count is based on the number of buffer vectors we have
170 	 * dirty bits in. This will only be greater than one when we have a
171 	 * compound buffer with more than one segment dirty. Hence for compound
172 	 * buffers we need to track which segment the dirty bits correspond to,
173 	 * and when we move from one segment to the next increment the vector
174 	 * count for the extra buf log format structure that will need to be
175 	 * written.
176 	 */
177 	for (i = 0; i < bip->bli_format_count; i++) {
178 		xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
179 					  nvecs, nbytes);
180 	}
181 	trace_xfs_buf_item_size(bip);
182 }
183 
184 static struct xfs_log_iovec *
185 xfs_buf_item_format_segment(
186 	struct xfs_buf_log_item	*bip,
187 	struct xfs_log_iovec	*vecp,
188 	uint			offset,
189 	struct xfs_buf_log_format *blfp)
190 {
191 	struct xfs_buf	*bp = bip->bli_buf;
192 	uint		base_size;
193 	uint		nvecs;
194 	int		first_bit;
195 	int		last_bit;
196 	int		next_bit;
197 	uint		nbits;
198 	uint		buffer_offset;
199 
200 	/* copy the flags across from the base format item */
201 	blfp->blf_flags = bip->__bli_format.blf_flags;
202 
203 	/*
204 	 * Base size is the actual size of the ondisk structure - it reflects
205 	 * the actual size of the dirty bitmap rather than the size of the in
206 	 * memory structure.
207 	 */
208 	base_size = xfs_buf_log_format_size(blfp);
209 
210 	nvecs = 0;
211 	first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
212 	if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
213 		/*
214 		 * If the map is not be dirty in the transaction, mark
215 		 * the size as zero and do not advance the vector pointer.
216 		 */
217 		goto out;
218 	}
219 
220 	vecp->i_addr = blfp;
221 	vecp->i_len = base_size;
222 	vecp->i_type = XLOG_REG_TYPE_BFORMAT;
223 	vecp++;
224 	nvecs = 1;
225 
226 	if (bip->bli_flags & XFS_BLI_STALE) {
227 		/*
228 		 * The buffer is stale, so all we need to log
229 		 * is the buf log format structure with the
230 		 * cancel flag in it.
231 		 */
232 		trace_xfs_buf_item_format_stale(bip);
233 		ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
234 		goto out;
235 	}
236 
237 
238 	/*
239 	 * Fill in an iovec for each set of contiguous chunks.
240 	 */
241 
242 	last_bit = first_bit;
243 	nbits = 1;
244 	for (;;) {
245 		/*
246 		 * This takes the bit number to start looking from and
247 		 * returns the next set bit from there.  It returns -1
248 		 * if there are no more bits set or the start bit is
249 		 * beyond the end of the bitmap.
250 		 */
251 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
252 					(uint)last_bit + 1);
253 		/*
254 		 * If we run out of bits fill in the last iovec and get
255 		 * out of the loop.
256 		 * Else if we start a new set of bits then fill in the
257 		 * iovec for the series we were looking at and start
258 		 * counting the bits in the new one.
259 		 * Else we're still in the same set of bits so just
260 		 * keep counting and scanning.
261 		 */
262 		if (next_bit == -1) {
263 			buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
264 			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
265 			vecp->i_len = nbits * XFS_BLF_CHUNK;
266 			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
267 			nvecs++;
268 			break;
269 		} else if (next_bit != last_bit + 1) {
270 			buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
271 			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
272 			vecp->i_len = nbits * XFS_BLF_CHUNK;
273 			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
274 			nvecs++;
275 			vecp++;
276 			first_bit = next_bit;
277 			last_bit = next_bit;
278 			nbits = 1;
279 		} else if (xfs_buf_offset(bp, offset +
280 					      (next_bit << XFS_BLF_SHIFT)) !=
281 			   (xfs_buf_offset(bp, offset +
282 					       (last_bit << XFS_BLF_SHIFT)) +
283 			    XFS_BLF_CHUNK)) {
284 			buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
285 			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
286 			vecp->i_len = nbits * XFS_BLF_CHUNK;
287 			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
288 			nvecs++;
289 			vecp++;
290 			first_bit = next_bit;
291 			last_bit = next_bit;
292 			nbits = 1;
293 		} else {
294 			last_bit++;
295 			nbits++;
296 		}
297 	}
298 out:
299 	blfp->blf_size = nvecs;
300 	return vecp;
301 }
302 
303 /*
304  * This is called to fill in the vector of log iovecs for the
305  * given log buf item.  It fills the first entry with a buf log
306  * format structure, and the rest point to contiguous chunks
307  * within the buffer.
308  */
309 STATIC void
310 xfs_buf_item_format(
311 	struct xfs_log_item	*lip,
312 	struct xfs_log_iovec	*vecp)
313 {
314 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
315 	struct xfs_buf		*bp = bip->bli_buf;
316 	uint			offset = 0;
317 	int			i;
318 
319 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
320 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
321 	       (bip->bli_flags & XFS_BLI_STALE));
322 
323 	/*
324 	 * If it is an inode buffer, transfer the in-memory state to the
325 	 * format flags and clear the in-memory state.
326 	 *
327 	 * For buffer based inode allocation, we do not transfer
328 	 * this state if the inode buffer allocation has not yet been committed
329 	 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
330 	 * correct replay of the inode allocation.
331 	 *
332 	 * For icreate item based inode allocation, the buffers aren't written
333 	 * to the journal during allocation, and hence we should always tag the
334 	 * buffer as an inode buffer so that the correct unlinked list replay
335 	 * occurs during recovery.
336 	 */
337 	if (bip->bli_flags & XFS_BLI_INODE_BUF) {
338 		if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) ||
339 		    !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
340 		      xfs_log_item_in_current_chkpt(lip)))
341 			bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
342 		bip->bli_flags &= ~XFS_BLI_INODE_BUF;
343 	}
344 
345 	if ((bip->bli_flags & (XFS_BLI_ORDERED|XFS_BLI_STALE)) ==
346 							XFS_BLI_ORDERED) {
347 		/*
348 		 * The buffer has been logged just to order it.  It is not being
349 		 * included in the transaction commit, so don't format it.
350 		 */
351 		trace_xfs_buf_item_format_ordered(bip);
352 		return;
353 	}
354 
355 	for (i = 0; i < bip->bli_format_count; i++) {
356 		vecp = xfs_buf_item_format_segment(bip, vecp, offset,
357 						&bip->bli_formats[i]);
358 		offset += bp->b_maps[i].bm_len;
359 	}
360 
361 	/*
362 	 * Check to make sure everything is consistent.
363 	 */
364 	trace_xfs_buf_item_format(bip);
365 }
366 
367 /*
368  * This is called to pin the buffer associated with the buf log item in memory
369  * so it cannot be written out.
370  *
371  * We also always take a reference to the buffer log item here so that the bli
372  * is held while the item is pinned in memory. This means that we can
373  * unconditionally drop the reference count a transaction holds when the
374  * transaction is completed.
375  */
376 STATIC void
377 xfs_buf_item_pin(
378 	struct xfs_log_item	*lip)
379 {
380 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
381 
382 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
383 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
384 	       (bip->bli_flags & XFS_BLI_ORDERED) ||
385 	       (bip->bli_flags & XFS_BLI_STALE));
386 
387 	trace_xfs_buf_item_pin(bip);
388 
389 	atomic_inc(&bip->bli_refcount);
390 	atomic_inc(&bip->bli_buf->b_pin_count);
391 }
392 
393 /*
394  * This is called to unpin the buffer associated with the buf log
395  * item which was previously pinned with a call to xfs_buf_item_pin().
396  *
397  * Also drop the reference to the buf item for the current transaction.
398  * If the XFS_BLI_STALE flag is set and we are the last reference,
399  * then free up the buf log item and unlock the buffer.
400  *
401  * If the remove flag is set we are called from uncommit in the
402  * forced-shutdown path.  If that is true and the reference count on
403  * the log item is going to drop to zero we need to free the item's
404  * descriptor in the transaction.
405  */
406 STATIC void
407 xfs_buf_item_unpin(
408 	struct xfs_log_item	*lip,
409 	int			remove)
410 {
411 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
412 	xfs_buf_t	*bp = bip->bli_buf;
413 	struct xfs_ail	*ailp = lip->li_ailp;
414 	int		stale = bip->bli_flags & XFS_BLI_STALE;
415 	int		freed;
416 
417 	ASSERT(bp->b_fspriv == bip);
418 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
419 
420 	trace_xfs_buf_item_unpin(bip);
421 
422 	freed = atomic_dec_and_test(&bip->bli_refcount);
423 
424 	if (atomic_dec_and_test(&bp->b_pin_count))
425 		wake_up_all(&bp->b_waiters);
426 
427 	if (freed && stale) {
428 		ASSERT(bip->bli_flags & XFS_BLI_STALE);
429 		ASSERT(xfs_buf_islocked(bp));
430 		ASSERT(XFS_BUF_ISSTALE(bp));
431 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
432 
433 		trace_xfs_buf_item_unpin_stale(bip);
434 
435 		if (remove) {
436 			/*
437 			 * If we are in a transaction context, we have to
438 			 * remove the log item from the transaction as we are
439 			 * about to release our reference to the buffer.  If we
440 			 * don't, the unlock that occurs later in
441 			 * xfs_trans_uncommit() will try to reference the
442 			 * buffer which we no longer have a hold on.
443 			 */
444 			if (lip->li_desc)
445 				xfs_trans_del_item(lip);
446 
447 			/*
448 			 * Since the transaction no longer refers to the buffer,
449 			 * the buffer should no longer refer to the transaction.
450 			 */
451 			bp->b_transp = NULL;
452 		}
453 
454 		/*
455 		 * If we get called here because of an IO error, we may
456 		 * or may not have the item on the AIL. xfs_trans_ail_delete()
457 		 * will take care of that situation.
458 		 * xfs_trans_ail_delete() drops the AIL lock.
459 		 */
460 		if (bip->bli_flags & XFS_BLI_STALE_INODE) {
461 			xfs_buf_do_callbacks(bp);
462 			bp->b_fspriv = NULL;
463 			bp->b_iodone = NULL;
464 		} else {
465 			spin_lock(&ailp->xa_lock);
466 			xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
467 			xfs_buf_item_relse(bp);
468 			ASSERT(bp->b_fspriv == NULL);
469 		}
470 		xfs_buf_relse(bp);
471 	} else if (freed && remove) {
472 		/*
473 		 * There are currently two references to the buffer - the active
474 		 * LRU reference and the buf log item. What we are about to do
475 		 * here - simulate a failed IO completion - requires 3
476 		 * references.
477 		 *
478 		 * The LRU reference is removed by the xfs_buf_stale() call. The
479 		 * buf item reference is removed by the xfs_buf_iodone()
480 		 * callback that is run by xfs_buf_do_callbacks() during ioend
481 		 * processing (via the bp->b_iodone callback), and then finally
482 		 * the ioend processing will drop the IO reference if the buffer
483 		 * is marked XBF_ASYNC.
484 		 *
485 		 * Hence we need to take an additional reference here so that IO
486 		 * completion processing doesn't free the buffer prematurely.
487 		 */
488 		xfs_buf_lock(bp);
489 		xfs_buf_hold(bp);
490 		bp->b_flags |= XBF_ASYNC;
491 		xfs_buf_ioerror(bp, EIO);
492 		XFS_BUF_UNDONE(bp);
493 		xfs_buf_stale(bp);
494 		xfs_buf_ioend(bp, 0);
495 	}
496 }
497 
498 STATIC uint
499 xfs_buf_item_push(
500 	struct xfs_log_item	*lip,
501 	struct list_head	*buffer_list)
502 {
503 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
504 	struct xfs_buf		*bp = bip->bli_buf;
505 	uint			rval = XFS_ITEM_SUCCESS;
506 
507 	if (xfs_buf_ispinned(bp))
508 		return XFS_ITEM_PINNED;
509 	if (!xfs_buf_trylock(bp)) {
510 		/*
511 		 * If we have just raced with a buffer being pinned and it has
512 		 * been marked stale, we could end up stalling until someone else
513 		 * issues a log force to unpin the stale buffer. Check for the
514 		 * race condition here so xfsaild recognizes the buffer is pinned
515 		 * and queues a log force to move it along.
516 		 */
517 		if (xfs_buf_ispinned(bp))
518 			return XFS_ITEM_PINNED;
519 		return XFS_ITEM_LOCKED;
520 	}
521 
522 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
523 
524 	trace_xfs_buf_item_push(bip);
525 
526 	if (!xfs_buf_delwri_queue(bp, buffer_list))
527 		rval = XFS_ITEM_FLUSHING;
528 	xfs_buf_unlock(bp);
529 	return rval;
530 }
531 
532 /*
533  * Release the buffer associated with the buf log item.  If there is no dirty
534  * logged data associated with the buffer recorded in the buf log item, then
535  * free the buf log item and remove the reference to it in the buffer.
536  *
537  * This call ignores the recursion count.  It is only called when the buffer
538  * should REALLY be unlocked, regardless of the recursion count.
539  *
540  * We unconditionally drop the transaction's reference to the log item. If the
541  * item was logged, then another reference was taken when it was pinned, so we
542  * can safely drop the transaction reference now.  This also allows us to avoid
543  * potential races with the unpin code freeing the bli by not referencing the
544  * bli after we've dropped the reference count.
545  *
546  * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
547  * if necessary but do not unlock the buffer.  This is for support of
548  * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
549  * free the item.
550  */
551 STATIC void
552 xfs_buf_item_unlock(
553 	struct xfs_log_item	*lip)
554 {
555 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
556 	struct xfs_buf		*bp = bip->bli_buf;
557 	bool			clean;
558 	bool			aborted;
559 	int			flags;
560 
561 	/* Clear the buffer's association with this transaction. */
562 	bp->b_transp = NULL;
563 
564 	/*
565 	 * If this is a transaction abort, don't return early.  Instead, allow
566 	 * the brelse to happen.  Normally it would be done for stale
567 	 * (cancelled) buffers at unpin time, but we'll never go through the
568 	 * pin/unpin cycle if we abort inside commit.
569 	 */
570 	aborted = (lip->li_flags & XFS_LI_ABORTED) ? true : false;
571 	/*
572 	 * Before possibly freeing the buf item, copy the per-transaction state
573 	 * so we can reference it safely later after clearing it from the
574 	 * buffer log item.
575 	 */
576 	flags = bip->bli_flags;
577 	bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
578 
579 	/*
580 	 * If the buf item is marked stale, then don't do anything.  We'll
581 	 * unlock the buffer and free the buf item when the buffer is unpinned
582 	 * for the last time.
583 	 */
584 	if (flags & XFS_BLI_STALE) {
585 		trace_xfs_buf_item_unlock_stale(bip);
586 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
587 		if (!aborted) {
588 			atomic_dec(&bip->bli_refcount);
589 			return;
590 		}
591 	}
592 
593 	trace_xfs_buf_item_unlock(bip);
594 
595 	/*
596 	 * If the buf item isn't tracking any data, free it, otherwise drop the
597 	 * reference we hold to it. If we are aborting the transaction, this may
598 	 * be the only reference to the buf item, so we free it anyway
599 	 * regardless of whether it is dirty or not. A dirty abort implies a
600 	 * shutdown, anyway.
601 	 *
602 	 * Ordered buffers are dirty but may have no recorded changes, so ensure
603 	 * we only release clean items here.
604 	 */
605 	clean = (flags & XFS_BLI_DIRTY) ? false : true;
606 	if (clean) {
607 		int i;
608 		for (i = 0; i < bip->bli_format_count; i++) {
609 			if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
610 				     bip->bli_formats[i].blf_map_size)) {
611 				clean = false;
612 				break;
613 			}
614 		}
615 	}
616 
617 	/*
618 	 * Clean buffers, by definition, cannot be in the AIL. However, aborted
619 	 * buffers may be dirty and hence in the AIL. Therefore if we are
620 	 * aborting a buffer and we've just taken the last refernce away, we
621 	 * have to check if it is in the AIL before freeing it. We need to free
622 	 * it in this case, because an aborted transaction has already shut the
623 	 * filesystem down and this is the last chance we will have to do so.
624 	 */
625 	if (atomic_dec_and_test(&bip->bli_refcount)) {
626 		if (clean)
627 			xfs_buf_item_relse(bp);
628 		else if (aborted) {
629 			ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp));
630 			if (lip->li_flags & XFS_LI_IN_AIL) {
631 				spin_lock(&lip->li_ailp->xa_lock);
632 				xfs_trans_ail_delete(lip->li_ailp, lip,
633 						     SHUTDOWN_LOG_IO_ERROR);
634 			}
635 			xfs_buf_item_relse(bp);
636 		}
637 	}
638 
639 	if (!(flags & XFS_BLI_HOLD))
640 		xfs_buf_relse(bp);
641 }
642 
643 /*
644  * This is called to find out where the oldest active copy of the
645  * buf log item in the on disk log resides now that the last log
646  * write of it completed at the given lsn.
647  * We always re-log all the dirty data in a buffer, so usually the
648  * latest copy in the on disk log is the only one that matters.  For
649  * those cases we simply return the given lsn.
650  *
651  * The one exception to this is for buffers full of newly allocated
652  * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
653  * flag set, indicating that only the di_next_unlinked fields from the
654  * inodes in the buffers will be replayed during recovery.  If the
655  * original newly allocated inode images have not yet been flushed
656  * when the buffer is so relogged, then we need to make sure that we
657  * keep the old images in the 'active' portion of the log.  We do this
658  * by returning the original lsn of that transaction here rather than
659  * the current one.
660  */
661 STATIC xfs_lsn_t
662 xfs_buf_item_committed(
663 	struct xfs_log_item	*lip,
664 	xfs_lsn_t		lsn)
665 {
666 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
667 
668 	trace_xfs_buf_item_committed(bip);
669 
670 	if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
671 		return lip->li_lsn;
672 	return lsn;
673 }
674 
675 STATIC void
676 xfs_buf_item_committing(
677 	struct xfs_log_item	*lip,
678 	xfs_lsn_t		commit_lsn)
679 {
680 }
681 
682 /*
683  * This is the ops vector shared by all buf log items.
684  */
685 static const struct xfs_item_ops xfs_buf_item_ops = {
686 	.iop_size	= xfs_buf_item_size,
687 	.iop_format	= xfs_buf_item_format,
688 	.iop_pin	= xfs_buf_item_pin,
689 	.iop_unpin	= xfs_buf_item_unpin,
690 	.iop_unlock	= xfs_buf_item_unlock,
691 	.iop_committed	= xfs_buf_item_committed,
692 	.iop_push	= xfs_buf_item_push,
693 	.iop_committing = xfs_buf_item_committing
694 };
695 
696 STATIC int
697 xfs_buf_item_get_format(
698 	struct xfs_buf_log_item	*bip,
699 	int			count)
700 {
701 	ASSERT(bip->bli_formats == NULL);
702 	bip->bli_format_count = count;
703 
704 	if (count == 1) {
705 		bip->bli_formats = &bip->__bli_format;
706 		return 0;
707 	}
708 
709 	bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
710 				KM_SLEEP);
711 	if (!bip->bli_formats)
712 		return ENOMEM;
713 	return 0;
714 }
715 
716 STATIC void
717 xfs_buf_item_free_format(
718 	struct xfs_buf_log_item	*bip)
719 {
720 	if (bip->bli_formats != &bip->__bli_format) {
721 		kmem_free(bip->bli_formats);
722 		bip->bli_formats = NULL;
723 	}
724 }
725 
726 /*
727  * Allocate a new buf log item to go with the given buffer.
728  * Set the buffer's b_fsprivate field to point to the new
729  * buf log item.  If there are other item's attached to the
730  * buffer (see xfs_buf_attach_iodone() below), then put the
731  * buf log item at the front.
732  */
733 void
734 xfs_buf_item_init(
735 	xfs_buf_t	*bp,
736 	xfs_mount_t	*mp)
737 {
738 	xfs_log_item_t		*lip = bp->b_fspriv;
739 	xfs_buf_log_item_t	*bip;
740 	int			chunks;
741 	int			map_size;
742 	int			error;
743 	int			i;
744 
745 	/*
746 	 * Check to see if there is already a buf log item for
747 	 * this buffer.  If there is, it is guaranteed to be
748 	 * the first.  If we do already have one, there is
749 	 * nothing to do here so return.
750 	 */
751 	ASSERT(bp->b_target->bt_mount == mp);
752 	if (lip != NULL && lip->li_type == XFS_LI_BUF)
753 		return;
754 
755 	bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
756 	xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
757 	bip->bli_buf = bp;
758 	xfs_buf_hold(bp);
759 
760 	/*
761 	 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
762 	 * can be divided into. Make sure not to truncate any pieces.
763 	 * map_size is the size of the bitmap needed to describe the
764 	 * chunks of the buffer.
765 	 *
766 	 * Discontiguous buffer support follows the layout of the underlying
767 	 * buffer. This makes the implementation as simple as possible.
768 	 */
769 	error = xfs_buf_item_get_format(bip, bp->b_map_count);
770 	ASSERT(error == 0);
771 
772 	for (i = 0; i < bip->bli_format_count; i++) {
773 		chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
774 				      XFS_BLF_CHUNK);
775 		map_size = DIV_ROUND_UP(chunks, NBWORD);
776 
777 		bip->bli_formats[i].blf_type = XFS_LI_BUF;
778 		bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
779 		bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
780 		bip->bli_formats[i].blf_map_size = map_size;
781 	}
782 
783 #ifdef XFS_TRANS_DEBUG
784 	/*
785 	 * Allocate the arrays for tracking what needs to be logged
786 	 * and what our callers request to be logged.  bli_orig
787 	 * holds a copy of the original, clean buffer for comparison
788 	 * against, and bli_logged keeps a 1 bit flag per byte in
789 	 * the buffer to indicate which bytes the callers have asked
790 	 * to have logged.
791 	 */
792 	bip->bli_orig = kmem_alloc(BBTOB(bp->b_length), KM_SLEEP);
793 	memcpy(bip->bli_orig, bp->b_addr, BBTOB(bp->b_length));
794 	bip->bli_logged = kmem_zalloc(BBTOB(bp->b_length) / NBBY, KM_SLEEP);
795 #endif
796 
797 	/*
798 	 * Put the buf item into the list of items attached to the
799 	 * buffer at the front.
800 	 */
801 	if (bp->b_fspriv)
802 		bip->bli_item.li_bio_list = bp->b_fspriv;
803 	bp->b_fspriv = bip;
804 }
805 
806 
807 /*
808  * Mark bytes first through last inclusive as dirty in the buf
809  * item's bitmap.
810  */
811 void
812 xfs_buf_item_log_segment(
813 	struct xfs_buf_log_item	*bip,
814 	uint			first,
815 	uint			last,
816 	uint			*map)
817 {
818 	uint		first_bit;
819 	uint		last_bit;
820 	uint		bits_to_set;
821 	uint		bits_set;
822 	uint		word_num;
823 	uint		*wordp;
824 	uint		bit;
825 	uint		end_bit;
826 	uint		mask;
827 
828 	/*
829 	 * Convert byte offsets to bit numbers.
830 	 */
831 	first_bit = first >> XFS_BLF_SHIFT;
832 	last_bit = last >> XFS_BLF_SHIFT;
833 
834 	/*
835 	 * Calculate the total number of bits to be set.
836 	 */
837 	bits_to_set = last_bit - first_bit + 1;
838 
839 	/*
840 	 * Get a pointer to the first word in the bitmap
841 	 * to set a bit in.
842 	 */
843 	word_num = first_bit >> BIT_TO_WORD_SHIFT;
844 	wordp = &map[word_num];
845 
846 	/*
847 	 * Calculate the starting bit in the first word.
848 	 */
849 	bit = first_bit & (uint)(NBWORD - 1);
850 
851 	/*
852 	 * First set any bits in the first word of our range.
853 	 * If it starts at bit 0 of the word, it will be
854 	 * set below rather than here.  That is what the variable
855 	 * bit tells us. The variable bits_set tracks the number
856 	 * of bits that have been set so far.  End_bit is the number
857 	 * of the last bit to be set in this word plus one.
858 	 */
859 	if (bit) {
860 		end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
861 		mask = ((1 << (end_bit - bit)) - 1) << bit;
862 		*wordp |= mask;
863 		wordp++;
864 		bits_set = end_bit - bit;
865 	} else {
866 		bits_set = 0;
867 	}
868 
869 	/*
870 	 * Now set bits a whole word at a time that are between
871 	 * first_bit and last_bit.
872 	 */
873 	while ((bits_to_set - bits_set) >= NBWORD) {
874 		*wordp |= 0xffffffff;
875 		bits_set += NBWORD;
876 		wordp++;
877 	}
878 
879 	/*
880 	 * Finally, set any bits left to be set in one last partial word.
881 	 */
882 	end_bit = bits_to_set - bits_set;
883 	if (end_bit) {
884 		mask = (1 << end_bit) - 1;
885 		*wordp |= mask;
886 	}
887 }
888 
889 /*
890  * Mark bytes first through last inclusive as dirty in the buf
891  * item's bitmap.
892  */
893 void
894 xfs_buf_item_log(
895 	xfs_buf_log_item_t	*bip,
896 	uint			first,
897 	uint			last)
898 {
899 	int			i;
900 	uint			start;
901 	uint			end;
902 	struct xfs_buf		*bp = bip->bli_buf;
903 
904 	/*
905 	 * walk each buffer segment and mark them dirty appropriately.
906 	 */
907 	start = 0;
908 	for (i = 0; i < bip->bli_format_count; i++) {
909 		if (start > last)
910 			break;
911 		end = start + BBTOB(bp->b_maps[i].bm_len);
912 		if (first > end) {
913 			start += BBTOB(bp->b_maps[i].bm_len);
914 			continue;
915 		}
916 		if (first < start)
917 			first = start;
918 		if (end > last)
919 			end = last;
920 
921 		xfs_buf_item_log_segment(bip, first, end,
922 					 &bip->bli_formats[i].blf_data_map[0]);
923 
924 		start += bp->b_maps[i].bm_len;
925 	}
926 }
927 
928 
929 /*
930  * Return 1 if the buffer has been logged or ordered in a transaction (at any
931  * point, not just the current transaction) and 0 if not.
932  */
933 uint
934 xfs_buf_item_dirty(
935 	xfs_buf_log_item_t	*bip)
936 {
937 	return (bip->bli_flags & XFS_BLI_DIRTY);
938 }
939 
940 STATIC void
941 xfs_buf_item_free(
942 	xfs_buf_log_item_t	*bip)
943 {
944 #ifdef XFS_TRANS_DEBUG
945 	kmem_free(bip->bli_orig);
946 	kmem_free(bip->bli_logged);
947 #endif /* XFS_TRANS_DEBUG */
948 
949 	xfs_buf_item_free_format(bip);
950 	kmem_zone_free(xfs_buf_item_zone, bip);
951 }
952 
953 /*
954  * This is called when the buf log item is no longer needed.  It should
955  * free the buf log item associated with the given buffer and clear
956  * the buffer's pointer to the buf log item.  If there are no more
957  * items in the list, clear the b_iodone field of the buffer (see
958  * xfs_buf_attach_iodone() below).
959  */
960 void
961 xfs_buf_item_relse(
962 	xfs_buf_t	*bp)
963 {
964 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
965 
966 	trace_xfs_buf_item_relse(bp, _RET_IP_);
967 	ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
968 
969 	bp->b_fspriv = bip->bli_item.li_bio_list;
970 	if (bp->b_fspriv == NULL)
971 		bp->b_iodone = NULL;
972 
973 	xfs_buf_rele(bp);
974 	xfs_buf_item_free(bip);
975 }
976 
977 
978 /*
979  * Add the given log item with its callback to the list of callbacks
980  * to be called when the buffer's I/O completes.  If it is not set
981  * already, set the buffer's b_iodone() routine to be
982  * xfs_buf_iodone_callbacks() and link the log item into the list of
983  * items rooted at b_fsprivate.  Items are always added as the second
984  * entry in the list if there is a first, because the buf item code
985  * assumes that the buf log item is first.
986  */
987 void
988 xfs_buf_attach_iodone(
989 	xfs_buf_t	*bp,
990 	void		(*cb)(xfs_buf_t *, xfs_log_item_t *),
991 	xfs_log_item_t	*lip)
992 {
993 	xfs_log_item_t	*head_lip;
994 
995 	ASSERT(xfs_buf_islocked(bp));
996 
997 	lip->li_cb = cb;
998 	head_lip = bp->b_fspriv;
999 	if (head_lip) {
1000 		lip->li_bio_list = head_lip->li_bio_list;
1001 		head_lip->li_bio_list = lip;
1002 	} else {
1003 		bp->b_fspriv = lip;
1004 	}
1005 
1006 	ASSERT(bp->b_iodone == NULL ||
1007 	       bp->b_iodone == xfs_buf_iodone_callbacks);
1008 	bp->b_iodone = xfs_buf_iodone_callbacks;
1009 }
1010 
1011 /*
1012  * We can have many callbacks on a buffer. Running the callbacks individually
1013  * can cause a lot of contention on the AIL lock, so we allow for a single
1014  * callback to be able to scan the remaining lip->li_bio_list for other items
1015  * of the same type and callback to be processed in the first call.
1016  *
1017  * As a result, the loop walking the callback list below will also modify the
1018  * list. it removes the first item from the list and then runs the callback.
1019  * The loop then restarts from the new head of the list. This allows the
1020  * callback to scan and modify the list attached to the buffer and we don't
1021  * have to care about maintaining a next item pointer.
1022  */
1023 STATIC void
1024 xfs_buf_do_callbacks(
1025 	struct xfs_buf		*bp)
1026 {
1027 	struct xfs_log_item	*lip;
1028 
1029 	while ((lip = bp->b_fspriv) != NULL) {
1030 		bp->b_fspriv = lip->li_bio_list;
1031 		ASSERT(lip->li_cb != NULL);
1032 		/*
1033 		 * Clear the next pointer so we don't have any
1034 		 * confusion if the item is added to another buf.
1035 		 * Don't touch the log item after calling its
1036 		 * callback, because it could have freed itself.
1037 		 */
1038 		lip->li_bio_list = NULL;
1039 		lip->li_cb(bp, lip);
1040 	}
1041 }
1042 
1043 /*
1044  * This is the iodone() function for buffers which have had callbacks
1045  * attached to them by xfs_buf_attach_iodone().  It should remove each
1046  * log item from the buffer's list and call the callback of each in turn.
1047  * When done, the buffer's fsprivate field is set to NULL and the buffer
1048  * is unlocked with a call to iodone().
1049  */
1050 void
1051 xfs_buf_iodone_callbacks(
1052 	struct xfs_buf		*bp)
1053 {
1054 	struct xfs_log_item	*lip = bp->b_fspriv;
1055 	struct xfs_mount	*mp = lip->li_mountp;
1056 	static ulong		lasttime;
1057 	static xfs_buftarg_t	*lasttarg;
1058 
1059 	if (likely(!xfs_buf_geterror(bp)))
1060 		goto do_callbacks;
1061 
1062 	/*
1063 	 * If we've already decided to shutdown the filesystem because of
1064 	 * I/O errors, there's no point in giving this a retry.
1065 	 */
1066 	if (XFS_FORCED_SHUTDOWN(mp)) {
1067 		xfs_buf_stale(bp);
1068 		XFS_BUF_DONE(bp);
1069 		trace_xfs_buf_item_iodone(bp, _RET_IP_);
1070 		goto do_callbacks;
1071 	}
1072 
1073 	if (bp->b_target != lasttarg ||
1074 	    time_after(jiffies, (lasttime + 5*HZ))) {
1075 		lasttime = jiffies;
1076 		xfs_buf_ioerror_alert(bp, __func__);
1077 	}
1078 	lasttarg = bp->b_target;
1079 
1080 	/*
1081 	 * If the write was asynchronous then no one will be looking for the
1082 	 * error.  Clear the error state and write the buffer out again.
1083 	 *
1084 	 * XXX: This helps against transient write errors, but we need to find
1085 	 * a way to shut the filesystem down if the writes keep failing.
1086 	 *
1087 	 * In practice we'll shut the filesystem down soon as non-transient
1088 	 * erorrs tend to affect the whole device and a failing log write
1089 	 * will make us give up.  But we really ought to do better here.
1090 	 */
1091 	if (XFS_BUF_ISASYNC(bp)) {
1092 		ASSERT(bp->b_iodone != NULL);
1093 
1094 		trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1095 
1096 		xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */
1097 
1098 		if (!XFS_BUF_ISSTALE(bp)) {
1099 			bp->b_flags |= XBF_WRITE | XBF_ASYNC | XBF_DONE;
1100 			xfs_buf_iorequest(bp);
1101 		} else {
1102 			xfs_buf_relse(bp);
1103 		}
1104 
1105 		return;
1106 	}
1107 
1108 	/*
1109 	 * If the write of the buffer was synchronous, we want to make
1110 	 * sure to return the error to the caller of xfs_bwrite().
1111 	 */
1112 	xfs_buf_stale(bp);
1113 	XFS_BUF_DONE(bp);
1114 
1115 	trace_xfs_buf_error_relse(bp, _RET_IP_);
1116 
1117 do_callbacks:
1118 	xfs_buf_do_callbacks(bp);
1119 	bp->b_fspriv = NULL;
1120 	bp->b_iodone = NULL;
1121 	xfs_buf_ioend(bp, 0);
1122 }
1123 
1124 /*
1125  * This is the iodone() function for buffers which have been
1126  * logged.  It is called when they are eventually flushed out.
1127  * It should remove the buf item from the AIL, and free the buf item.
1128  * It is called by xfs_buf_iodone_callbacks() above which will take
1129  * care of cleaning up the buffer itself.
1130  */
1131 void
1132 xfs_buf_iodone(
1133 	struct xfs_buf		*bp,
1134 	struct xfs_log_item	*lip)
1135 {
1136 	struct xfs_ail		*ailp = lip->li_ailp;
1137 
1138 	ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1139 
1140 	xfs_buf_rele(bp);
1141 
1142 	/*
1143 	 * If we are forcibly shutting down, this may well be
1144 	 * off the AIL already. That's because we simulate the
1145 	 * log-committed callbacks to unpin these buffers. Or we may never
1146 	 * have put this item on AIL because of the transaction was
1147 	 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1148 	 *
1149 	 * Either way, AIL is useless if we're forcing a shutdown.
1150 	 */
1151 	spin_lock(&ailp->xa_lock);
1152 	xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
1153 	xfs_buf_item_free(BUF_ITEM(lip));
1154 }
1155