xref: /openbmc/linux/fs/xfs/xfs_buf_item.c (revision d623f60d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_sb.h"
13 #include "xfs_mount.h"
14 #include "xfs_trans.h"
15 #include "xfs_buf_item.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_error.h"
18 #include "xfs_trace.h"
19 #include "xfs_log.h"
20 #include "xfs_inode.h"
21 
22 
23 kmem_zone_t	*xfs_buf_item_zone;
24 
25 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
26 {
27 	return container_of(lip, struct xfs_buf_log_item, bli_item);
28 }
29 
30 STATIC void	xfs_buf_do_callbacks(struct xfs_buf *bp);
31 
32 static inline int
33 xfs_buf_log_format_size(
34 	struct xfs_buf_log_format *blfp)
35 {
36 	return offsetof(struct xfs_buf_log_format, blf_data_map) +
37 			(blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
38 }
39 
40 /*
41  * This returns the number of log iovecs needed to log the
42  * given buf log item.
43  *
44  * It calculates this as 1 iovec for the buf log format structure
45  * and 1 for each stretch of non-contiguous chunks to be logged.
46  * Contiguous chunks are logged in a single iovec.
47  *
48  * If the XFS_BLI_STALE flag has been set, then log nothing.
49  */
50 STATIC void
51 xfs_buf_item_size_segment(
52 	struct xfs_buf_log_item		*bip,
53 	struct xfs_buf_log_format	*blfp,
54 	int				*nvecs,
55 	int				*nbytes)
56 {
57 	struct xfs_buf			*bp = bip->bli_buf;
58 	int				next_bit;
59 	int				last_bit;
60 
61 	last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
62 	if (last_bit == -1)
63 		return;
64 
65 	/*
66 	 * initial count for a dirty buffer is 2 vectors - the format structure
67 	 * and the first dirty region.
68 	 */
69 	*nvecs += 2;
70 	*nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
71 
72 	while (last_bit != -1) {
73 		/*
74 		 * This takes the bit number to start looking from and
75 		 * returns the next set bit from there.  It returns -1
76 		 * if there are no more bits set or the start bit is
77 		 * beyond the end of the bitmap.
78 		 */
79 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
80 					last_bit + 1);
81 		/*
82 		 * If we run out of bits, leave the loop,
83 		 * else if we find a new set of bits bump the number of vecs,
84 		 * else keep scanning the current set of bits.
85 		 */
86 		if (next_bit == -1) {
87 			break;
88 		} else if (next_bit != last_bit + 1) {
89 			last_bit = next_bit;
90 			(*nvecs)++;
91 		} else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
92 			   (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
93 			    XFS_BLF_CHUNK)) {
94 			last_bit = next_bit;
95 			(*nvecs)++;
96 		} else {
97 			last_bit++;
98 		}
99 		*nbytes += XFS_BLF_CHUNK;
100 	}
101 }
102 
103 /*
104  * This returns the number of log iovecs needed to log the given buf log item.
105  *
106  * It calculates this as 1 iovec for the buf log format structure and 1 for each
107  * stretch of non-contiguous chunks to be logged.  Contiguous chunks are logged
108  * in a single iovec.
109  *
110  * Discontiguous buffers need a format structure per region that that is being
111  * logged. This makes the changes in the buffer appear to log recovery as though
112  * they came from separate buffers, just like would occur if multiple buffers
113  * were used instead of a single discontiguous buffer. This enables
114  * discontiguous buffers to be in-memory constructs, completely transparent to
115  * what ends up on disk.
116  *
117  * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
118  * format structures.
119  */
120 STATIC void
121 xfs_buf_item_size(
122 	struct xfs_log_item	*lip,
123 	int			*nvecs,
124 	int			*nbytes)
125 {
126 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
127 	int			i;
128 
129 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
130 	if (bip->bli_flags & XFS_BLI_STALE) {
131 		/*
132 		 * The buffer is stale, so all we need to log
133 		 * is the buf log format structure with the
134 		 * cancel flag in it.
135 		 */
136 		trace_xfs_buf_item_size_stale(bip);
137 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
138 		*nvecs += bip->bli_format_count;
139 		for (i = 0; i < bip->bli_format_count; i++) {
140 			*nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
141 		}
142 		return;
143 	}
144 
145 	ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
146 
147 	if (bip->bli_flags & XFS_BLI_ORDERED) {
148 		/*
149 		 * The buffer has been logged just to order it.
150 		 * It is not being included in the transaction
151 		 * commit, so no vectors are used at all.
152 		 */
153 		trace_xfs_buf_item_size_ordered(bip);
154 		*nvecs = XFS_LOG_VEC_ORDERED;
155 		return;
156 	}
157 
158 	/*
159 	 * the vector count is based on the number of buffer vectors we have
160 	 * dirty bits in. This will only be greater than one when we have a
161 	 * compound buffer with more than one segment dirty. Hence for compound
162 	 * buffers we need to track which segment the dirty bits correspond to,
163 	 * and when we move from one segment to the next increment the vector
164 	 * count for the extra buf log format structure that will need to be
165 	 * written.
166 	 */
167 	for (i = 0; i < bip->bli_format_count; i++) {
168 		xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
169 					  nvecs, nbytes);
170 	}
171 	trace_xfs_buf_item_size(bip);
172 }
173 
174 static inline void
175 xfs_buf_item_copy_iovec(
176 	struct xfs_log_vec	*lv,
177 	struct xfs_log_iovec	**vecp,
178 	struct xfs_buf		*bp,
179 	uint			offset,
180 	int			first_bit,
181 	uint			nbits)
182 {
183 	offset += first_bit * XFS_BLF_CHUNK;
184 	xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
185 			xfs_buf_offset(bp, offset),
186 			nbits * XFS_BLF_CHUNK);
187 }
188 
189 static inline bool
190 xfs_buf_item_straddle(
191 	struct xfs_buf		*bp,
192 	uint			offset,
193 	int			next_bit,
194 	int			last_bit)
195 {
196 	return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) !=
197 		(xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) +
198 		 XFS_BLF_CHUNK);
199 }
200 
201 static void
202 xfs_buf_item_format_segment(
203 	struct xfs_buf_log_item	*bip,
204 	struct xfs_log_vec	*lv,
205 	struct xfs_log_iovec	**vecp,
206 	uint			offset,
207 	struct xfs_buf_log_format *blfp)
208 {
209 	struct xfs_buf		*bp = bip->bli_buf;
210 	uint			base_size;
211 	int			first_bit;
212 	int			last_bit;
213 	int			next_bit;
214 	uint			nbits;
215 
216 	/* copy the flags across from the base format item */
217 	blfp->blf_flags = bip->__bli_format.blf_flags;
218 
219 	/*
220 	 * Base size is the actual size of the ondisk structure - it reflects
221 	 * the actual size of the dirty bitmap rather than the size of the in
222 	 * memory structure.
223 	 */
224 	base_size = xfs_buf_log_format_size(blfp);
225 
226 	first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
227 	if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
228 		/*
229 		 * If the map is not be dirty in the transaction, mark
230 		 * the size as zero and do not advance the vector pointer.
231 		 */
232 		return;
233 	}
234 
235 	blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
236 	blfp->blf_size = 1;
237 
238 	if (bip->bli_flags & XFS_BLI_STALE) {
239 		/*
240 		 * The buffer is stale, so all we need to log
241 		 * is the buf log format structure with the
242 		 * cancel flag in it.
243 		 */
244 		trace_xfs_buf_item_format_stale(bip);
245 		ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
246 		return;
247 	}
248 
249 
250 	/*
251 	 * Fill in an iovec for each set of contiguous chunks.
252 	 */
253 	last_bit = first_bit;
254 	nbits = 1;
255 	for (;;) {
256 		/*
257 		 * This takes the bit number to start looking from and
258 		 * returns the next set bit from there.  It returns -1
259 		 * if there are no more bits set or the start bit is
260 		 * beyond the end of the bitmap.
261 		 */
262 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
263 					(uint)last_bit + 1);
264 		/*
265 		 * If we run out of bits fill in the last iovec and get out of
266 		 * the loop.  Else if we start a new set of bits then fill in
267 		 * the iovec for the series we were looking at and start
268 		 * counting the bits in the new one.  Else we're still in the
269 		 * same set of bits so just keep counting and scanning.
270 		 */
271 		if (next_bit == -1) {
272 			xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
273 						first_bit, nbits);
274 			blfp->blf_size++;
275 			break;
276 		} else if (next_bit != last_bit + 1 ||
277 		           xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) {
278 			xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
279 						first_bit, nbits);
280 			blfp->blf_size++;
281 			first_bit = next_bit;
282 			last_bit = next_bit;
283 			nbits = 1;
284 		} else {
285 			last_bit++;
286 			nbits++;
287 		}
288 	}
289 }
290 
291 /*
292  * This is called to fill in the vector of log iovecs for the
293  * given log buf item.  It fills the first entry with a buf log
294  * format structure, and the rest point to contiguous chunks
295  * within the buffer.
296  */
297 STATIC void
298 xfs_buf_item_format(
299 	struct xfs_log_item	*lip,
300 	struct xfs_log_vec	*lv)
301 {
302 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
303 	struct xfs_buf		*bp = bip->bli_buf;
304 	struct xfs_log_iovec	*vecp = NULL;
305 	uint			offset = 0;
306 	int			i;
307 
308 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
309 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
310 	       (bip->bli_flags & XFS_BLI_STALE));
311 	ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
312 	       (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
313 	        && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
314 	ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) ||
315 	       (bip->bli_flags & XFS_BLI_STALE));
316 
317 
318 	/*
319 	 * If it is an inode buffer, transfer the in-memory state to the
320 	 * format flags and clear the in-memory state.
321 	 *
322 	 * For buffer based inode allocation, we do not transfer
323 	 * this state if the inode buffer allocation has not yet been committed
324 	 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
325 	 * correct replay of the inode allocation.
326 	 *
327 	 * For icreate item based inode allocation, the buffers aren't written
328 	 * to the journal during allocation, and hence we should always tag the
329 	 * buffer as an inode buffer so that the correct unlinked list replay
330 	 * occurs during recovery.
331 	 */
332 	if (bip->bli_flags & XFS_BLI_INODE_BUF) {
333 		if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) ||
334 		    !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
335 		      xfs_log_item_in_current_chkpt(lip)))
336 			bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
337 		bip->bli_flags &= ~XFS_BLI_INODE_BUF;
338 	}
339 
340 	for (i = 0; i < bip->bli_format_count; i++) {
341 		xfs_buf_item_format_segment(bip, lv, &vecp, offset,
342 					    &bip->bli_formats[i]);
343 		offset += BBTOB(bp->b_maps[i].bm_len);
344 	}
345 
346 	/*
347 	 * Check to make sure everything is consistent.
348 	 */
349 	trace_xfs_buf_item_format(bip);
350 }
351 
352 /*
353  * This is called to pin the buffer associated with the buf log item in memory
354  * so it cannot be written out.
355  *
356  * We also always take a reference to the buffer log item here so that the bli
357  * is held while the item is pinned in memory. This means that we can
358  * unconditionally drop the reference count a transaction holds when the
359  * transaction is completed.
360  */
361 STATIC void
362 xfs_buf_item_pin(
363 	struct xfs_log_item	*lip)
364 {
365 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
366 
367 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
368 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
369 	       (bip->bli_flags & XFS_BLI_ORDERED) ||
370 	       (bip->bli_flags & XFS_BLI_STALE));
371 
372 	trace_xfs_buf_item_pin(bip);
373 
374 	atomic_inc(&bip->bli_refcount);
375 	atomic_inc(&bip->bli_buf->b_pin_count);
376 }
377 
378 /*
379  * This is called to unpin the buffer associated with the buf log
380  * item which was previously pinned with a call to xfs_buf_item_pin().
381  *
382  * Also drop the reference to the buf item for the current transaction.
383  * If the XFS_BLI_STALE flag is set and we are the last reference,
384  * then free up the buf log item and unlock the buffer.
385  *
386  * If the remove flag is set we are called from uncommit in the
387  * forced-shutdown path.  If that is true and the reference count on
388  * the log item is going to drop to zero we need to free the item's
389  * descriptor in the transaction.
390  */
391 STATIC void
392 xfs_buf_item_unpin(
393 	struct xfs_log_item	*lip,
394 	int			remove)
395 {
396 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
397 	xfs_buf_t		*bp = bip->bli_buf;
398 	struct xfs_ail		*ailp = lip->li_ailp;
399 	int			stale = bip->bli_flags & XFS_BLI_STALE;
400 	int			freed;
401 
402 	ASSERT(bp->b_log_item == bip);
403 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
404 
405 	trace_xfs_buf_item_unpin(bip);
406 
407 	freed = atomic_dec_and_test(&bip->bli_refcount);
408 
409 	if (atomic_dec_and_test(&bp->b_pin_count))
410 		wake_up_all(&bp->b_waiters);
411 
412 	if (freed && stale) {
413 		ASSERT(bip->bli_flags & XFS_BLI_STALE);
414 		ASSERT(xfs_buf_islocked(bp));
415 		ASSERT(bp->b_flags & XBF_STALE);
416 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
417 
418 		trace_xfs_buf_item_unpin_stale(bip);
419 
420 		if (remove) {
421 			/*
422 			 * If we are in a transaction context, we have to
423 			 * remove the log item from the transaction as we are
424 			 * about to release our reference to the buffer.  If we
425 			 * don't, the unlock that occurs later in
426 			 * xfs_trans_uncommit() will try to reference the
427 			 * buffer which we no longer have a hold on.
428 			 */
429 			if (!list_empty(&lip->li_trans))
430 				xfs_trans_del_item(lip);
431 
432 			/*
433 			 * Since the transaction no longer refers to the buffer,
434 			 * the buffer should no longer refer to the transaction.
435 			 */
436 			bp->b_transp = NULL;
437 		}
438 
439 		/*
440 		 * If we get called here because of an IO error, we may
441 		 * or may not have the item on the AIL. xfs_trans_ail_delete()
442 		 * will take care of that situation.
443 		 * xfs_trans_ail_delete() drops the AIL lock.
444 		 */
445 		if (bip->bli_flags & XFS_BLI_STALE_INODE) {
446 			xfs_buf_do_callbacks(bp);
447 			bp->b_log_item = NULL;
448 			list_del_init(&bp->b_li_list);
449 			bp->b_iodone = NULL;
450 		} else {
451 			spin_lock(&ailp->ail_lock);
452 			xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
453 			xfs_buf_item_relse(bp);
454 			ASSERT(bp->b_log_item == NULL);
455 		}
456 		xfs_buf_relse(bp);
457 	} else if (freed && remove) {
458 		/*
459 		 * There are currently two references to the buffer - the active
460 		 * LRU reference and the buf log item. What we are about to do
461 		 * here - simulate a failed IO completion - requires 3
462 		 * references.
463 		 *
464 		 * The LRU reference is removed by the xfs_buf_stale() call. The
465 		 * buf item reference is removed by the xfs_buf_iodone()
466 		 * callback that is run by xfs_buf_do_callbacks() during ioend
467 		 * processing (via the bp->b_iodone callback), and then finally
468 		 * the ioend processing will drop the IO reference if the buffer
469 		 * is marked XBF_ASYNC.
470 		 *
471 		 * Hence we need to take an additional reference here so that IO
472 		 * completion processing doesn't free the buffer prematurely.
473 		 */
474 		xfs_buf_lock(bp);
475 		xfs_buf_hold(bp);
476 		bp->b_flags |= XBF_ASYNC;
477 		xfs_buf_ioerror(bp, -EIO);
478 		bp->b_flags &= ~XBF_DONE;
479 		xfs_buf_stale(bp);
480 		xfs_buf_ioend(bp);
481 	}
482 }
483 
484 /*
485  * Buffer IO error rate limiting. Limit it to no more than 10 messages per 30
486  * seconds so as to not spam logs too much on repeated detection of the same
487  * buffer being bad..
488  */
489 
490 static DEFINE_RATELIMIT_STATE(xfs_buf_write_fail_rl_state, 30 * HZ, 10);
491 
492 STATIC uint
493 xfs_buf_item_push(
494 	struct xfs_log_item	*lip,
495 	struct list_head	*buffer_list)
496 {
497 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
498 	struct xfs_buf		*bp = bip->bli_buf;
499 	uint			rval = XFS_ITEM_SUCCESS;
500 
501 	if (xfs_buf_ispinned(bp))
502 		return XFS_ITEM_PINNED;
503 	if (!xfs_buf_trylock(bp)) {
504 		/*
505 		 * If we have just raced with a buffer being pinned and it has
506 		 * been marked stale, we could end up stalling until someone else
507 		 * issues a log force to unpin the stale buffer. Check for the
508 		 * race condition here so xfsaild recognizes the buffer is pinned
509 		 * and queues a log force to move it along.
510 		 */
511 		if (xfs_buf_ispinned(bp))
512 			return XFS_ITEM_PINNED;
513 		return XFS_ITEM_LOCKED;
514 	}
515 
516 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
517 
518 	trace_xfs_buf_item_push(bip);
519 
520 	/* has a previous flush failed due to IO errors? */
521 	if ((bp->b_flags & XBF_WRITE_FAIL) &&
522 	    ___ratelimit(&xfs_buf_write_fail_rl_state, "XFS: Failing async write")) {
523 		xfs_warn(bp->b_target->bt_mount,
524 "Failing async write on buffer block 0x%llx. Retrying async write.",
525 			 (long long)bp->b_bn);
526 	}
527 
528 	if (!xfs_buf_delwri_queue(bp, buffer_list))
529 		rval = XFS_ITEM_FLUSHING;
530 	xfs_buf_unlock(bp);
531 	return rval;
532 }
533 
534 /*
535  * Release the buffer associated with the buf log item.  If there is no dirty
536  * logged data associated with the buffer recorded in the buf log item, then
537  * free the buf log item and remove the reference to it in the buffer.
538  *
539  * This call ignores the recursion count.  It is only called when the buffer
540  * should REALLY be unlocked, regardless of the recursion count.
541  *
542  * We unconditionally drop the transaction's reference to the log item. If the
543  * item was logged, then another reference was taken when it was pinned, so we
544  * can safely drop the transaction reference now.  This also allows us to avoid
545  * potential races with the unpin code freeing the bli by not referencing the
546  * bli after we've dropped the reference count.
547  *
548  * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
549  * if necessary but do not unlock the buffer.  This is for support of
550  * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
551  * free the item.
552  */
553 STATIC void
554 xfs_buf_item_unlock(
555 	struct xfs_log_item	*lip)
556 {
557 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
558 	struct xfs_buf		*bp = bip->bli_buf;
559 	bool			aborted;
560 	bool			hold = !!(bip->bli_flags & XFS_BLI_HOLD);
561 	bool			dirty = !!(bip->bli_flags & XFS_BLI_DIRTY);
562 #if defined(DEBUG) || defined(XFS_WARN)
563 	bool			ordered = !!(bip->bli_flags & XFS_BLI_ORDERED);
564 #endif
565 
566 	aborted = test_bit(XFS_LI_ABORTED, &lip->li_flags);
567 
568 	/* Clear the buffer's association with this transaction. */
569 	bp->b_transp = NULL;
570 
571 	/*
572 	 * The per-transaction state has been copied above so clear it from the
573 	 * bli.
574 	 */
575 	bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
576 
577 	/*
578 	 * If the buf item is marked stale, then don't do anything.  We'll
579 	 * unlock the buffer and free the buf item when the buffer is unpinned
580 	 * for the last time.
581 	 */
582 	if (bip->bli_flags & XFS_BLI_STALE) {
583 		trace_xfs_buf_item_unlock_stale(bip);
584 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
585 		if (!aborted) {
586 			atomic_dec(&bip->bli_refcount);
587 			return;
588 		}
589 	}
590 
591 	trace_xfs_buf_item_unlock(bip);
592 
593 	/*
594 	 * If the buf item isn't tracking any data, free it, otherwise drop the
595 	 * reference we hold to it. If we are aborting the transaction, this may
596 	 * be the only reference to the buf item, so we free it anyway
597 	 * regardless of whether it is dirty or not. A dirty abort implies a
598 	 * shutdown, anyway.
599 	 *
600 	 * The bli dirty state should match whether the blf has logged segments
601 	 * except for ordered buffers, where only the bli should be dirty.
602 	 */
603 	ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) ||
604 	       (ordered && dirty && !xfs_buf_item_dirty_format(bip)));
605 
606 	/*
607 	 * Clean buffers, by definition, cannot be in the AIL. However, aborted
608 	 * buffers may be in the AIL regardless of dirty state. An aborted
609 	 * transaction that invalidates a buffer already in the AIL may have
610 	 * marked it stale and cleared the dirty state, for example.
611 	 *
612 	 * Therefore if we are aborting a buffer and we've just taken the last
613 	 * reference away, we have to check if it is in the AIL before freeing
614 	 * it. We need to free it in this case, because an aborted transaction
615 	 * has already shut the filesystem down and this is the last chance we
616 	 * will have to do so.
617 	 */
618 	if (atomic_dec_and_test(&bip->bli_refcount)) {
619 		if (aborted) {
620 			ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp));
621 			xfs_trans_ail_remove(lip, SHUTDOWN_LOG_IO_ERROR);
622 			xfs_buf_item_relse(bp);
623 		} else if (!dirty)
624 			xfs_buf_item_relse(bp);
625 	}
626 
627 	if (!hold)
628 		xfs_buf_relse(bp);
629 }
630 
631 /*
632  * This is called to find out where the oldest active copy of the
633  * buf log item in the on disk log resides now that the last log
634  * write of it completed at the given lsn.
635  * We always re-log all the dirty data in a buffer, so usually the
636  * latest copy in the on disk log is the only one that matters.  For
637  * those cases we simply return the given lsn.
638  *
639  * The one exception to this is for buffers full of newly allocated
640  * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
641  * flag set, indicating that only the di_next_unlinked fields from the
642  * inodes in the buffers will be replayed during recovery.  If the
643  * original newly allocated inode images have not yet been flushed
644  * when the buffer is so relogged, then we need to make sure that we
645  * keep the old images in the 'active' portion of the log.  We do this
646  * by returning the original lsn of that transaction here rather than
647  * the current one.
648  */
649 STATIC xfs_lsn_t
650 xfs_buf_item_committed(
651 	struct xfs_log_item	*lip,
652 	xfs_lsn_t		lsn)
653 {
654 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
655 
656 	trace_xfs_buf_item_committed(bip);
657 
658 	if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
659 		return lip->li_lsn;
660 	return lsn;
661 }
662 
663 STATIC void
664 xfs_buf_item_committing(
665 	struct xfs_log_item	*lip,
666 	xfs_lsn_t		commit_lsn)
667 {
668 }
669 
670 /*
671  * This is the ops vector shared by all buf log items.
672  */
673 static const struct xfs_item_ops xfs_buf_item_ops = {
674 	.iop_size	= xfs_buf_item_size,
675 	.iop_format	= xfs_buf_item_format,
676 	.iop_pin	= xfs_buf_item_pin,
677 	.iop_unpin	= xfs_buf_item_unpin,
678 	.iop_unlock	= xfs_buf_item_unlock,
679 	.iop_committed	= xfs_buf_item_committed,
680 	.iop_push	= xfs_buf_item_push,
681 	.iop_committing = xfs_buf_item_committing
682 };
683 
684 STATIC int
685 xfs_buf_item_get_format(
686 	struct xfs_buf_log_item	*bip,
687 	int			count)
688 {
689 	ASSERT(bip->bli_formats == NULL);
690 	bip->bli_format_count = count;
691 
692 	if (count == 1) {
693 		bip->bli_formats = &bip->__bli_format;
694 		return 0;
695 	}
696 
697 	bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
698 				KM_SLEEP);
699 	if (!bip->bli_formats)
700 		return -ENOMEM;
701 	return 0;
702 }
703 
704 STATIC void
705 xfs_buf_item_free_format(
706 	struct xfs_buf_log_item	*bip)
707 {
708 	if (bip->bli_formats != &bip->__bli_format) {
709 		kmem_free(bip->bli_formats);
710 		bip->bli_formats = NULL;
711 	}
712 }
713 
714 /*
715  * Allocate a new buf log item to go with the given buffer.
716  * Set the buffer's b_log_item field to point to the new
717  * buf log item.
718  */
719 int
720 xfs_buf_item_init(
721 	struct xfs_buf	*bp,
722 	struct xfs_mount *mp)
723 {
724 	struct xfs_buf_log_item	*bip = bp->b_log_item;
725 	int			chunks;
726 	int			map_size;
727 	int			error;
728 	int			i;
729 
730 	/*
731 	 * Check to see if there is already a buf log item for
732 	 * this buffer. If we do already have one, there is
733 	 * nothing to do here so return.
734 	 */
735 	ASSERT(bp->b_target->bt_mount == mp);
736 	if (bip) {
737 		ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
738 		ASSERT(!bp->b_transp);
739 		ASSERT(bip->bli_buf == bp);
740 		return 0;
741 	}
742 
743 	bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
744 	xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
745 	bip->bli_buf = bp;
746 
747 	/*
748 	 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
749 	 * can be divided into. Make sure not to truncate any pieces.
750 	 * map_size is the size of the bitmap needed to describe the
751 	 * chunks of the buffer.
752 	 *
753 	 * Discontiguous buffer support follows the layout of the underlying
754 	 * buffer. This makes the implementation as simple as possible.
755 	 */
756 	error = xfs_buf_item_get_format(bip, bp->b_map_count);
757 	ASSERT(error == 0);
758 	if (error) {	/* to stop gcc throwing set-but-unused warnings */
759 		kmem_zone_free(xfs_buf_item_zone, bip);
760 		return error;
761 	}
762 
763 
764 	for (i = 0; i < bip->bli_format_count; i++) {
765 		chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
766 				      XFS_BLF_CHUNK);
767 		map_size = DIV_ROUND_UP(chunks, NBWORD);
768 
769 		bip->bli_formats[i].blf_type = XFS_LI_BUF;
770 		bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
771 		bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
772 		bip->bli_formats[i].blf_map_size = map_size;
773 	}
774 
775 	bp->b_log_item = bip;
776 	xfs_buf_hold(bp);
777 	return 0;
778 }
779 
780 
781 /*
782  * Mark bytes first through last inclusive as dirty in the buf
783  * item's bitmap.
784  */
785 static void
786 xfs_buf_item_log_segment(
787 	uint			first,
788 	uint			last,
789 	uint			*map)
790 {
791 	uint		first_bit;
792 	uint		last_bit;
793 	uint		bits_to_set;
794 	uint		bits_set;
795 	uint		word_num;
796 	uint		*wordp;
797 	uint		bit;
798 	uint		end_bit;
799 	uint		mask;
800 
801 	/*
802 	 * Convert byte offsets to bit numbers.
803 	 */
804 	first_bit = first >> XFS_BLF_SHIFT;
805 	last_bit = last >> XFS_BLF_SHIFT;
806 
807 	/*
808 	 * Calculate the total number of bits to be set.
809 	 */
810 	bits_to_set = last_bit - first_bit + 1;
811 
812 	/*
813 	 * Get a pointer to the first word in the bitmap
814 	 * to set a bit in.
815 	 */
816 	word_num = first_bit >> BIT_TO_WORD_SHIFT;
817 	wordp = &map[word_num];
818 
819 	/*
820 	 * Calculate the starting bit in the first word.
821 	 */
822 	bit = first_bit & (uint)(NBWORD - 1);
823 
824 	/*
825 	 * First set any bits in the first word of our range.
826 	 * If it starts at bit 0 of the word, it will be
827 	 * set below rather than here.  That is what the variable
828 	 * bit tells us. The variable bits_set tracks the number
829 	 * of bits that have been set so far.  End_bit is the number
830 	 * of the last bit to be set in this word plus one.
831 	 */
832 	if (bit) {
833 		end_bit = min(bit + bits_to_set, (uint)NBWORD);
834 		mask = ((1U << (end_bit - bit)) - 1) << bit;
835 		*wordp |= mask;
836 		wordp++;
837 		bits_set = end_bit - bit;
838 	} else {
839 		bits_set = 0;
840 	}
841 
842 	/*
843 	 * Now set bits a whole word at a time that are between
844 	 * first_bit and last_bit.
845 	 */
846 	while ((bits_to_set - bits_set) >= NBWORD) {
847 		*wordp |= 0xffffffff;
848 		bits_set += NBWORD;
849 		wordp++;
850 	}
851 
852 	/*
853 	 * Finally, set any bits left to be set in one last partial word.
854 	 */
855 	end_bit = bits_to_set - bits_set;
856 	if (end_bit) {
857 		mask = (1U << end_bit) - 1;
858 		*wordp |= mask;
859 	}
860 }
861 
862 /*
863  * Mark bytes first through last inclusive as dirty in the buf
864  * item's bitmap.
865  */
866 void
867 xfs_buf_item_log(
868 	struct xfs_buf_log_item	*bip,
869 	uint			first,
870 	uint			last)
871 {
872 	int			i;
873 	uint			start;
874 	uint			end;
875 	struct xfs_buf		*bp = bip->bli_buf;
876 
877 	/*
878 	 * walk each buffer segment and mark them dirty appropriately.
879 	 */
880 	start = 0;
881 	for (i = 0; i < bip->bli_format_count; i++) {
882 		if (start > last)
883 			break;
884 		end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
885 
886 		/* skip to the map that includes the first byte to log */
887 		if (first > end) {
888 			start += BBTOB(bp->b_maps[i].bm_len);
889 			continue;
890 		}
891 
892 		/*
893 		 * Trim the range to this segment and mark it in the bitmap.
894 		 * Note that we must convert buffer offsets to segment relative
895 		 * offsets (e.g., the first byte of each segment is byte 0 of
896 		 * that segment).
897 		 */
898 		if (first < start)
899 			first = start;
900 		if (end > last)
901 			end = last;
902 		xfs_buf_item_log_segment(first - start, end - start,
903 					 &bip->bli_formats[i].blf_data_map[0]);
904 
905 		start += BBTOB(bp->b_maps[i].bm_len);
906 	}
907 }
908 
909 
910 /*
911  * Return true if the buffer has any ranges logged/dirtied by a transaction,
912  * false otherwise.
913  */
914 bool
915 xfs_buf_item_dirty_format(
916 	struct xfs_buf_log_item	*bip)
917 {
918 	int			i;
919 
920 	for (i = 0; i < bip->bli_format_count; i++) {
921 		if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
922 			     bip->bli_formats[i].blf_map_size))
923 			return true;
924 	}
925 
926 	return false;
927 }
928 
929 STATIC void
930 xfs_buf_item_free(
931 	struct xfs_buf_log_item	*bip)
932 {
933 	xfs_buf_item_free_format(bip);
934 	kmem_free(bip->bli_item.li_lv_shadow);
935 	kmem_zone_free(xfs_buf_item_zone, bip);
936 }
937 
938 /*
939  * This is called when the buf log item is no longer needed.  It should
940  * free the buf log item associated with the given buffer and clear
941  * the buffer's pointer to the buf log item.  If there are no more
942  * items in the list, clear the b_iodone field of the buffer (see
943  * xfs_buf_attach_iodone() below).
944  */
945 void
946 xfs_buf_item_relse(
947 	xfs_buf_t	*bp)
948 {
949 	struct xfs_buf_log_item	*bip = bp->b_log_item;
950 
951 	trace_xfs_buf_item_relse(bp, _RET_IP_);
952 	ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
953 
954 	bp->b_log_item = NULL;
955 	if (list_empty(&bp->b_li_list))
956 		bp->b_iodone = NULL;
957 
958 	xfs_buf_rele(bp);
959 	xfs_buf_item_free(bip);
960 }
961 
962 
963 /*
964  * Add the given log item with its callback to the list of callbacks
965  * to be called when the buffer's I/O completes.  If it is not set
966  * already, set the buffer's b_iodone() routine to be
967  * xfs_buf_iodone_callbacks() and link the log item into the list of
968  * items rooted at b_li_list.
969  */
970 void
971 xfs_buf_attach_iodone(
972 	xfs_buf_t	*bp,
973 	void		(*cb)(xfs_buf_t *, xfs_log_item_t *),
974 	xfs_log_item_t	*lip)
975 {
976 	ASSERT(xfs_buf_islocked(bp));
977 
978 	lip->li_cb = cb;
979 	list_add_tail(&lip->li_bio_list, &bp->b_li_list);
980 
981 	ASSERT(bp->b_iodone == NULL ||
982 	       bp->b_iodone == xfs_buf_iodone_callbacks);
983 	bp->b_iodone = xfs_buf_iodone_callbacks;
984 }
985 
986 /*
987  * We can have many callbacks on a buffer. Running the callbacks individually
988  * can cause a lot of contention on the AIL lock, so we allow for a single
989  * callback to be able to scan the remaining items in bp->b_li_list for other
990  * items of the same type and callback to be processed in the first call.
991  *
992  * As a result, the loop walking the callback list below will also modify the
993  * list. it removes the first item from the list and then runs the callback.
994  * The loop then restarts from the new first item int the list. This allows the
995  * callback to scan and modify the list attached to the buffer and we don't
996  * have to care about maintaining a next item pointer.
997  */
998 STATIC void
999 xfs_buf_do_callbacks(
1000 	struct xfs_buf		*bp)
1001 {
1002 	struct xfs_buf_log_item *blip = bp->b_log_item;
1003 	struct xfs_log_item	*lip;
1004 
1005 	/* If there is a buf_log_item attached, run its callback */
1006 	if (blip) {
1007 		lip = &blip->bli_item;
1008 		lip->li_cb(bp, lip);
1009 	}
1010 
1011 	while (!list_empty(&bp->b_li_list)) {
1012 		lip = list_first_entry(&bp->b_li_list, struct xfs_log_item,
1013 				       li_bio_list);
1014 
1015 		/*
1016 		 * Remove the item from the list, so we don't have any
1017 		 * confusion if the item is added to another buf.
1018 		 * Don't touch the log item after calling its
1019 		 * callback, because it could have freed itself.
1020 		 */
1021 		list_del_init(&lip->li_bio_list);
1022 		lip->li_cb(bp, lip);
1023 	}
1024 }
1025 
1026 /*
1027  * Invoke the error state callback for each log item affected by the failed I/O.
1028  *
1029  * If a metadata buffer write fails with a non-permanent error, the buffer is
1030  * eventually resubmitted and so the completion callbacks are not run. The error
1031  * state may need to be propagated to the log items attached to the buffer,
1032  * however, so the next AIL push of the item knows hot to handle it correctly.
1033  */
1034 STATIC void
1035 xfs_buf_do_callbacks_fail(
1036 	struct xfs_buf		*bp)
1037 {
1038 	struct xfs_log_item	*lip;
1039 	struct xfs_ail		*ailp;
1040 
1041 	/*
1042 	 * Buffer log item errors are handled directly by xfs_buf_item_push()
1043 	 * and xfs_buf_iodone_callback_error, and they have no IO error
1044 	 * callbacks. Check only for items in b_li_list.
1045 	 */
1046 	if (list_empty(&bp->b_li_list))
1047 		return;
1048 
1049 	lip = list_first_entry(&bp->b_li_list, struct xfs_log_item,
1050 			li_bio_list);
1051 	ailp = lip->li_ailp;
1052 	spin_lock(&ailp->ail_lock);
1053 	list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
1054 		if (lip->li_ops->iop_error)
1055 			lip->li_ops->iop_error(lip, bp);
1056 	}
1057 	spin_unlock(&ailp->ail_lock);
1058 }
1059 
1060 static bool
1061 xfs_buf_iodone_callback_error(
1062 	struct xfs_buf		*bp)
1063 {
1064 	struct xfs_buf_log_item	*bip = bp->b_log_item;
1065 	struct xfs_log_item	*lip;
1066 	struct xfs_mount	*mp;
1067 	static ulong		lasttime;
1068 	static xfs_buftarg_t	*lasttarg;
1069 	struct xfs_error_cfg	*cfg;
1070 
1071 	/*
1072 	 * The failed buffer might not have a buf_log_item attached or the
1073 	 * log_item list might be empty. Get the mp from the available
1074 	 * xfs_log_item
1075 	 */
1076 	lip = list_first_entry_or_null(&bp->b_li_list, struct xfs_log_item,
1077 				       li_bio_list);
1078 	mp = lip ? lip->li_mountp : bip->bli_item.li_mountp;
1079 
1080 	/*
1081 	 * If we've already decided to shutdown the filesystem because of
1082 	 * I/O errors, there's no point in giving this a retry.
1083 	 */
1084 	if (XFS_FORCED_SHUTDOWN(mp))
1085 		goto out_stale;
1086 
1087 	if (bp->b_target != lasttarg ||
1088 	    time_after(jiffies, (lasttime + 5*HZ))) {
1089 		lasttime = jiffies;
1090 		xfs_buf_ioerror_alert(bp, __func__);
1091 	}
1092 	lasttarg = bp->b_target;
1093 
1094 	/* synchronous writes will have callers process the error */
1095 	if (!(bp->b_flags & XBF_ASYNC))
1096 		goto out_stale;
1097 
1098 	trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1099 	ASSERT(bp->b_iodone != NULL);
1100 
1101 	cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1102 
1103 	/*
1104 	 * If the write was asynchronous then no one will be looking for the
1105 	 * error.  If this is the first failure of this type, clear the error
1106 	 * state and write the buffer out again. This means we always retry an
1107 	 * async write failure at least once, but we also need to set the buffer
1108 	 * up to behave correctly now for repeated failures.
1109 	 */
1110 	if (!(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL)) ||
1111 	     bp->b_last_error != bp->b_error) {
1112 		bp->b_flags |= (XBF_WRITE | XBF_DONE | XBF_WRITE_FAIL);
1113 		bp->b_last_error = bp->b_error;
1114 		if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1115 		    !bp->b_first_retry_time)
1116 			bp->b_first_retry_time = jiffies;
1117 
1118 		xfs_buf_ioerror(bp, 0);
1119 		xfs_buf_submit(bp);
1120 		return true;
1121 	}
1122 
1123 	/*
1124 	 * Repeated failure on an async write. Take action according to the
1125 	 * error configuration we have been set up to use.
1126 	 */
1127 
1128 	if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1129 	    ++bp->b_retries > cfg->max_retries)
1130 			goto permanent_error;
1131 	if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1132 	    time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1133 			goto permanent_error;
1134 
1135 	/* At unmount we may treat errors differently */
1136 	if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount)
1137 		goto permanent_error;
1138 
1139 	/*
1140 	 * Still a transient error, run IO completion failure callbacks and let
1141 	 * the higher layers retry the buffer.
1142 	 */
1143 	xfs_buf_do_callbacks_fail(bp);
1144 	xfs_buf_ioerror(bp, 0);
1145 	xfs_buf_relse(bp);
1146 	return true;
1147 
1148 	/*
1149 	 * Permanent error - we need to trigger a shutdown if we haven't already
1150 	 * to indicate that inconsistency will result from this action.
1151 	 */
1152 permanent_error:
1153 	xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1154 out_stale:
1155 	xfs_buf_stale(bp);
1156 	bp->b_flags |= XBF_DONE;
1157 	trace_xfs_buf_error_relse(bp, _RET_IP_);
1158 	return false;
1159 }
1160 
1161 /*
1162  * This is the iodone() function for buffers which have had callbacks attached
1163  * to them by xfs_buf_attach_iodone(). We need to iterate the items on the
1164  * callback list, mark the buffer as having no more callbacks and then push the
1165  * buffer through IO completion processing.
1166  */
1167 void
1168 xfs_buf_iodone_callbacks(
1169 	struct xfs_buf		*bp)
1170 {
1171 	/*
1172 	 * If there is an error, process it. Some errors require us
1173 	 * to run callbacks after failure processing is done so we
1174 	 * detect that and take appropriate action.
1175 	 */
1176 	if (bp->b_error && xfs_buf_iodone_callback_error(bp))
1177 		return;
1178 
1179 	/*
1180 	 * Successful IO or permanent error. Either way, we can clear the
1181 	 * retry state here in preparation for the next error that may occur.
1182 	 */
1183 	bp->b_last_error = 0;
1184 	bp->b_retries = 0;
1185 	bp->b_first_retry_time = 0;
1186 
1187 	xfs_buf_do_callbacks(bp);
1188 	bp->b_log_item = NULL;
1189 	list_del_init(&bp->b_li_list);
1190 	bp->b_iodone = NULL;
1191 	xfs_buf_ioend(bp);
1192 }
1193 
1194 /*
1195  * This is the iodone() function for buffers which have been
1196  * logged.  It is called when they are eventually flushed out.
1197  * It should remove the buf item from the AIL, and free the buf item.
1198  * It is called by xfs_buf_iodone_callbacks() above which will take
1199  * care of cleaning up the buffer itself.
1200  */
1201 void
1202 xfs_buf_iodone(
1203 	struct xfs_buf		*bp,
1204 	struct xfs_log_item	*lip)
1205 {
1206 	struct xfs_ail		*ailp = lip->li_ailp;
1207 
1208 	ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1209 
1210 	xfs_buf_rele(bp);
1211 
1212 	/*
1213 	 * If we are forcibly shutting down, this may well be
1214 	 * off the AIL already. That's because we simulate the
1215 	 * log-committed callbacks to unpin these buffers. Or we may never
1216 	 * have put this item on AIL because of the transaction was
1217 	 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1218 	 *
1219 	 * Either way, AIL is useless if we're forcing a shutdown.
1220 	 */
1221 	spin_lock(&ailp->ail_lock);
1222 	xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
1223 	xfs_buf_item_free(BUF_ITEM(lip));
1224 }
1225 
1226 /*
1227  * Requeue a failed buffer for writeback
1228  *
1229  * Return true if the buffer has been re-queued properly, false otherwise
1230  */
1231 bool
1232 xfs_buf_resubmit_failed_buffers(
1233 	struct xfs_buf		*bp,
1234 	struct list_head	*buffer_list)
1235 {
1236 	struct xfs_log_item	*lip;
1237 
1238 	/*
1239 	 * Clear XFS_LI_FAILED flag from all items before resubmit
1240 	 *
1241 	 * XFS_LI_FAILED set/clear is protected by ail_lock, caller  this
1242 	 * function already have it acquired
1243 	 */
1244 	list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
1245 		xfs_clear_li_failed(lip);
1246 
1247 	/* Add this buffer back to the delayed write list */
1248 	return xfs_buf_delwri_queue(bp, buffer_list);
1249 }
1250