xref: /openbmc/linux/fs/xfs/xfs_buf_item.c (revision d0b73b48)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_error.h"
30 #include "xfs_trace.h"
31 
32 
33 kmem_zone_t	*xfs_buf_item_zone;
34 
35 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
36 {
37 	return container_of(lip, struct xfs_buf_log_item, bli_item);
38 }
39 
40 
41 #ifdef XFS_TRANS_DEBUG
42 /*
43  * This function uses an alternate strategy for tracking the bytes
44  * that the user requests to be logged.  This can then be used
45  * in conjunction with the bli_orig array in the buf log item to
46  * catch bugs in our callers' code.
47  *
48  * We also double check the bits set in xfs_buf_item_log using a
49  * simple algorithm to check that every byte is accounted for.
50  */
51 STATIC void
52 xfs_buf_item_log_debug(
53 	xfs_buf_log_item_t	*bip,
54 	uint			first,
55 	uint			last)
56 {
57 	uint	x;
58 	uint	byte;
59 	uint	nbytes;
60 	uint	chunk_num;
61 	uint	word_num;
62 	uint	bit_num;
63 	uint	bit_set;
64 	uint	*wordp;
65 
66 	ASSERT(bip->bli_logged != NULL);
67 	byte = first;
68 	nbytes = last - first + 1;
69 	bfset(bip->bli_logged, first, nbytes);
70 	for (x = 0; x < nbytes; x++) {
71 		chunk_num = byte >> XFS_BLF_SHIFT;
72 		word_num = chunk_num >> BIT_TO_WORD_SHIFT;
73 		bit_num = chunk_num & (NBWORD - 1);
74 		wordp = &(bip->__bli_format.blf_data_map[word_num]);
75 		bit_set = *wordp & (1 << bit_num);
76 		ASSERT(bit_set);
77 		byte++;
78 	}
79 }
80 
81 /*
82  * This function is called when we flush something into a buffer without
83  * logging it.  This happens for things like inodes which are logged
84  * separately from the buffer.
85  */
86 void
87 xfs_buf_item_flush_log_debug(
88 	xfs_buf_t	*bp,
89 	uint		first,
90 	uint		last)
91 {
92 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
93 	uint			nbytes;
94 
95 	if (bip == NULL || (bip->bli_item.li_type != XFS_LI_BUF))
96 		return;
97 
98 	ASSERT(bip->bli_logged != NULL);
99 	nbytes = last - first + 1;
100 	bfset(bip->bli_logged, first, nbytes);
101 }
102 
103 /*
104  * This function is called to verify that our callers have logged
105  * all the bytes that they changed.
106  *
107  * It does this by comparing the original copy of the buffer stored in
108  * the buf log item's bli_orig array to the current copy of the buffer
109  * and ensuring that all bytes which mismatch are set in the bli_logged
110  * array of the buf log item.
111  */
112 STATIC void
113 xfs_buf_item_log_check(
114 	xfs_buf_log_item_t	*bip)
115 {
116 	char		*orig;
117 	char		*buffer;
118 	int		x;
119 	xfs_buf_t	*bp;
120 
121 	ASSERT(bip->bli_orig != NULL);
122 	ASSERT(bip->bli_logged != NULL);
123 
124 	bp = bip->bli_buf;
125 	ASSERT(bp->b_length > 0);
126 	ASSERT(bp->b_addr != NULL);
127 	orig = bip->bli_orig;
128 	buffer = bp->b_addr;
129 	for (x = 0; x < BBTOB(bp->b_length); x++) {
130 		if (orig[x] != buffer[x] && !btst(bip->bli_logged, x)) {
131 			xfs_emerg(bp->b_mount,
132 				"%s: bip %x buffer %x orig %x index %d",
133 				__func__, bip, bp, orig, x);
134 			ASSERT(0);
135 		}
136 	}
137 }
138 #else
139 #define		xfs_buf_item_log_debug(x,y,z)
140 #define		xfs_buf_item_log_check(x)
141 #endif
142 
143 STATIC void	xfs_buf_do_callbacks(struct xfs_buf *bp);
144 
145 /*
146  * This returns the number of log iovecs needed to log the
147  * given buf log item.
148  *
149  * It calculates this as 1 iovec for the buf log format structure
150  * and 1 for each stretch of non-contiguous chunks to be logged.
151  * Contiguous chunks are logged in a single iovec.
152  *
153  * If the XFS_BLI_STALE flag has been set, then log nothing.
154  */
155 STATIC uint
156 xfs_buf_item_size_segment(
157 	struct xfs_buf_log_item	*bip,
158 	struct xfs_buf_log_format *blfp)
159 {
160 	struct xfs_buf		*bp = bip->bli_buf;
161 	uint			nvecs;
162 	int			next_bit;
163 	int			last_bit;
164 
165 	last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
166 	if (last_bit == -1)
167 		return 0;
168 
169 	/*
170 	 * initial count for a dirty buffer is 2 vectors - the format structure
171 	 * and the first dirty region.
172 	 */
173 	nvecs = 2;
174 
175 	while (last_bit != -1) {
176 		/*
177 		 * This takes the bit number to start looking from and
178 		 * returns the next set bit from there.  It returns -1
179 		 * if there are no more bits set or the start bit is
180 		 * beyond the end of the bitmap.
181 		 */
182 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
183 					last_bit + 1);
184 		/*
185 		 * If we run out of bits, leave the loop,
186 		 * else if we find a new set of bits bump the number of vecs,
187 		 * else keep scanning the current set of bits.
188 		 */
189 		if (next_bit == -1) {
190 			break;
191 		} else if (next_bit != last_bit + 1) {
192 			last_bit = next_bit;
193 			nvecs++;
194 		} else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
195 			   (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
196 			    XFS_BLF_CHUNK)) {
197 			last_bit = next_bit;
198 			nvecs++;
199 		} else {
200 			last_bit++;
201 		}
202 	}
203 
204 	return nvecs;
205 }
206 
207 /*
208  * This returns the number of log iovecs needed to log the given buf log item.
209  *
210  * It calculates this as 1 iovec for the buf log format structure and 1 for each
211  * stretch of non-contiguous chunks to be logged.  Contiguous chunks are logged
212  * in a single iovec.
213  *
214  * Discontiguous buffers need a format structure per region that that is being
215  * logged. This makes the changes in the buffer appear to log recovery as though
216  * they came from separate buffers, just like would occur if multiple buffers
217  * were used instead of a single discontiguous buffer. This enables
218  * discontiguous buffers to be in-memory constructs, completely transparent to
219  * what ends up on disk.
220  *
221  * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
222  * format structures.
223  */
224 STATIC uint
225 xfs_buf_item_size(
226 	struct xfs_log_item	*lip)
227 {
228 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
229 	uint			nvecs;
230 	int			i;
231 
232 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
233 	if (bip->bli_flags & XFS_BLI_STALE) {
234 		/*
235 		 * The buffer is stale, so all we need to log
236 		 * is the buf log format structure with the
237 		 * cancel flag in it.
238 		 */
239 		trace_xfs_buf_item_size_stale(bip);
240 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
241 		return bip->bli_format_count;
242 	}
243 
244 	ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
245 
246 	/*
247 	 * the vector count is based on the number of buffer vectors we have
248 	 * dirty bits in. This will only be greater than one when we have a
249 	 * compound buffer with more than one segment dirty. Hence for compound
250 	 * buffers we need to track which segment the dirty bits correspond to,
251 	 * and when we move from one segment to the next increment the vector
252 	 * count for the extra buf log format structure that will need to be
253 	 * written.
254 	 */
255 	nvecs = 0;
256 	for (i = 0; i < bip->bli_format_count; i++) {
257 		nvecs += xfs_buf_item_size_segment(bip, &bip->bli_formats[i]);
258 	}
259 
260 	trace_xfs_buf_item_size(bip);
261 	return nvecs;
262 }
263 
264 static struct xfs_log_iovec *
265 xfs_buf_item_format_segment(
266 	struct xfs_buf_log_item	*bip,
267 	struct xfs_log_iovec	*vecp,
268 	uint			offset,
269 	struct xfs_buf_log_format *blfp)
270 {
271 	struct xfs_buf	*bp = bip->bli_buf;
272 	uint		base_size;
273 	uint		nvecs;
274 	int		first_bit;
275 	int		last_bit;
276 	int		next_bit;
277 	uint		nbits;
278 	uint		buffer_offset;
279 
280 	/* copy the flags across from the base format item */
281 	blfp->blf_flags = bip->__bli_format.blf_flags;
282 
283 	/*
284 	 * Base size is the actual size of the ondisk structure - it reflects
285 	 * the actual size of the dirty bitmap rather than the size of the in
286 	 * memory structure.
287 	 */
288 	base_size = offsetof(struct xfs_buf_log_format, blf_data_map) +
289 			(blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
290 
291 	nvecs = 0;
292 	first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
293 	if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
294 		/*
295 		 * If the map is not be dirty in the transaction, mark
296 		 * the size as zero and do not advance the vector pointer.
297 		 */
298 		goto out;
299 	}
300 
301 	vecp->i_addr = blfp;
302 	vecp->i_len = base_size;
303 	vecp->i_type = XLOG_REG_TYPE_BFORMAT;
304 	vecp++;
305 	nvecs = 1;
306 
307 	if (bip->bli_flags & XFS_BLI_STALE) {
308 		/*
309 		 * The buffer is stale, so all we need to log
310 		 * is the buf log format structure with the
311 		 * cancel flag in it.
312 		 */
313 		trace_xfs_buf_item_format_stale(bip);
314 		ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
315 		goto out;
316 	}
317 
318 	/*
319 	 * Fill in an iovec for each set of contiguous chunks.
320 	 */
321 
322 	last_bit = first_bit;
323 	nbits = 1;
324 	for (;;) {
325 		/*
326 		 * This takes the bit number to start looking from and
327 		 * returns the next set bit from there.  It returns -1
328 		 * if there are no more bits set or the start bit is
329 		 * beyond the end of the bitmap.
330 		 */
331 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
332 					(uint)last_bit + 1);
333 		/*
334 		 * If we run out of bits fill in the last iovec and get
335 		 * out of the loop.
336 		 * Else if we start a new set of bits then fill in the
337 		 * iovec for the series we were looking at and start
338 		 * counting the bits in the new one.
339 		 * Else we're still in the same set of bits so just
340 		 * keep counting and scanning.
341 		 */
342 		if (next_bit == -1) {
343 			buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
344 			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
345 			vecp->i_len = nbits * XFS_BLF_CHUNK;
346 			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
347 			nvecs++;
348 			break;
349 		} else if (next_bit != last_bit + 1) {
350 			buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
351 			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
352 			vecp->i_len = nbits * XFS_BLF_CHUNK;
353 			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
354 			nvecs++;
355 			vecp++;
356 			first_bit = next_bit;
357 			last_bit = next_bit;
358 			nbits = 1;
359 		} else if (xfs_buf_offset(bp, offset +
360 					      (next_bit << XFS_BLF_SHIFT)) !=
361 			   (xfs_buf_offset(bp, offset +
362 					       (last_bit << XFS_BLF_SHIFT)) +
363 			    XFS_BLF_CHUNK)) {
364 			buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
365 			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
366 			vecp->i_len = nbits * XFS_BLF_CHUNK;
367 			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
368 /*
369  * You would think we need to bump the nvecs here too, but we do not
370  * this number is used by recovery, and it gets confused by the boundary
371  * split here
372  *			nvecs++;
373  */
374 			vecp++;
375 			first_bit = next_bit;
376 			last_bit = next_bit;
377 			nbits = 1;
378 		} else {
379 			last_bit++;
380 			nbits++;
381 		}
382 	}
383 out:
384 	blfp->blf_size = nvecs;
385 	return vecp;
386 }
387 
388 /*
389  * This is called to fill in the vector of log iovecs for the
390  * given log buf item.  It fills the first entry with a buf log
391  * format structure, and the rest point to contiguous chunks
392  * within the buffer.
393  */
394 STATIC void
395 xfs_buf_item_format(
396 	struct xfs_log_item	*lip,
397 	struct xfs_log_iovec	*vecp)
398 {
399 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
400 	struct xfs_buf		*bp = bip->bli_buf;
401 	uint			offset = 0;
402 	int			i;
403 
404 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
405 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
406 	       (bip->bli_flags & XFS_BLI_STALE));
407 
408 	/*
409 	 * If it is an inode buffer, transfer the in-memory state to the
410 	 * format flags and clear the in-memory state. We do not transfer
411 	 * this state if the inode buffer allocation has not yet been committed
412 	 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
413 	 * correct replay of the inode allocation.
414 	 */
415 	if (bip->bli_flags & XFS_BLI_INODE_BUF) {
416 		if (!((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
417 		      xfs_log_item_in_current_chkpt(lip)))
418 			bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
419 		bip->bli_flags &= ~XFS_BLI_INODE_BUF;
420 	}
421 
422 	for (i = 0; i < bip->bli_format_count; i++) {
423 		vecp = xfs_buf_item_format_segment(bip, vecp, offset,
424 						&bip->bli_formats[i]);
425 		offset += bp->b_maps[i].bm_len;
426 	}
427 
428 	/*
429 	 * Check to make sure everything is consistent.
430 	 */
431 	trace_xfs_buf_item_format(bip);
432 	xfs_buf_item_log_check(bip);
433 }
434 
435 /*
436  * This is called to pin the buffer associated with the buf log item in memory
437  * so it cannot be written out.
438  *
439  * We also always take a reference to the buffer log item here so that the bli
440  * is held while the item is pinned in memory. This means that we can
441  * unconditionally drop the reference count a transaction holds when the
442  * transaction is completed.
443  */
444 STATIC void
445 xfs_buf_item_pin(
446 	struct xfs_log_item	*lip)
447 {
448 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
449 
450 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
451 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
452 	       (bip->bli_flags & XFS_BLI_STALE));
453 
454 	trace_xfs_buf_item_pin(bip);
455 
456 	atomic_inc(&bip->bli_refcount);
457 	atomic_inc(&bip->bli_buf->b_pin_count);
458 }
459 
460 /*
461  * This is called to unpin the buffer associated with the buf log
462  * item which was previously pinned with a call to xfs_buf_item_pin().
463  *
464  * Also drop the reference to the buf item for the current transaction.
465  * If the XFS_BLI_STALE flag is set and we are the last reference,
466  * then free up the buf log item and unlock the buffer.
467  *
468  * If the remove flag is set we are called from uncommit in the
469  * forced-shutdown path.  If that is true and the reference count on
470  * the log item is going to drop to zero we need to free the item's
471  * descriptor in the transaction.
472  */
473 STATIC void
474 xfs_buf_item_unpin(
475 	struct xfs_log_item	*lip,
476 	int			remove)
477 {
478 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
479 	xfs_buf_t	*bp = bip->bli_buf;
480 	struct xfs_ail	*ailp = lip->li_ailp;
481 	int		stale = bip->bli_flags & XFS_BLI_STALE;
482 	int		freed;
483 
484 	ASSERT(bp->b_fspriv == bip);
485 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
486 
487 	trace_xfs_buf_item_unpin(bip);
488 
489 	freed = atomic_dec_and_test(&bip->bli_refcount);
490 
491 	if (atomic_dec_and_test(&bp->b_pin_count))
492 		wake_up_all(&bp->b_waiters);
493 
494 	if (freed && stale) {
495 		ASSERT(bip->bli_flags & XFS_BLI_STALE);
496 		ASSERT(xfs_buf_islocked(bp));
497 		ASSERT(XFS_BUF_ISSTALE(bp));
498 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
499 
500 		trace_xfs_buf_item_unpin_stale(bip);
501 
502 		if (remove) {
503 			/*
504 			 * If we are in a transaction context, we have to
505 			 * remove the log item from the transaction as we are
506 			 * about to release our reference to the buffer.  If we
507 			 * don't, the unlock that occurs later in
508 			 * xfs_trans_uncommit() will try to reference the
509 			 * buffer which we no longer have a hold on.
510 			 */
511 			if (lip->li_desc)
512 				xfs_trans_del_item(lip);
513 
514 			/*
515 			 * Since the transaction no longer refers to the buffer,
516 			 * the buffer should no longer refer to the transaction.
517 			 */
518 			bp->b_transp = NULL;
519 		}
520 
521 		/*
522 		 * If we get called here because of an IO error, we may
523 		 * or may not have the item on the AIL. xfs_trans_ail_delete()
524 		 * will take care of that situation.
525 		 * xfs_trans_ail_delete() drops the AIL lock.
526 		 */
527 		if (bip->bli_flags & XFS_BLI_STALE_INODE) {
528 			xfs_buf_do_callbacks(bp);
529 			bp->b_fspriv = NULL;
530 			bp->b_iodone = NULL;
531 		} else {
532 			spin_lock(&ailp->xa_lock);
533 			xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
534 			xfs_buf_item_relse(bp);
535 			ASSERT(bp->b_fspriv == NULL);
536 		}
537 		xfs_buf_relse(bp);
538 	} else if (freed && remove) {
539 		/*
540 		 * There are currently two references to the buffer - the active
541 		 * LRU reference and the buf log item. What we are about to do
542 		 * here - simulate a failed IO completion - requires 3
543 		 * references.
544 		 *
545 		 * The LRU reference is removed by the xfs_buf_stale() call. The
546 		 * buf item reference is removed by the xfs_buf_iodone()
547 		 * callback that is run by xfs_buf_do_callbacks() during ioend
548 		 * processing (via the bp->b_iodone callback), and then finally
549 		 * the ioend processing will drop the IO reference if the buffer
550 		 * is marked XBF_ASYNC.
551 		 *
552 		 * Hence we need to take an additional reference here so that IO
553 		 * completion processing doesn't free the buffer prematurely.
554 		 */
555 		xfs_buf_lock(bp);
556 		xfs_buf_hold(bp);
557 		bp->b_flags |= XBF_ASYNC;
558 		xfs_buf_ioerror(bp, EIO);
559 		XFS_BUF_UNDONE(bp);
560 		xfs_buf_stale(bp);
561 		xfs_buf_ioend(bp, 0);
562 	}
563 }
564 
565 STATIC uint
566 xfs_buf_item_push(
567 	struct xfs_log_item	*lip,
568 	struct list_head	*buffer_list)
569 {
570 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
571 	struct xfs_buf		*bp = bip->bli_buf;
572 	uint			rval = XFS_ITEM_SUCCESS;
573 
574 	if (xfs_buf_ispinned(bp))
575 		return XFS_ITEM_PINNED;
576 	if (!xfs_buf_trylock(bp))
577 		return XFS_ITEM_LOCKED;
578 
579 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
580 
581 	trace_xfs_buf_item_push(bip);
582 
583 	if (!xfs_buf_delwri_queue(bp, buffer_list))
584 		rval = XFS_ITEM_FLUSHING;
585 	xfs_buf_unlock(bp);
586 	return rval;
587 }
588 
589 /*
590  * Release the buffer associated with the buf log item.  If there is no dirty
591  * logged data associated with the buffer recorded in the buf log item, then
592  * free the buf log item and remove the reference to it in the buffer.
593  *
594  * This call ignores the recursion count.  It is only called when the buffer
595  * should REALLY be unlocked, regardless of the recursion count.
596  *
597  * We unconditionally drop the transaction's reference to the log item. If the
598  * item was logged, then another reference was taken when it was pinned, so we
599  * can safely drop the transaction reference now.  This also allows us to avoid
600  * potential races with the unpin code freeing the bli by not referencing the
601  * bli after we've dropped the reference count.
602  *
603  * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
604  * if necessary but do not unlock the buffer.  This is for support of
605  * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
606  * free the item.
607  */
608 STATIC void
609 xfs_buf_item_unlock(
610 	struct xfs_log_item	*lip)
611 {
612 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
613 	struct xfs_buf		*bp = bip->bli_buf;
614 	int			aborted, clean, i;
615 	uint			hold;
616 
617 	/* Clear the buffer's association with this transaction. */
618 	bp->b_transp = NULL;
619 
620 	/*
621 	 * If this is a transaction abort, don't return early.  Instead, allow
622 	 * the brelse to happen.  Normally it would be done for stale
623 	 * (cancelled) buffers at unpin time, but we'll never go through the
624 	 * pin/unpin cycle if we abort inside commit.
625 	 */
626 	aborted = (lip->li_flags & XFS_LI_ABORTED) != 0;
627 
628 	/*
629 	 * Before possibly freeing the buf item, determine if we should
630 	 * release the buffer at the end of this routine.
631 	 */
632 	hold = bip->bli_flags & XFS_BLI_HOLD;
633 
634 	/* Clear the per transaction state. */
635 	bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD);
636 
637 	/*
638 	 * If the buf item is marked stale, then don't do anything.  We'll
639 	 * unlock the buffer and free the buf item when the buffer is unpinned
640 	 * for the last time.
641 	 */
642 	if (bip->bli_flags & XFS_BLI_STALE) {
643 		trace_xfs_buf_item_unlock_stale(bip);
644 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
645 		if (!aborted) {
646 			atomic_dec(&bip->bli_refcount);
647 			return;
648 		}
649 	}
650 
651 	trace_xfs_buf_item_unlock(bip);
652 
653 	/*
654 	 * If the buf item isn't tracking any data, free it, otherwise drop the
655 	 * reference we hold to it. If we are aborting the transaction, this may
656 	 * be the only reference to the buf item, so we free it anyway
657 	 * regardless of whether it is dirty or not. A dirty abort implies a
658 	 * shutdown, anyway.
659 	 */
660 	clean = 1;
661 	for (i = 0; i < bip->bli_format_count; i++) {
662 		if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
663 			     bip->bli_formats[i].blf_map_size)) {
664 			clean = 0;
665 			break;
666 		}
667 	}
668 	if (clean)
669 		xfs_buf_item_relse(bp);
670 	else if (aborted) {
671 		if (atomic_dec_and_test(&bip->bli_refcount)) {
672 			ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp));
673 			xfs_buf_item_relse(bp);
674 		}
675 	} else
676 		atomic_dec(&bip->bli_refcount);
677 
678 	if (!hold)
679 		xfs_buf_relse(bp);
680 }
681 
682 /*
683  * This is called to find out where the oldest active copy of the
684  * buf log item in the on disk log resides now that the last log
685  * write of it completed at the given lsn.
686  * We always re-log all the dirty data in a buffer, so usually the
687  * latest copy in the on disk log is the only one that matters.  For
688  * those cases we simply return the given lsn.
689  *
690  * The one exception to this is for buffers full of newly allocated
691  * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
692  * flag set, indicating that only the di_next_unlinked fields from the
693  * inodes in the buffers will be replayed during recovery.  If the
694  * original newly allocated inode images have not yet been flushed
695  * when the buffer is so relogged, then we need to make sure that we
696  * keep the old images in the 'active' portion of the log.  We do this
697  * by returning the original lsn of that transaction here rather than
698  * the current one.
699  */
700 STATIC xfs_lsn_t
701 xfs_buf_item_committed(
702 	struct xfs_log_item	*lip,
703 	xfs_lsn_t		lsn)
704 {
705 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
706 
707 	trace_xfs_buf_item_committed(bip);
708 
709 	if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
710 		return lip->li_lsn;
711 	return lsn;
712 }
713 
714 STATIC void
715 xfs_buf_item_committing(
716 	struct xfs_log_item	*lip,
717 	xfs_lsn_t		commit_lsn)
718 {
719 }
720 
721 /*
722  * This is the ops vector shared by all buf log items.
723  */
724 static const struct xfs_item_ops xfs_buf_item_ops = {
725 	.iop_size	= xfs_buf_item_size,
726 	.iop_format	= xfs_buf_item_format,
727 	.iop_pin	= xfs_buf_item_pin,
728 	.iop_unpin	= xfs_buf_item_unpin,
729 	.iop_unlock	= xfs_buf_item_unlock,
730 	.iop_committed	= xfs_buf_item_committed,
731 	.iop_push	= xfs_buf_item_push,
732 	.iop_committing = xfs_buf_item_committing
733 };
734 
735 STATIC int
736 xfs_buf_item_get_format(
737 	struct xfs_buf_log_item	*bip,
738 	int			count)
739 {
740 	ASSERT(bip->bli_formats == NULL);
741 	bip->bli_format_count = count;
742 
743 	if (count == 1) {
744 		bip->bli_formats = &bip->__bli_format;
745 		return 0;
746 	}
747 
748 	bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
749 				KM_SLEEP);
750 	if (!bip->bli_formats)
751 		return ENOMEM;
752 	return 0;
753 }
754 
755 STATIC void
756 xfs_buf_item_free_format(
757 	struct xfs_buf_log_item	*bip)
758 {
759 	if (bip->bli_formats != &bip->__bli_format) {
760 		kmem_free(bip->bli_formats);
761 		bip->bli_formats = NULL;
762 	}
763 }
764 
765 /*
766  * Allocate a new buf log item to go with the given buffer.
767  * Set the buffer's b_fsprivate field to point to the new
768  * buf log item.  If there are other item's attached to the
769  * buffer (see xfs_buf_attach_iodone() below), then put the
770  * buf log item at the front.
771  */
772 void
773 xfs_buf_item_init(
774 	xfs_buf_t	*bp,
775 	xfs_mount_t	*mp)
776 {
777 	xfs_log_item_t		*lip = bp->b_fspriv;
778 	xfs_buf_log_item_t	*bip;
779 	int			chunks;
780 	int			map_size;
781 	int			error;
782 	int			i;
783 
784 	/*
785 	 * Check to see if there is already a buf log item for
786 	 * this buffer.  If there is, it is guaranteed to be
787 	 * the first.  If we do already have one, there is
788 	 * nothing to do here so return.
789 	 */
790 	ASSERT(bp->b_target->bt_mount == mp);
791 	if (lip != NULL && lip->li_type == XFS_LI_BUF)
792 		return;
793 
794 	bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
795 	xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
796 	bip->bli_buf = bp;
797 	xfs_buf_hold(bp);
798 
799 	/*
800 	 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
801 	 * can be divided into. Make sure not to truncate any pieces.
802 	 * map_size is the size of the bitmap needed to describe the
803 	 * chunks of the buffer.
804 	 *
805 	 * Discontiguous buffer support follows the layout of the underlying
806 	 * buffer. This makes the implementation as simple as possible.
807 	 */
808 	error = xfs_buf_item_get_format(bip, bp->b_map_count);
809 	ASSERT(error == 0);
810 
811 	for (i = 0; i < bip->bli_format_count; i++) {
812 		chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
813 				      XFS_BLF_CHUNK);
814 		map_size = DIV_ROUND_UP(chunks, NBWORD);
815 
816 		bip->bli_formats[i].blf_type = XFS_LI_BUF;
817 		bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
818 		bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
819 		bip->bli_formats[i].blf_map_size = map_size;
820 	}
821 
822 #ifdef XFS_TRANS_DEBUG
823 	/*
824 	 * Allocate the arrays for tracking what needs to be logged
825 	 * and what our callers request to be logged.  bli_orig
826 	 * holds a copy of the original, clean buffer for comparison
827 	 * against, and bli_logged keeps a 1 bit flag per byte in
828 	 * the buffer to indicate which bytes the callers have asked
829 	 * to have logged.
830 	 */
831 	bip->bli_orig = kmem_alloc(BBTOB(bp->b_length), KM_SLEEP);
832 	memcpy(bip->bli_orig, bp->b_addr, BBTOB(bp->b_length));
833 	bip->bli_logged = kmem_zalloc(BBTOB(bp->b_length) / NBBY, KM_SLEEP);
834 #endif
835 
836 	/*
837 	 * Put the buf item into the list of items attached to the
838 	 * buffer at the front.
839 	 */
840 	if (bp->b_fspriv)
841 		bip->bli_item.li_bio_list = bp->b_fspriv;
842 	bp->b_fspriv = bip;
843 }
844 
845 
846 /*
847  * Mark bytes first through last inclusive as dirty in the buf
848  * item's bitmap.
849  */
850 void
851 xfs_buf_item_log_segment(
852 	struct xfs_buf_log_item	*bip,
853 	uint			first,
854 	uint			last,
855 	uint			*map)
856 {
857 	uint		first_bit;
858 	uint		last_bit;
859 	uint		bits_to_set;
860 	uint		bits_set;
861 	uint		word_num;
862 	uint		*wordp;
863 	uint		bit;
864 	uint		end_bit;
865 	uint		mask;
866 
867 	/*
868 	 * Convert byte offsets to bit numbers.
869 	 */
870 	first_bit = first >> XFS_BLF_SHIFT;
871 	last_bit = last >> XFS_BLF_SHIFT;
872 
873 	/*
874 	 * Calculate the total number of bits to be set.
875 	 */
876 	bits_to_set = last_bit - first_bit + 1;
877 
878 	/*
879 	 * Get a pointer to the first word in the bitmap
880 	 * to set a bit in.
881 	 */
882 	word_num = first_bit >> BIT_TO_WORD_SHIFT;
883 	wordp = &map[word_num];
884 
885 	/*
886 	 * Calculate the starting bit in the first word.
887 	 */
888 	bit = first_bit & (uint)(NBWORD - 1);
889 
890 	/*
891 	 * First set any bits in the first word of our range.
892 	 * If it starts at bit 0 of the word, it will be
893 	 * set below rather than here.  That is what the variable
894 	 * bit tells us. The variable bits_set tracks the number
895 	 * of bits that have been set so far.  End_bit is the number
896 	 * of the last bit to be set in this word plus one.
897 	 */
898 	if (bit) {
899 		end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
900 		mask = ((1 << (end_bit - bit)) - 1) << bit;
901 		*wordp |= mask;
902 		wordp++;
903 		bits_set = end_bit - bit;
904 	} else {
905 		bits_set = 0;
906 	}
907 
908 	/*
909 	 * Now set bits a whole word at a time that are between
910 	 * first_bit and last_bit.
911 	 */
912 	while ((bits_to_set - bits_set) >= NBWORD) {
913 		*wordp |= 0xffffffff;
914 		bits_set += NBWORD;
915 		wordp++;
916 	}
917 
918 	/*
919 	 * Finally, set any bits left to be set in one last partial word.
920 	 */
921 	end_bit = bits_to_set - bits_set;
922 	if (end_bit) {
923 		mask = (1 << end_bit) - 1;
924 		*wordp |= mask;
925 	}
926 
927 	xfs_buf_item_log_debug(bip, first, last);
928 }
929 
930 /*
931  * Mark bytes first through last inclusive as dirty in the buf
932  * item's bitmap.
933  */
934 void
935 xfs_buf_item_log(
936 	xfs_buf_log_item_t	*bip,
937 	uint			first,
938 	uint			last)
939 {
940 	int			i;
941 	uint			start;
942 	uint			end;
943 	struct xfs_buf		*bp = bip->bli_buf;
944 
945 	/*
946 	 * Mark the item as having some dirty data for
947 	 * quick reference in xfs_buf_item_dirty.
948 	 */
949 	bip->bli_flags |= XFS_BLI_DIRTY;
950 
951 	/*
952 	 * walk each buffer segment and mark them dirty appropriately.
953 	 */
954 	start = 0;
955 	for (i = 0; i < bip->bli_format_count; i++) {
956 		if (start > last)
957 			break;
958 		end = start + BBTOB(bp->b_maps[i].bm_len);
959 		if (first > end) {
960 			start += BBTOB(bp->b_maps[i].bm_len);
961 			continue;
962 		}
963 		if (first < start)
964 			first = start;
965 		if (end > last)
966 			end = last;
967 
968 		xfs_buf_item_log_segment(bip, first, end,
969 					 &bip->bli_formats[i].blf_data_map[0]);
970 
971 		start += bp->b_maps[i].bm_len;
972 	}
973 }
974 
975 
976 /*
977  * Return 1 if the buffer has some data that has been logged (at any
978  * point, not just the current transaction) and 0 if not.
979  */
980 uint
981 xfs_buf_item_dirty(
982 	xfs_buf_log_item_t	*bip)
983 {
984 	return (bip->bli_flags & XFS_BLI_DIRTY);
985 }
986 
987 STATIC void
988 xfs_buf_item_free(
989 	xfs_buf_log_item_t	*bip)
990 {
991 #ifdef XFS_TRANS_DEBUG
992 	kmem_free(bip->bli_orig);
993 	kmem_free(bip->bli_logged);
994 #endif /* XFS_TRANS_DEBUG */
995 
996 	xfs_buf_item_free_format(bip);
997 	kmem_zone_free(xfs_buf_item_zone, bip);
998 }
999 
1000 /*
1001  * This is called when the buf log item is no longer needed.  It should
1002  * free the buf log item associated with the given buffer and clear
1003  * the buffer's pointer to the buf log item.  If there are no more
1004  * items in the list, clear the b_iodone field of the buffer (see
1005  * xfs_buf_attach_iodone() below).
1006  */
1007 void
1008 xfs_buf_item_relse(
1009 	xfs_buf_t	*bp)
1010 {
1011 	xfs_buf_log_item_t	*bip;
1012 
1013 	trace_xfs_buf_item_relse(bp, _RET_IP_);
1014 
1015 	bip = bp->b_fspriv;
1016 	bp->b_fspriv = bip->bli_item.li_bio_list;
1017 	if (bp->b_fspriv == NULL)
1018 		bp->b_iodone = NULL;
1019 
1020 	xfs_buf_rele(bp);
1021 	xfs_buf_item_free(bip);
1022 }
1023 
1024 
1025 /*
1026  * Add the given log item with its callback to the list of callbacks
1027  * to be called when the buffer's I/O completes.  If it is not set
1028  * already, set the buffer's b_iodone() routine to be
1029  * xfs_buf_iodone_callbacks() and link the log item into the list of
1030  * items rooted at b_fsprivate.  Items are always added as the second
1031  * entry in the list if there is a first, because the buf item code
1032  * assumes that the buf log item is first.
1033  */
1034 void
1035 xfs_buf_attach_iodone(
1036 	xfs_buf_t	*bp,
1037 	void		(*cb)(xfs_buf_t *, xfs_log_item_t *),
1038 	xfs_log_item_t	*lip)
1039 {
1040 	xfs_log_item_t	*head_lip;
1041 
1042 	ASSERT(xfs_buf_islocked(bp));
1043 
1044 	lip->li_cb = cb;
1045 	head_lip = bp->b_fspriv;
1046 	if (head_lip) {
1047 		lip->li_bio_list = head_lip->li_bio_list;
1048 		head_lip->li_bio_list = lip;
1049 	} else {
1050 		bp->b_fspriv = lip;
1051 	}
1052 
1053 	ASSERT(bp->b_iodone == NULL ||
1054 	       bp->b_iodone == xfs_buf_iodone_callbacks);
1055 	bp->b_iodone = xfs_buf_iodone_callbacks;
1056 }
1057 
1058 /*
1059  * We can have many callbacks on a buffer. Running the callbacks individually
1060  * can cause a lot of contention on the AIL lock, so we allow for a single
1061  * callback to be able to scan the remaining lip->li_bio_list for other items
1062  * of the same type and callback to be processed in the first call.
1063  *
1064  * As a result, the loop walking the callback list below will also modify the
1065  * list. it removes the first item from the list and then runs the callback.
1066  * The loop then restarts from the new head of the list. This allows the
1067  * callback to scan and modify the list attached to the buffer and we don't
1068  * have to care about maintaining a next item pointer.
1069  */
1070 STATIC void
1071 xfs_buf_do_callbacks(
1072 	struct xfs_buf		*bp)
1073 {
1074 	struct xfs_log_item	*lip;
1075 
1076 	while ((lip = bp->b_fspriv) != NULL) {
1077 		bp->b_fspriv = lip->li_bio_list;
1078 		ASSERT(lip->li_cb != NULL);
1079 		/*
1080 		 * Clear the next pointer so we don't have any
1081 		 * confusion if the item is added to another buf.
1082 		 * Don't touch the log item after calling its
1083 		 * callback, because it could have freed itself.
1084 		 */
1085 		lip->li_bio_list = NULL;
1086 		lip->li_cb(bp, lip);
1087 	}
1088 }
1089 
1090 /*
1091  * This is the iodone() function for buffers which have had callbacks
1092  * attached to them by xfs_buf_attach_iodone().  It should remove each
1093  * log item from the buffer's list and call the callback of each in turn.
1094  * When done, the buffer's fsprivate field is set to NULL and the buffer
1095  * is unlocked with a call to iodone().
1096  */
1097 void
1098 xfs_buf_iodone_callbacks(
1099 	struct xfs_buf		*bp)
1100 {
1101 	struct xfs_log_item	*lip = bp->b_fspriv;
1102 	struct xfs_mount	*mp = lip->li_mountp;
1103 	static ulong		lasttime;
1104 	static xfs_buftarg_t	*lasttarg;
1105 
1106 	if (likely(!xfs_buf_geterror(bp)))
1107 		goto do_callbacks;
1108 
1109 	/*
1110 	 * If we've already decided to shutdown the filesystem because of
1111 	 * I/O errors, there's no point in giving this a retry.
1112 	 */
1113 	if (XFS_FORCED_SHUTDOWN(mp)) {
1114 		xfs_buf_stale(bp);
1115 		XFS_BUF_DONE(bp);
1116 		trace_xfs_buf_item_iodone(bp, _RET_IP_);
1117 		goto do_callbacks;
1118 	}
1119 
1120 	if (bp->b_target != lasttarg ||
1121 	    time_after(jiffies, (lasttime + 5*HZ))) {
1122 		lasttime = jiffies;
1123 		xfs_buf_ioerror_alert(bp, __func__);
1124 	}
1125 	lasttarg = bp->b_target;
1126 
1127 	/*
1128 	 * If the write was asynchronous then no one will be looking for the
1129 	 * error.  Clear the error state and write the buffer out again.
1130 	 *
1131 	 * XXX: This helps against transient write errors, but we need to find
1132 	 * a way to shut the filesystem down if the writes keep failing.
1133 	 *
1134 	 * In practice we'll shut the filesystem down soon as non-transient
1135 	 * erorrs tend to affect the whole device and a failing log write
1136 	 * will make us give up.  But we really ought to do better here.
1137 	 */
1138 	if (XFS_BUF_ISASYNC(bp)) {
1139 		ASSERT(bp->b_iodone != NULL);
1140 
1141 		trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1142 
1143 		xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */
1144 
1145 		if (!XFS_BUF_ISSTALE(bp)) {
1146 			bp->b_flags |= XBF_WRITE | XBF_ASYNC | XBF_DONE;
1147 			xfs_buf_iorequest(bp);
1148 		} else {
1149 			xfs_buf_relse(bp);
1150 		}
1151 
1152 		return;
1153 	}
1154 
1155 	/*
1156 	 * If the write of the buffer was synchronous, we want to make
1157 	 * sure to return the error to the caller of xfs_bwrite().
1158 	 */
1159 	xfs_buf_stale(bp);
1160 	XFS_BUF_DONE(bp);
1161 
1162 	trace_xfs_buf_error_relse(bp, _RET_IP_);
1163 
1164 do_callbacks:
1165 	xfs_buf_do_callbacks(bp);
1166 	bp->b_fspriv = NULL;
1167 	bp->b_iodone = NULL;
1168 	xfs_buf_ioend(bp, 0);
1169 }
1170 
1171 /*
1172  * This is the iodone() function for buffers which have been
1173  * logged.  It is called when they are eventually flushed out.
1174  * It should remove the buf item from the AIL, and free the buf item.
1175  * It is called by xfs_buf_iodone_callbacks() above which will take
1176  * care of cleaning up the buffer itself.
1177  */
1178 void
1179 xfs_buf_iodone(
1180 	struct xfs_buf		*bp,
1181 	struct xfs_log_item	*lip)
1182 {
1183 	struct xfs_ail		*ailp = lip->li_ailp;
1184 
1185 	ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1186 
1187 	xfs_buf_rele(bp);
1188 
1189 	/*
1190 	 * If we are forcibly shutting down, this may well be
1191 	 * off the AIL already. That's because we simulate the
1192 	 * log-committed callbacks to unpin these buffers. Or we may never
1193 	 * have put this item on AIL because of the transaction was
1194 	 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1195 	 *
1196 	 * Either way, AIL is useless if we're forcing a shutdown.
1197 	 */
1198 	spin_lock(&ailp->xa_lock);
1199 	xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
1200 	xfs_buf_item_free(BUF_ITEM(lip));
1201 }
1202