xref: /openbmc/linux/fs/xfs/xfs_buf_item.c (revision c4c11dd1)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_error.h"
30 #include "xfs_trace.h"
31 
32 
33 kmem_zone_t	*xfs_buf_item_zone;
34 
35 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
36 {
37 	return container_of(lip, struct xfs_buf_log_item, bli_item);
38 }
39 
40 STATIC void	xfs_buf_do_callbacks(struct xfs_buf *bp);
41 
42 /*
43  * This returns the number of log iovecs needed to log the
44  * given buf log item.
45  *
46  * It calculates this as 1 iovec for the buf log format structure
47  * and 1 for each stretch of non-contiguous chunks to be logged.
48  * Contiguous chunks are logged in a single iovec.
49  *
50  * If the XFS_BLI_STALE flag has been set, then log nothing.
51  */
52 STATIC uint
53 xfs_buf_item_size_segment(
54 	struct xfs_buf_log_item	*bip,
55 	struct xfs_buf_log_format *blfp)
56 {
57 	struct xfs_buf		*bp = bip->bli_buf;
58 	uint			nvecs;
59 	int			next_bit;
60 	int			last_bit;
61 
62 	last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
63 	if (last_bit == -1)
64 		return 0;
65 
66 	/*
67 	 * initial count for a dirty buffer is 2 vectors - the format structure
68 	 * and the first dirty region.
69 	 */
70 	nvecs = 2;
71 
72 	while (last_bit != -1) {
73 		/*
74 		 * This takes the bit number to start looking from and
75 		 * returns the next set bit from there.  It returns -1
76 		 * if there are no more bits set or the start bit is
77 		 * beyond the end of the bitmap.
78 		 */
79 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
80 					last_bit + 1);
81 		/*
82 		 * If we run out of bits, leave the loop,
83 		 * else if we find a new set of bits bump the number of vecs,
84 		 * else keep scanning the current set of bits.
85 		 */
86 		if (next_bit == -1) {
87 			break;
88 		} else if (next_bit != last_bit + 1) {
89 			last_bit = next_bit;
90 			nvecs++;
91 		} else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
92 			   (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
93 			    XFS_BLF_CHUNK)) {
94 			last_bit = next_bit;
95 			nvecs++;
96 		} else {
97 			last_bit++;
98 		}
99 	}
100 
101 	return nvecs;
102 }
103 
104 /*
105  * This returns the number of log iovecs needed to log the given buf log item.
106  *
107  * It calculates this as 1 iovec for the buf log format structure and 1 for each
108  * stretch of non-contiguous chunks to be logged.  Contiguous chunks are logged
109  * in a single iovec.
110  *
111  * Discontiguous buffers need a format structure per region that that is being
112  * logged. This makes the changes in the buffer appear to log recovery as though
113  * they came from separate buffers, just like would occur if multiple buffers
114  * were used instead of a single discontiguous buffer. This enables
115  * discontiguous buffers to be in-memory constructs, completely transparent to
116  * what ends up on disk.
117  *
118  * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
119  * format structures.
120  */
121 STATIC uint
122 xfs_buf_item_size(
123 	struct xfs_log_item	*lip)
124 {
125 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
126 	uint			nvecs;
127 	int			i;
128 
129 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
130 	if (bip->bli_flags & XFS_BLI_STALE) {
131 		/*
132 		 * The buffer is stale, so all we need to log
133 		 * is the buf log format structure with the
134 		 * cancel flag in it.
135 		 */
136 		trace_xfs_buf_item_size_stale(bip);
137 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
138 		return bip->bli_format_count;
139 	}
140 
141 	ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
142 
143 	if (bip->bli_flags & XFS_BLI_ORDERED) {
144 		/*
145 		 * The buffer has been logged just to order it.
146 		 * It is not being included in the transaction
147 		 * commit, so no vectors are used at all.
148 		 */
149 		trace_xfs_buf_item_size_ordered(bip);
150 		return XFS_LOG_VEC_ORDERED;
151 	}
152 
153 	/*
154 	 * the vector count is based on the number of buffer vectors we have
155 	 * dirty bits in. This will only be greater than one when we have a
156 	 * compound buffer with more than one segment dirty. Hence for compound
157 	 * buffers we need to track which segment the dirty bits correspond to,
158 	 * and when we move from one segment to the next increment the vector
159 	 * count for the extra buf log format structure that will need to be
160 	 * written.
161 	 */
162 	nvecs = 0;
163 	for (i = 0; i < bip->bli_format_count; i++) {
164 		nvecs += xfs_buf_item_size_segment(bip, &bip->bli_formats[i]);
165 	}
166 
167 	trace_xfs_buf_item_size(bip);
168 	return nvecs;
169 }
170 
171 static struct xfs_log_iovec *
172 xfs_buf_item_format_segment(
173 	struct xfs_buf_log_item	*bip,
174 	struct xfs_log_iovec	*vecp,
175 	uint			offset,
176 	struct xfs_buf_log_format *blfp)
177 {
178 	struct xfs_buf	*bp = bip->bli_buf;
179 	uint		base_size;
180 	uint		nvecs;
181 	int		first_bit;
182 	int		last_bit;
183 	int		next_bit;
184 	uint		nbits;
185 	uint		buffer_offset;
186 
187 	/* copy the flags across from the base format item */
188 	blfp->blf_flags = bip->__bli_format.blf_flags;
189 
190 	/*
191 	 * Base size is the actual size of the ondisk structure - it reflects
192 	 * the actual size of the dirty bitmap rather than the size of the in
193 	 * memory structure.
194 	 */
195 	base_size = offsetof(struct xfs_buf_log_format, blf_data_map) +
196 			(blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
197 
198 	nvecs = 0;
199 	first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
200 	if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
201 		/*
202 		 * If the map is not be dirty in the transaction, mark
203 		 * the size as zero and do not advance the vector pointer.
204 		 */
205 		goto out;
206 	}
207 
208 	vecp->i_addr = blfp;
209 	vecp->i_len = base_size;
210 	vecp->i_type = XLOG_REG_TYPE_BFORMAT;
211 	vecp++;
212 	nvecs = 1;
213 
214 	if (bip->bli_flags & XFS_BLI_STALE) {
215 		/*
216 		 * The buffer is stale, so all we need to log
217 		 * is the buf log format structure with the
218 		 * cancel flag in it.
219 		 */
220 		trace_xfs_buf_item_format_stale(bip);
221 		ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
222 		goto out;
223 	}
224 
225 
226 	/*
227 	 * Fill in an iovec for each set of contiguous chunks.
228 	 */
229 
230 	last_bit = first_bit;
231 	nbits = 1;
232 	for (;;) {
233 		/*
234 		 * This takes the bit number to start looking from and
235 		 * returns the next set bit from there.  It returns -1
236 		 * if there are no more bits set or the start bit is
237 		 * beyond the end of the bitmap.
238 		 */
239 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
240 					(uint)last_bit + 1);
241 		/*
242 		 * If we run out of bits fill in the last iovec and get
243 		 * out of the loop.
244 		 * Else if we start a new set of bits then fill in the
245 		 * iovec for the series we were looking at and start
246 		 * counting the bits in the new one.
247 		 * Else we're still in the same set of bits so just
248 		 * keep counting and scanning.
249 		 */
250 		if (next_bit == -1) {
251 			buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
252 			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
253 			vecp->i_len = nbits * XFS_BLF_CHUNK;
254 			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
255 			nvecs++;
256 			break;
257 		} else if (next_bit != last_bit + 1) {
258 			buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
259 			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
260 			vecp->i_len = nbits * XFS_BLF_CHUNK;
261 			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
262 			nvecs++;
263 			vecp++;
264 			first_bit = next_bit;
265 			last_bit = next_bit;
266 			nbits = 1;
267 		} else if (xfs_buf_offset(bp, offset +
268 					      (next_bit << XFS_BLF_SHIFT)) !=
269 			   (xfs_buf_offset(bp, offset +
270 					       (last_bit << XFS_BLF_SHIFT)) +
271 			    XFS_BLF_CHUNK)) {
272 			buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
273 			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
274 			vecp->i_len = nbits * XFS_BLF_CHUNK;
275 			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
276 			nvecs++;
277 			vecp++;
278 			first_bit = next_bit;
279 			last_bit = next_bit;
280 			nbits = 1;
281 		} else {
282 			last_bit++;
283 			nbits++;
284 		}
285 	}
286 out:
287 	blfp->blf_size = nvecs;
288 	return vecp;
289 }
290 
291 /*
292  * This is called to fill in the vector of log iovecs for the
293  * given log buf item.  It fills the first entry with a buf log
294  * format structure, and the rest point to contiguous chunks
295  * within the buffer.
296  */
297 STATIC void
298 xfs_buf_item_format(
299 	struct xfs_log_item	*lip,
300 	struct xfs_log_iovec	*vecp)
301 {
302 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
303 	struct xfs_buf		*bp = bip->bli_buf;
304 	uint			offset = 0;
305 	int			i;
306 
307 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
308 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
309 	       (bip->bli_flags & XFS_BLI_STALE));
310 
311 	/*
312 	 * If it is an inode buffer, transfer the in-memory state to the
313 	 * format flags and clear the in-memory state.
314 	 *
315 	 * For buffer based inode allocation, we do not transfer
316 	 * this state if the inode buffer allocation has not yet been committed
317 	 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
318 	 * correct replay of the inode allocation.
319 	 *
320 	 * For icreate item based inode allocation, the buffers aren't written
321 	 * to the journal during allocation, and hence we should always tag the
322 	 * buffer as an inode buffer so that the correct unlinked list replay
323 	 * occurs during recovery.
324 	 */
325 	if (bip->bli_flags & XFS_BLI_INODE_BUF) {
326 		if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) ||
327 		    !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
328 		      xfs_log_item_in_current_chkpt(lip)))
329 			bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
330 		bip->bli_flags &= ~XFS_BLI_INODE_BUF;
331 	}
332 
333 	if ((bip->bli_flags & (XFS_BLI_ORDERED|XFS_BLI_STALE)) ==
334 							XFS_BLI_ORDERED) {
335 		/*
336 		 * The buffer has been logged just to order it.  It is not being
337 		 * included in the transaction commit, so don't format it.
338 		 */
339 		trace_xfs_buf_item_format_ordered(bip);
340 		return;
341 	}
342 
343 	for (i = 0; i < bip->bli_format_count; i++) {
344 		vecp = xfs_buf_item_format_segment(bip, vecp, offset,
345 						&bip->bli_formats[i]);
346 		offset += bp->b_maps[i].bm_len;
347 	}
348 
349 	/*
350 	 * Check to make sure everything is consistent.
351 	 */
352 	trace_xfs_buf_item_format(bip);
353 }
354 
355 /*
356  * This is called to pin the buffer associated with the buf log item in memory
357  * so it cannot be written out.
358  *
359  * We also always take a reference to the buffer log item here so that the bli
360  * is held while the item is pinned in memory. This means that we can
361  * unconditionally drop the reference count a transaction holds when the
362  * transaction is completed.
363  */
364 STATIC void
365 xfs_buf_item_pin(
366 	struct xfs_log_item	*lip)
367 {
368 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
369 
370 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
371 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
372 	       (bip->bli_flags & XFS_BLI_ORDERED) ||
373 	       (bip->bli_flags & XFS_BLI_STALE));
374 
375 	trace_xfs_buf_item_pin(bip);
376 
377 	atomic_inc(&bip->bli_refcount);
378 	atomic_inc(&bip->bli_buf->b_pin_count);
379 }
380 
381 /*
382  * This is called to unpin the buffer associated with the buf log
383  * item which was previously pinned with a call to xfs_buf_item_pin().
384  *
385  * Also drop the reference to the buf item for the current transaction.
386  * If the XFS_BLI_STALE flag is set and we are the last reference,
387  * then free up the buf log item and unlock the buffer.
388  *
389  * If the remove flag is set we are called from uncommit in the
390  * forced-shutdown path.  If that is true and the reference count on
391  * the log item is going to drop to zero we need to free the item's
392  * descriptor in the transaction.
393  */
394 STATIC void
395 xfs_buf_item_unpin(
396 	struct xfs_log_item	*lip,
397 	int			remove)
398 {
399 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
400 	xfs_buf_t	*bp = bip->bli_buf;
401 	struct xfs_ail	*ailp = lip->li_ailp;
402 	int		stale = bip->bli_flags & XFS_BLI_STALE;
403 	int		freed;
404 
405 	ASSERT(bp->b_fspriv == bip);
406 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
407 
408 	trace_xfs_buf_item_unpin(bip);
409 
410 	freed = atomic_dec_and_test(&bip->bli_refcount);
411 
412 	if (atomic_dec_and_test(&bp->b_pin_count))
413 		wake_up_all(&bp->b_waiters);
414 
415 	if (freed && stale) {
416 		ASSERT(bip->bli_flags & XFS_BLI_STALE);
417 		ASSERT(xfs_buf_islocked(bp));
418 		ASSERT(XFS_BUF_ISSTALE(bp));
419 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
420 
421 		trace_xfs_buf_item_unpin_stale(bip);
422 
423 		if (remove) {
424 			/*
425 			 * If we are in a transaction context, we have to
426 			 * remove the log item from the transaction as we are
427 			 * about to release our reference to the buffer.  If we
428 			 * don't, the unlock that occurs later in
429 			 * xfs_trans_uncommit() will try to reference the
430 			 * buffer which we no longer have a hold on.
431 			 */
432 			if (lip->li_desc)
433 				xfs_trans_del_item(lip);
434 
435 			/*
436 			 * Since the transaction no longer refers to the buffer,
437 			 * the buffer should no longer refer to the transaction.
438 			 */
439 			bp->b_transp = NULL;
440 		}
441 
442 		/*
443 		 * If we get called here because of an IO error, we may
444 		 * or may not have the item on the AIL. xfs_trans_ail_delete()
445 		 * will take care of that situation.
446 		 * xfs_trans_ail_delete() drops the AIL lock.
447 		 */
448 		if (bip->bli_flags & XFS_BLI_STALE_INODE) {
449 			xfs_buf_do_callbacks(bp);
450 			bp->b_fspriv = NULL;
451 			bp->b_iodone = NULL;
452 		} else {
453 			spin_lock(&ailp->xa_lock);
454 			xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
455 			xfs_buf_item_relse(bp);
456 			ASSERT(bp->b_fspriv == NULL);
457 		}
458 		xfs_buf_relse(bp);
459 	} else if (freed && remove) {
460 		/*
461 		 * There are currently two references to the buffer - the active
462 		 * LRU reference and the buf log item. What we are about to do
463 		 * here - simulate a failed IO completion - requires 3
464 		 * references.
465 		 *
466 		 * The LRU reference is removed by the xfs_buf_stale() call. The
467 		 * buf item reference is removed by the xfs_buf_iodone()
468 		 * callback that is run by xfs_buf_do_callbacks() during ioend
469 		 * processing (via the bp->b_iodone callback), and then finally
470 		 * the ioend processing will drop the IO reference if the buffer
471 		 * is marked XBF_ASYNC.
472 		 *
473 		 * Hence we need to take an additional reference here so that IO
474 		 * completion processing doesn't free the buffer prematurely.
475 		 */
476 		xfs_buf_lock(bp);
477 		xfs_buf_hold(bp);
478 		bp->b_flags |= XBF_ASYNC;
479 		xfs_buf_ioerror(bp, EIO);
480 		XFS_BUF_UNDONE(bp);
481 		xfs_buf_stale(bp);
482 		xfs_buf_ioend(bp, 0);
483 	}
484 }
485 
486 STATIC uint
487 xfs_buf_item_push(
488 	struct xfs_log_item	*lip,
489 	struct list_head	*buffer_list)
490 {
491 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
492 	struct xfs_buf		*bp = bip->bli_buf;
493 	uint			rval = XFS_ITEM_SUCCESS;
494 
495 	if (xfs_buf_ispinned(bp))
496 		return XFS_ITEM_PINNED;
497 	if (!xfs_buf_trylock(bp)) {
498 		/*
499 		 * If we have just raced with a buffer being pinned and it has
500 		 * been marked stale, we could end up stalling until someone else
501 		 * issues a log force to unpin the stale buffer. Check for the
502 		 * race condition here so xfsaild recognizes the buffer is pinned
503 		 * and queues a log force to move it along.
504 		 */
505 		if (xfs_buf_ispinned(bp))
506 			return XFS_ITEM_PINNED;
507 		return XFS_ITEM_LOCKED;
508 	}
509 
510 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
511 
512 	trace_xfs_buf_item_push(bip);
513 
514 	if (!xfs_buf_delwri_queue(bp, buffer_list))
515 		rval = XFS_ITEM_FLUSHING;
516 	xfs_buf_unlock(bp);
517 	return rval;
518 }
519 
520 /*
521  * Release the buffer associated with the buf log item.  If there is no dirty
522  * logged data associated with the buffer recorded in the buf log item, then
523  * free the buf log item and remove the reference to it in the buffer.
524  *
525  * This call ignores the recursion count.  It is only called when the buffer
526  * should REALLY be unlocked, regardless of the recursion count.
527  *
528  * We unconditionally drop the transaction's reference to the log item. If the
529  * item was logged, then another reference was taken when it was pinned, so we
530  * can safely drop the transaction reference now.  This also allows us to avoid
531  * potential races with the unpin code freeing the bli by not referencing the
532  * bli after we've dropped the reference count.
533  *
534  * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
535  * if necessary but do not unlock the buffer.  This is for support of
536  * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
537  * free the item.
538  */
539 STATIC void
540 xfs_buf_item_unlock(
541 	struct xfs_log_item	*lip)
542 {
543 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
544 	struct xfs_buf		*bp = bip->bli_buf;
545 	bool			clean;
546 	bool			aborted;
547 	int			flags;
548 
549 	/* Clear the buffer's association with this transaction. */
550 	bp->b_transp = NULL;
551 
552 	/*
553 	 * If this is a transaction abort, don't return early.  Instead, allow
554 	 * the brelse to happen.  Normally it would be done for stale
555 	 * (cancelled) buffers at unpin time, but we'll never go through the
556 	 * pin/unpin cycle if we abort inside commit.
557 	 */
558 	aborted = (lip->li_flags & XFS_LI_ABORTED) ? true : false;
559 	/*
560 	 * Before possibly freeing the buf item, copy the per-transaction state
561 	 * so we can reference it safely later after clearing it from the
562 	 * buffer log item.
563 	 */
564 	flags = bip->bli_flags;
565 	bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
566 
567 	/*
568 	 * If the buf item is marked stale, then don't do anything.  We'll
569 	 * unlock the buffer and free the buf item when the buffer is unpinned
570 	 * for the last time.
571 	 */
572 	if (flags & XFS_BLI_STALE) {
573 		trace_xfs_buf_item_unlock_stale(bip);
574 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
575 		if (!aborted) {
576 			atomic_dec(&bip->bli_refcount);
577 			return;
578 		}
579 	}
580 
581 	trace_xfs_buf_item_unlock(bip);
582 
583 	/*
584 	 * If the buf item isn't tracking any data, free it, otherwise drop the
585 	 * reference we hold to it. If we are aborting the transaction, this may
586 	 * be the only reference to the buf item, so we free it anyway
587 	 * regardless of whether it is dirty or not. A dirty abort implies a
588 	 * shutdown, anyway.
589 	 *
590 	 * Ordered buffers are dirty but may have no recorded changes, so ensure
591 	 * we only release clean items here.
592 	 */
593 	clean = (flags & XFS_BLI_DIRTY) ? false : true;
594 	if (clean) {
595 		int i;
596 		for (i = 0; i < bip->bli_format_count; i++) {
597 			if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
598 				     bip->bli_formats[i].blf_map_size)) {
599 				clean = false;
600 				break;
601 			}
602 		}
603 	}
604 	if (clean)
605 		xfs_buf_item_relse(bp);
606 	else if (aborted) {
607 		if (atomic_dec_and_test(&bip->bli_refcount)) {
608 			ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp));
609 			xfs_buf_item_relse(bp);
610 		}
611 	} else
612 		atomic_dec(&bip->bli_refcount);
613 
614 	if (!(flags & XFS_BLI_HOLD))
615 		xfs_buf_relse(bp);
616 }
617 
618 /*
619  * This is called to find out where the oldest active copy of the
620  * buf log item in the on disk log resides now that the last log
621  * write of it completed at the given lsn.
622  * We always re-log all the dirty data in a buffer, so usually the
623  * latest copy in the on disk log is the only one that matters.  For
624  * those cases we simply return the given lsn.
625  *
626  * The one exception to this is for buffers full of newly allocated
627  * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
628  * flag set, indicating that only the di_next_unlinked fields from the
629  * inodes in the buffers will be replayed during recovery.  If the
630  * original newly allocated inode images have not yet been flushed
631  * when the buffer is so relogged, then we need to make sure that we
632  * keep the old images in the 'active' portion of the log.  We do this
633  * by returning the original lsn of that transaction here rather than
634  * the current one.
635  */
636 STATIC xfs_lsn_t
637 xfs_buf_item_committed(
638 	struct xfs_log_item	*lip,
639 	xfs_lsn_t		lsn)
640 {
641 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
642 
643 	trace_xfs_buf_item_committed(bip);
644 
645 	if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
646 		return lip->li_lsn;
647 	return lsn;
648 }
649 
650 STATIC void
651 xfs_buf_item_committing(
652 	struct xfs_log_item	*lip,
653 	xfs_lsn_t		commit_lsn)
654 {
655 }
656 
657 /*
658  * This is the ops vector shared by all buf log items.
659  */
660 static const struct xfs_item_ops xfs_buf_item_ops = {
661 	.iop_size	= xfs_buf_item_size,
662 	.iop_format	= xfs_buf_item_format,
663 	.iop_pin	= xfs_buf_item_pin,
664 	.iop_unpin	= xfs_buf_item_unpin,
665 	.iop_unlock	= xfs_buf_item_unlock,
666 	.iop_committed	= xfs_buf_item_committed,
667 	.iop_push	= xfs_buf_item_push,
668 	.iop_committing = xfs_buf_item_committing
669 };
670 
671 STATIC int
672 xfs_buf_item_get_format(
673 	struct xfs_buf_log_item	*bip,
674 	int			count)
675 {
676 	ASSERT(bip->bli_formats == NULL);
677 	bip->bli_format_count = count;
678 
679 	if (count == 1) {
680 		bip->bli_formats = &bip->__bli_format;
681 		return 0;
682 	}
683 
684 	bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
685 				KM_SLEEP);
686 	if (!bip->bli_formats)
687 		return ENOMEM;
688 	return 0;
689 }
690 
691 STATIC void
692 xfs_buf_item_free_format(
693 	struct xfs_buf_log_item	*bip)
694 {
695 	if (bip->bli_formats != &bip->__bli_format) {
696 		kmem_free(bip->bli_formats);
697 		bip->bli_formats = NULL;
698 	}
699 }
700 
701 /*
702  * Allocate a new buf log item to go with the given buffer.
703  * Set the buffer's b_fsprivate field to point to the new
704  * buf log item.  If there are other item's attached to the
705  * buffer (see xfs_buf_attach_iodone() below), then put the
706  * buf log item at the front.
707  */
708 void
709 xfs_buf_item_init(
710 	xfs_buf_t	*bp,
711 	xfs_mount_t	*mp)
712 {
713 	xfs_log_item_t		*lip = bp->b_fspriv;
714 	xfs_buf_log_item_t	*bip;
715 	int			chunks;
716 	int			map_size;
717 	int			error;
718 	int			i;
719 
720 	/*
721 	 * Check to see if there is already a buf log item for
722 	 * this buffer.  If there is, it is guaranteed to be
723 	 * the first.  If we do already have one, there is
724 	 * nothing to do here so return.
725 	 */
726 	ASSERT(bp->b_target->bt_mount == mp);
727 	if (lip != NULL && lip->li_type == XFS_LI_BUF)
728 		return;
729 
730 	bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
731 	xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
732 	bip->bli_buf = bp;
733 	xfs_buf_hold(bp);
734 
735 	/*
736 	 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
737 	 * can be divided into. Make sure not to truncate any pieces.
738 	 * map_size is the size of the bitmap needed to describe the
739 	 * chunks of the buffer.
740 	 *
741 	 * Discontiguous buffer support follows the layout of the underlying
742 	 * buffer. This makes the implementation as simple as possible.
743 	 */
744 	error = xfs_buf_item_get_format(bip, bp->b_map_count);
745 	ASSERT(error == 0);
746 
747 	for (i = 0; i < bip->bli_format_count; i++) {
748 		chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
749 				      XFS_BLF_CHUNK);
750 		map_size = DIV_ROUND_UP(chunks, NBWORD);
751 
752 		bip->bli_formats[i].blf_type = XFS_LI_BUF;
753 		bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
754 		bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
755 		bip->bli_formats[i].blf_map_size = map_size;
756 	}
757 
758 #ifdef XFS_TRANS_DEBUG
759 	/*
760 	 * Allocate the arrays for tracking what needs to be logged
761 	 * and what our callers request to be logged.  bli_orig
762 	 * holds a copy of the original, clean buffer for comparison
763 	 * against, and bli_logged keeps a 1 bit flag per byte in
764 	 * the buffer to indicate which bytes the callers have asked
765 	 * to have logged.
766 	 */
767 	bip->bli_orig = kmem_alloc(BBTOB(bp->b_length), KM_SLEEP);
768 	memcpy(bip->bli_orig, bp->b_addr, BBTOB(bp->b_length));
769 	bip->bli_logged = kmem_zalloc(BBTOB(bp->b_length) / NBBY, KM_SLEEP);
770 #endif
771 
772 	/*
773 	 * Put the buf item into the list of items attached to the
774 	 * buffer at the front.
775 	 */
776 	if (bp->b_fspriv)
777 		bip->bli_item.li_bio_list = bp->b_fspriv;
778 	bp->b_fspriv = bip;
779 }
780 
781 
782 /*
783  * Mark bytes first through last inclusive as dirty in the buf
784  * item's bitmap.
785  */
786 void
787 xfs_buf_item_log_segment(
788 	struct xfs_buf_log_item	*bip,
789 	uint			first,
790 	uint			last,
791 	uint			*map)
792 {
793 	uint		first_bit;
794 	uint		last_bit;
795 	uint		bits_to_set;
796 	uint		bits_set;
797 	uint		word_num;
798 	uint		*wordp;
799 	uint		bit;
800 	uint		end_bit;
801 	uint		mask;
802 
803 	/*
804 	 * Convert byte offsets to bit numbers.
805 	 */
806 	first_bit = first >> XFS_BLF_SHIFT;
807 	last_bit = last >> XFS_BLF_SHIFT;
808 
809 	/*
810 	 * Calculate the total number of bits to be set.
811 	 */
812 	bits_to_set = last_bit - first_bit + 1;
813 
814 	/*
815 	 * Get a pointer to the first word in the bitmap
816 	 * to set a bit in.
817 	 */
818 	word_num = first_bit >> BIT_TO_WORD_SHIFT;
819 	wordp = &map[word_num];
820 
821 	/*
822 	 * Calculate the starting bit in the first word.
823 	 */
824 	bit = first_bit & (uint)(NBWORD - 1);
825 
826 	/*
827 	 * First set any bits in the first word of our range.
828 	 * If it starts at bit 0 of the word, it will be
829 	 * set below rather than here.  That is what the variable
830 	 * bit tells us. The variable bits_set tracks the number
831 	 * of bits that have been set so far.  End_bit is the number
832 	 * of the last bit to be set in this word plus one.
833 	 */
834 	if (bit) {
835 		end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
836 		mask = ((1 << (end_bit - bit)) - 1) << bit;
837 		*wordp |= mask;
838 		wordp++;
839 		bits_set = end_bit - bit;
840 	} else {
841 		bits_set = 0;
842 	}
843 
844 	/*
845 	 * Now set bits a whole word at a time that are between
846 	 * first_bit and last_bit.
847 	 */
848 	while ((bits_to_set - bits_set) >= NBWORD) {
849 		*wordp |= 0xffffffff;
850 		bits_set += NBWORD;
851 		wordp++;
852 	}
853 
854 	/*
855 	 * Finally, set any bits left to be set in one last partial word.
856 	 */
857 	end_bit = bits_to_set - bits_set;
858 	if (end_bit) {
859 		mask = (1 << end_bit) - 1;
860 		*wordp |= mask;
861 	}
862 }
863 
864 /*
865  * Mark bytes first through last inclusive as dirty in the buf
866  * item's bitmap.
867  */
868 void
869 xfs_buf_item_log(
870 	xfs_buf_log_item_t	*bip,
871 	uint			first,
872 	uint			last)
873 {
874 	int			i;
875 	uint			start;
876 	uint			end;
877 	struct xfs_buf		*bp = bip->bli_buf;
878 
879 	/*
880 	 * walk each buffer segment and mark them dirty appropriately.
881 	 */
882 	start = 0;
883 	for (i = 0; i < bip->bli_format_count; i++) {
884 		if (start > last)
885 			break;
886 		end = start + BBTOB(bp->b_maps[i].bm_len);
887 		if (first > end) {
888 			start += BBTOB(bp->b_maps[i].bm_len);
889 			continue;
890 		}
891 		if (first < start)
892 			first = start;
893 		if (end > last)
894 			end = last;
895 
896 		xfs_buf_item_log_segment(bip, first, end,
897 					 &bip->bli_formats[i].blf_data_map[0]);
898 
899 		start += bp->b_maps[i].bm_len;
900 	}
901 }
902 
903 
904 /*
905  * Return 1 if the buffer has been logged or ordered in a transaction (at any
906  * point, not just the current transaction) and 0 if not.
907  */
908 uint
909 xfs_buf_item_dirty(
910 	xfs_buf_log_item_t	*bip)
911 {
912 	return (bip->bli_flags & XFS_BLI_DIRTY);
913 }
914 
915 STATIC void
916 xfs_buf_item_free(
917 	xfs_buf_log_item_t	*bip)
918 {
919 #ifdef XFS_TRANS_DEBUG
920 	kmem_free(bip->bli_orig);
921 	kmem_free(bip->bli_logged);
922 #endif /* XFS_TRANS_DEBUG */
923 
924 	xfs_buf_item_free_format(bip);
925 	kmem_zone_free(xfs_buf_item_zone, bip);
926 }
927 
928 /*
929  * This is called when the buf log item is no longer needed.  It should
930  * free the buf log item associated with the given buffer and clear
931  * the buffer's pointer to the buf log item.  If there are no more
932  * items in the list, clear the b_iodone field of the buffer (see
933  * xfs_buf_attach_iodone() below).
934  */
935 void
936 xfs_buf_item_relse(
937 	xfs_buf_t	*bp)
938 {
939 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
940 
941 	trace_xfs_buf_item_relse(bp, _RET_IP_);
942 	ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
943 
944 	bp->b_fspriv = bip->bli_item.li_bio_list;
945 	if (bp->b_fspriv == NULL)
946 		bp->b_iodone = NULL;
947 
948 	xfs_buf_rele(bp);
949 	xfs_buf_item_free(bip);
950 }
951 
952 
953 /*
954  * Add the given log item with its callback to the list of callbacks
955  * to be called when the buffer's I/O completes.  If it is not set
956  * already, set the buffer's b_iodone() routine to be
957  * xfs_buf_iodone_callbacks() and link the log item into the list of
958  * items rooted at b_fsprivate.  Items are always added as the second
959  * entry in the list if there is a first, because the buf item code
960  * assumes that the buf log item is first.
961  */
962 void
963 xfs_buf_attach_iodone(
964 	xfs_buf_t	*bp,
965 	void		(*cb)(xfs_buf_t *, xfs_log_item_t *),
966 	xfs_log_item_t	*lip)
967 {
968 	xfs_log_item_t	*head_lip;
969 
970 	ASSERT(xfs_buf_islocked(bp));
971 
972 	lip->li_cb = cb;
973 	head_lip = bp->b_fspriv;
974 	if (head_lip) {
975 		lip->li_bio_list = head_lip->li_bio_list;
976 		head_lip->li_bio_list = lip;
977 	} else {
978 		bp->b_fspriv = lip;
979 	}
980 
981 	ASSERT(bp->b_iodone == NULL ||
982 	       bp->b_iodone == xfs_buf_iodone_callbacks);
983 	bp->b_iodone = xfs_buf_iodone_callbacks;
984 }
985 
986 /*
987  * We can have many callbacks on a buffer. Running the callbacks individually
988  * can cause a lot of contention on the AIL lock, so we allow for a single
989  * callback to be able to scan the remaining lip->li_bio_list for other items
990  * of the same type and callback to be processed in the first call.
991  *
992  * As a result, the loop walking the callback list below will also modify the
993  * list. it removes the first item from the list and then runs the callback.
994  * The loop then restarts from the new head of the list. This allows the
995  * callback to scan and modify the list attached to the buffer and we don't
996  * have to care about maintaining a next item pointer.
997  */
998 STATIC void
999 xfs_buf_do_callbacks(
1000 	struct xfs_buf		*bp)
1001 {
1002 	struct xfs_log_item	*lip;
1003 
1004 	while ((lip = bp->b_fspriv) != NULL) {
1005 		bp->b_fspriv = lip->li_bio_list;
1006 		ASSERT(lip->li_cb != NULL);
1007 		/*
1008 		 * Clear the next pointer so we don't have any
1009 		 * confusion if the item is added to another buf.
1010 		 * Don't touch the log item after calling its
1011 		 * callback, because it could have freed itself.
1012 		 */
1013 		lip->li_bio_list = NULL;
1014 		lip->li_cb(bp, lip);
1015 	}
1016 }
1017 
1018 /*
1019  * This is the iodone() function for buffers which have had callbacks
1020  * attached to them by xfs_buf_attach_iodone().  It should remove each
1021  * log item from the buffer's list and call the callback of each in turn.
1022  * When done, the buffer's fsprivate field is set to NULL and the buffer
1023  * is unlocked with a call to iodone().
1024  */
1025 void
1026 xfs_buf_iodone_callbacks(
1027 	struct xfs_buf		*bp)
1028 {
1029 	struct xfs_log_item	*lip = bp->b_fspriv;
1030 	struct xfs_mount	*mp = lip->li_mountp;
1031 	static ulong		lasttime;
1032 	static xfs_buftarg_t	*lasttarg;
1033 
1034 	if (likely(!xfs_buf_geterror(bp)))
1035 		goto do_callbacks;
1036 
1037 	/*
1038 	 * If we've already decided to shutdown the filesystem because of
1039 	 * I/O errors, there's no point in giving this a retry.
1040 	 */
1041 	if (XFS_FORCED_SHUTDOWN(mp)) {
1042 		xfs_buf_stale(bp);
1043 		XFS_BUF_DONE(bp);
1044 		trace_xfs_buf_item_iodone(bp, _RET_IP_);
1045 		goto do_callbacks;
1046 	}
1047 
1048 	if (bp->b_target != lasttarg ||
1049 	    time_after(jiffies, (lasttime + 5*HZ))) {
1050 		lasttime = jiffies;
1051 		xfs_buf_ioerror_alert(bp, __func__);
1052 	}
1053 	lasttarg = bp->b_target;
1054 
1055 	/*
1056 	 * If the write was asynchronous then no one will be looking for the
1057 	 * error.  Clear the error state and write the buffer out again.
1058 	 *
1059 	 * XXX: This helps against transient write errors, but we need to find
1060 	 * a way to shut the filesystem down if the writes keep failing.
1061 	 *
1062 	 * In practice we'll shut the filesystem down soon as non-transient
1063 	 * erorrs tend to affect the whole device and a failing log write
1064 	 * will make us give up.  But we really ought to do better here.
1065 	 */
1066 	if (XFS_BUF_ISASYNC(bp)) {
1067 		ASSERT(bp->b_iodone != NULL);
1068 
1069 		trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1070 
1071 		xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */
1072 
1073 		if (!XFS_BUF_ISSTALE(bp)) {
1074 			bp->b_flags |= XBF_WRITE | XBF_ASYNC | XBF_DONE;
1075 			xfs_buf_iorequest(bp);
1076 		} else {
1077 			xfs_buf_relse(bp);
1078 		}
1079 
1080 		return;
1081 	}
1082 
1083 	/*
1084 	 * If the write of the buffer was synchronous, we want to make
1085 	 * sure to return the error to the caller of xfs_bwrite().
1086 	 */
1087 	xfs_buf_stale(bp);
1088 	XFS_BUF_DONE(bp);
1089 
1090 	trace_xfs_buf_error_relse(bp, _RET_IP_);
1091 
1092 do_callbacks:
1093 	xfs_buf_do_callbacks(bp);
1094 	bp->b_fspriv = NULL;
1095 	bp->b_iodone = NULL;
1096 	xfs_buf_ioend(bp, 0);
1097 }
1098 
1099 /*
1100  * This is the iodone() function for buffers which have been
1101  * logged.  It is called when they are eventually flushed out.
1102  * It should remove the buf item from the AIL, and free the buf item.
1103  * It is called by xfs_buf_iodone_callbacks() above which will take
1104  * care of cleaning up the buffer itself.
1105  */
1106 void
1107 xfs_buf_iodone(
1108 	struct xfs_buf		*bp,
1109 	struct xfs_log_item	*lip)
1110 {
1111 	struct xfs_ail		*ailp = lip->li_ailp;
1112 
1113 	ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1114 
1115 	xfs_buf_rele(bp);
1116 
1117 	/*
1118 	 * If we are forcibly shutting down, this may well be
1119 	 * off the AIL already. That's because we simulate the
1120 	 * log-committed callbacks to unpin these buffers. Or we may never
1121 	 * have put this item on AIL because of the transaction was
1122 	 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1123 	 *
1124 	 * Either way, AIL is useless if we're forcing a shutdown.
1125 	 */
1126 	spin_lock(&ailp->xa_lock);
1127 	xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
1128 	xfs_buf_item_free(BUF_ITEM(lip));
1129 }
1130