1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_bit.h" 12 #include "xfs_sb.h" 13 #include "xfs_mount.h" 14 #include "xfs_trans.h" 15 #include "xfs_buf_item.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_error.h" 18 #include "xfs_trace.h" 19 #include "xfs_log.h" 20 #include "xfs_inode.h" 21 22 23 kmem_zone_t *xfs_buf_item_zone; 24 25 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip) 26 { 27 return container_of(lip, struct xfs_buf_log_item, bli_item); 28 } 29 30 STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp); 31 32 static inline int 33 xfs_buf_log_format_size( 34 struct xfs_buf_log_format *blfp) 35 { 36 return offsetof(struct xfs_buf_log_format, blf_data_map) + 37 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0])); 38 } 39 40 /* 41 * This returns the number of log iovecs needed to log the 42 * given buf log item. 43 * 44 * It calculates this as 1 iovec for the buf log format structure 45 * and 1 for each stretch of non-contiguous chunks to be logged. 46 * Contiguous chunks are logged in a single iovec. 47 * 48 * If the XFS_BLI_STALE flag has been set, then log nothing. 49 */ 50 STATIC void 51 xfs_buf_item_size_segment( 52 struct xfs_buf_log_item *bip, 53 struct xfs_buf_log_format *blfp, 54 int *nvecs, 55 int *nbytes) 56 { 57 struct xfs_buf *bp = bip->bli_buf; 58 int next_bit; 59 int last_bit; 60 61 last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0); 62 if (last_bit == -1) 63 return; 64 65 /* 66 * initial count for a dirty buffer is 2 vectors - the format structure 67 * and the first dirty region. 68 */ 69 *nvecs += 2; 70 *nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK; 71 72 while (last_bit != -1) { 73 /* 74 * This takes the bit number to start looking from and 75 * returns the next set bit from there. It returns -1 76 * if there are no more bits set or the start bit is 77 * beyond the end of the bitmap. 78 */ 79 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 80 last_bit + 1); 81 /* 82 * If we run out of bits, leave the loop, 83 * else if we find a new set of bits bump the number of vecs, 84 * else keep scanning the current set of bits. 85 */ 86 if (next_bit == -1) { 87 break; 88 } else if (next_bit != last_bit + 1) { 89 last_bit = next_bit; 90 (*nvecs)++; 91 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) != 92 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) + 93 XFS_BLF_CHUNK)) { 94 last_bit = next_bit; 95 (*nvecs)++; 96 } else { 97 last_bit++; 98 } 99 *nbytes += XFS_BLF_CHUNK; 100 } 101 } 102 103 /* 104 * This returns the number of log iovecs needed to log the given buf log item. 105 * 106 * It calculates this as 1 iovec for the buf log format structure and 1 for each 107 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged 108 * in a single iovec. 109 * 110 * Discontiguous buffers need a format structure per region that that is being 111 * logged. This makes the changes in the buffer appear to log recovery as though 112 * they came from separate buffers, just like would occur if multiple buffers 113 * were used instead of a single discontiguous buffer. This enables 114 * discontiguous buffers to be in-memory constructs, completely transparent to 115 * what ends up on disk. 116 * 117 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log 118 * format structures. 119 */ 120 STATIC void 121 xfs_buf_item_size( 122 struct xfs_log_item *lip, 123 int *nvecs, 124 int *nbytes) 125 { 126 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 127 int i; 128 129 ASSERT(atomic_read(&bip->bli_refcount) > 0); 130 if (bip->bli_flags & XFS_BLI_STALE) { 131 /* 132 * The buffer is stale, so all we need to log 133 * is the buf log format structure with the 134 * cancel flag in it. 135 */ 136 trace_xfs_buf_item_size_stale(bip); 137 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 138 *nvecs += bip->bli_format_count; 139 for (i = 0; i < bip->bli_format_count; i++) { 140 *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]); 141 } 142 return; 143 } 144 145 ASSERT(bip->bli_flags & XFS_BLI_LOGGED); 146 147 if (bip->bli_flags & XFS_BLI_ORDERED) { 148 /* 149 * The buffer has been logged just to order it. 150 * It is not being included in the transaction 151 * commit, so no vectors are used at all. 152 */ 153 trace_xfs_buf_item_size_ordered(bip); 154 *nvecs = XFS_LOG_VEC_ORDERED; 155 return; 156 } 157 158 /* 159 * the vector count is based on the number of buffer vectors we have 160 * dirty bits in. This will only be greater than one when we have a 161 * compound buffer with more than one segment dirty. Hence for compound 162 * buffers we need to track which segment the dirty bits correspond to, 163 * and when we move from one segment to the next increment the vector 164 * count for the extra buf log format structure that will need to be 165 * written. 166 */ 167 for (i = 0; i < bip->bli_format_count; i++) { 168 xfs_buf_item_size_segment(bip, &bip->bli_formats[i], 169 nvecs, nbytes); 170 } 171 trace_xfs_buf_item_size(bip); 172 } 173 174 static inline void 175 xfs_buf_item_copy_iovec( 176 struct xfs_log_vec *lv, 177 struct xfs_log_iovec **vecp, 178 struct xfs_buf *bp, 179 uint offset, 180 int first_bit, 181 uint nbits) 182 { 183 offset += first_bit * XFS_BLF_CHUNK; 184 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK, 185 xfs_buf_offset(bp, offset), 186 nbits * XFS_BLF_CHUNK); 187 } 188 189 static inline bool 190 xfs_buf_item_straddle( 191 struct xfs_buf *bp, 192 uint offset, 193 int next_bit, 194 int last_bit) 195 { 196 return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) != 197 (xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) + 198 XFS_BLF_CHUNK); 199 } 200 201 static void 202 xfs_buf_item_format_segment( 203 struct xfs_buf_log_item *bip, 204 struct xfs_log_vec *lv, 205 struct xfs_log_iovec **vecp, 206 uint offset, 207 struct xfs_buf_log_format *blfp) 208 { 209 struct xfs_buf *bp = bip->bli_buf; 210 uint base_size; 211 int first_bit; 212 int last_bit; 213 int next_bit; 214 uint nbits; 215 216 /* copy the flags across from the base format item */ 217 blfp->blf_flags = bip->__bli_format.blf_flags; 218 219 /* 220 * Base size is the actual size of the ondisk structure - it reflects 221 * the actual size of the dirty bitmap rather than the size of the in 222 * memory structure. 223 */ 224 base_size = xfs_buf_log_format_size(blfp); 225 226 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0); 227 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) { 228 /* 229 * If the map is not be dirty in the transaction, mark 230 * the size as zero and do not advance the vector pointer. 231 */ 232 return; 233 } 234 235 blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size); 236 blfp->blf_size = 1; 237 238 if (bip->bli_flags & XFS_BLI_STALE) { 239 /* 240 * The buffer is stale, so all we need to log 241 * is the buf log format structure with the 242 * cancel flag in it. 243 */ 244 trace_xfs_buf_item_format_stale(bip); 245 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL); 246 return; 247 } 248 249 250 /* 251 * Fill in an iovec for each set of contiguous chunks. 252 */ 253 last_bit = first_bit; 254 nbits = 1; 255 for (;;) { 256 /* 257 * This takes the bit number to start looking from and 258 * returns the next set bit from there. It returns -1 259 * if there are no more bits set or the start bit is 260 * beyond the end of the bitmap. 261 */ 262 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 263 (uint)last_bit + 1); 264 /* 265 * If we run out of bits fill in the last iovec and get out of 266 * the loop. Else if we start a new set of bits then fill in 267 * the iovec for the series we were looking at and start 268 * counting the bits in the new one. Else we're still in the 269 * same set of bits so just keep counting and scanning. 270 */ 271 if (next_bit == -1) { 272 xfs_buf_item_copy_iovec(lv, vecp, bp, offset, 273 first_bit, nbits); 274 blfp->blf_size++; 275 break; 276 } else if (next_bit != last_bit + 1 || 277 xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) { 278 xfs_buf_item_copy_iovec(lv, vecp, bp, offset, 279 first_bit, nbits); 280 blfp->blf_size++; 281 first_bit = next_bit; 282 last_bit = next_bit; 283 nbits = 1; 284 } else { 285 last_bit++; 286 nbits++; 287 } 288 } 289 } 290 291 /* 292 * This is called to fill in the vector of log iovecs for the 293 * given log buf item. It fills the first entry with a buf log 294 * format structure, and the rest point to contiguous chunks 295 * within the buffer. 296 */ 297 STATIC void 298 xfs_buf_item_format( 299 struct xfs_log_item *lip, 300 struct xfs_log_vec *lv) 301 { 302 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 303 struct xfs_buf *bp = bip->bli_buf; 304 struct xfs_log_iovec *vecp = NULL; 305 uint offset = 0; 306 int i; 307 308 ASSERT(atomic_read(&bip->bli_refcount) > 0); 309 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || 310 (bip->bli_flags & XFS_BLI_STALE)); 311 ASSERT((bip->bli_flags & XFS_BLI_STALE) || 312 (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF 313 && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF)); 314 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) || 315 (bip->bli_flags & XFS_BLI_STALE)); 316 317 318 /* 319 * If it is an inode buffer, transfer the in-memory state to the 320 * format flags and clear the in-memory state. 321 * 322 * For buffer based inode allocation, we do not transfer 323 * this state if the inode buffer allocation has not yet been committed 324 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent 325 * correct replay of the inode allocation. 326 * 327 * For icreate item based inode allocation, the buffers aren't written 328 * to the journal during allocation, and hence we should always tag the 329 * buffer as an inode buffer so that the correct unlinked list replay 330 * occurs during recovery. 331 */ 332 if (bip->bli_flags & XFS_BLI_INODE_BUF) { 333 if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) || 334 !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && 335 xfs_log_item_in_current_chkpt(lip))) 336 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF; 337 bip->bli_flags &= ~XFS_BLI_INODE_BUF; 338 } 339 340 for (i = 0; i < bip->bli_format_count; i++) { 341 xfs_buf_item_format_segment(bip, lv, &vecp, offset, 342 &bip->bli_formats[i]); 343 offset += BBTOB(bp->b_maps[i].bm_len); 344 } 345 346 /* 347 * Check to make sure everything is consistent. 348 */ 349 trace_xfs_buf_item_format(bip); 350 } 351 352 /* 353 * This is called to pin the buffer associated with the buf log item in memory 354 * so it cannot be written out. 355 * 356 * We also always take a reference to the buffer log item here so that the bli 357 * is held while the item is pinned in memory. This means that we can 358 * unconditionally drop the reference count a transaction holds when the 359 * transaction is completed. 360 */ 361 STATIC void 362 xfs_buf_item_pin( 363 struct xfs_log_item *lip) 364 { 365 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 366 367 ASSERT(atomic_read(&bip->bli_refcount) > 0); 368 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || 369 (bip->bli_flags & XFS_BLI_ORDERED) || 370 (bip->bli_flags & XFS_BLI_STALE)); 371 372 trace_xfs_buf_item_pin(bip); 373 374 atomic_inc(&bip->bli_refcount); 375 atomic_inc(&bip->bli_buf->b_pin_count); 376 } 377 378 /* 379 * This is called to unpin the buffer associated with the buf log 380 * item which was previously pinned with a call to xfs_buf_item_pin(). 381 * 382 * Also drop the reference to the buf item for the current transaction. 383 * If the XFS_BLI_STALE flag is set and we are the last reference, 384 * then free up the buf log item and unlock the buffer. 385 * 386 * If the remove flag is set we are called from uncommit in the 387 * forced-shutdown path. If that is true and the reference count on 388 * the log item is going to drop to zero we need to free the item's 389 * descriptor in the transaction. 390 */ 391 STATIC void 392 xfs_buf_item_unpin( 393 struct xfs_log_item *lip, 394 int remove) 395 { 396 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 397 xfs_buf_t *bp = bip->bli_buf; 398 struct xfs_ail *ailp = lip->li_ailp; 399 int stale = bip->bli_flags & XFS_BLI_STALE; 400 int freed; 401 402 ASSERT(bp->b_log_item == bip); 403 ASSERT(atomic_read(&bip->bli_refcount) > 0); 404 405 trace_xfs_buf_item_unpin(bip); 406 407 freed = atomic_dec_and_test(&bip->bli_refcount); 408 409 if (atomic_dec_and_test(&bp->b_pin_count)) 410 wake_up_all(&bp->b_waiters); 411 412 if (freed && stale) { 413 ASSERT(bip->bli_flags & XFS_BLI_STALE); 414 ASSERT(xfs_buf_islocked(bp)); 415 ASSERT(bp->b_flags & XBF_STALE); 416 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 417 418 trace_xfs_buf_item_unpin_stale(bip); 419 420 if (remove) { 421 /* 422 * If we are in a transaction context, we have to 423 * remove the log item from the transaction as we are 424 * about to release our reference to the buffer. If we 425 * don't, the unlock that occurs later in 426 * xfs_trans_uncommit() will try to reference the 427 * buffer which we no longer have a hold on. 428 */ 429 if (!list_empty(&lip->li_trans)) 430 xfs_trans_del_item(lip); 431 432 /* 433 * Since the transaction no longer refers to the buffer, 434 * the buffer should no longer refer to the transaction. 435 */ 436 bp->b_transp = NULL; 437 } 438 439 /* 440 * If we get called here because of an IO error, we may 441 * or may not have the item on the AIL. xfs_trans_ail_delete() 442 * will take care of that situation. 443 * xfs_trans_ail_delete() drops the AIL lock. 444 */ 445 if (bip->bli_flags & XFS_BLI_STALE_INODE) { 446 xfs_buf_do_callbacks(bp); 447 bp->b_log_item = NULL; 448 list_del_init(&bp->b_li_list); 449 bp->b_iodone = NULL; 450 } else { 451 spin_lock(&ailp->ail_lock); 452 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR); 453 xfs_buf_item_relse(bp); 454 ASSERT(bp->b_log_item == NULL); 455 } 456 xfs_buf_relse(bp); 457 } else if (freed && remove) { 458 /* 459 * There are currently two references to the buffer - the active 460 * LRU reference and the buf log item. What we are about to do 461 * here - simulate a failed IO completion - requires 3 462 * references. 463 * 464 * The LRU reference is removed by the xfs_buf_stale() call. The 465 * buf item reference is removed by the xfs_buf_iodone() 466 * callback that is run by xfs_buf_do_callbacks() during ioend 467 * processing (via the bp->b_iodone callback), and then finally 468 * the ioend processing will drop the IO reference if the buffer 469 * is marked XBF_ASYNC. 470 * 471 * Hence we need to take an additional reference here so that IO 472 * completion processing doesn't free the buffer prematurely. 473 */ 474 xfs_buf_lock(bp); 475 xfs_buf_hold(bp); 476 bp->b_flags |= XBF_ASYNC; 477 xfs_buf_ioerror(bp, -EIO); 478 bp->b_flags &= ~XBF_DONE; 479 xfs_buf_stale(bp); 480 xfs_buf_ioend(bp); 481 } 482 } 483 484 /* 485 * Buffer IO error rate limiting. Limit it to no more than 10 messages per 30 486 * seconds so as to not spam logs too much on repeated detection of the same 487 * buffer being bad.. 488 */ 489 490 static DEFINE_RATELIMIT_STATE(xfs_buf_write_fail_rl_state, 30 * HZ, 10); 491 492 STATIC uint 493 xfs_buf_item_push( 494 struct xfs_log_item *lip, 495 struct list_head *buffer_list) 496 { 497 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 498 struct xfs_buf *bp = bip->bli_buf; 499 uint rval = XFS_ITEM_SUCCESS; 500 501 if (xfs_buf_ispinned(bp)) 502 return XFS_ITEM_PINNED; 503 if (!xfs_buf_trylock(bp)) { 504 /* 505 * If we have just raced with a buffer being pinned and it has 506 * been marked stale, we could end up stalling until someone else 507 * issues a log force to unpin the stale buffer. Check for the 508 * race condition here so xfsaild recognizes the buffer is pinned 509 * and queues a log force to move it along. 510 */ 511 if (xfs_buf_ispinned(bp)) 512 return XFS_ITEM_PINNED; 513 return XFS_ITEM_LOCKED; 514 } 515 516 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 517 518 trace_xfs_buf_item_push(bip); 519 520 /* has a previous flush failed due to IO errors? */ 521 if ((bp->b_flags & XBF_WRITE_FAIL) && 522 ___ratelimit(&xfs_buf_write_fail_rl_state, "XFS: Failing async write")) { 523 xfs_warn(bp->b_target->bt_mount, 524 "Failing async write on buffer block 0x%llx. Retrying async write.", 525 (long long)bp->b_bn); 526 } 527 528 if (!xfs_buf_delwri_queue(bp, buffer_list)) 529 rval = XFS_ITEM_FLUSHING; 530 xfs_buf_unlock(bp); 531 return rval; 532 } 533 534 /* 535 * Release the buffer associated with the buf log item. If there is no dirty 536 * logged data associated with the buffer recorded in the buf log item, then 537 * free the buf log item and remove the reference to it in the buffer. 538 * 539 * This call ignores the recursion count. It is only called when the buffer 540 * should REALLY be unlocked, regardless of the recursion count. 541 * 542 * We unconditionally drop the transaction's reference to the log item. If the 543 * item was logged, then another reference was taken when it was pinned, so we 544 * can safely drop the transaction reference now. This also allows us to avoid 545 * potential races with the unpin code freeing the bli by not referencing the 546 * bli after we've dropped the reference count. 547 * 548 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item 549 * if necessary but do not unlock the buffer. This is for support of 550 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't 551 * free the item. 552 */ 553 STATIC void 554 xfs_buf_item_unlock( 555 struct xfs_log_item *lip) 556 { 557 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 558 struct xfs_buf *bp = bip->bli_buf; 559 bool aborted; 560 bool hold = !!(bip->bli_flags & XFS_BLI_HOLD); 561 bool dirty = !!(bip->bli_flags & XFS_BLI_DIRTY); 562 #if defined(DEBUG) || defined(XFS_WARN) 563 bool ordered = !!(bip->bli_flags & XFS_BLI_ORDERED); 564 #endif 565 566 aborted = test_bit(XFS_LI_ABORTED, &lip->li_flags); 567 568 /* Clear the buffer's association with this transaction. */ 569 bp->b_transp = NULL; 570 571 /* 572 * The per-transaction state has been copied above so clear it from the 573 * bli. 574 */ 575 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED); 576 577 /* 578 * If the buf item is marked stale, then don't do anything. We'll 579 * unlock the buffer and free the buf item when the buffer is unpinned 580 * for the last time. 581 */ 582 if (bip->bli_flags & XFS_BLI_STALE) { 583 trace_xfs_buf_item_unlock_stale(bip); 584 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 585 if (!aborted) { 586 atomic_dec(&bip->bli_refcount); 587 return; 588 } 589 } 590 591 trace_xfs_buf_item_unlock(bip); 592 593 /* 594 * If the buf item isn't tracking any data, free it, otherwise drop the 595 * reference we hold to it. If we are aborting the transaction, this may 596 * be the only reference to the buf item, so we free it anyway 597 * regardless of whether it is dirty or not. A dirty abort implies a 598 * shutdown, anyway. 599 * 600 * The bli dirty state should match whether the blf has logged segments 601 * except for ordered buffers, where only the bli should be dirty. 602 */ 603 ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) || 604 (ordered && dirty && !xfs_buf_item_dirty_format(bip))); 605 606 /* 607 * Clean buffers, by definition, cannot be in the AIL. However, aborted 608 * buffers may be in the AIL regardless of dirty state. An aborted 609 * transaction that invalidates a buffer already in the AIL may have 610 * marked it stale and cleared the dirty state, for example. 611 * 612 * Therefore if we are aborting a buffer and we've just taken the last 613 * reference away, we have to check if it is in the AIL before freeing 614 * it. We need to free it in this case, because an aborted transaction 615 * has already shut the filesystem down and this is the last chance we 616 * will have to do so. 617 */ 618 if (atomic_dec_and_test(&bip->bli_refcount)) { 619 if (aborted) { 620 ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp)); 621 xfs_trans_ail_remove(lip, SHUTDOWN_LOG_IO_ERROR); 622 xfs_buf_item_relse(bp); 623 } else if (!dirty) 624 xfs_buf_item_relse(bp); 625 } 626 627 if (!hold) 628 xfs_buf_relse(bp); 629 } 630 631 /* 632 * This is called to find out where the oldest active copy of the 633 * buf log item in the on disk log resides now that the last log 634 * write of it completed at the given lsn. 635 * We always re-log all the dirty data in a buffer, so usually the 636 * latest copy in the on disk log is the only one that matters. For 637 * those cases we simply return the given lsn. 638 * 639 * The one exception to this is for buffers full of newly allocated 640 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF 641 * flag set, indicating that only the di_next_unlinked fields from the 642 * inodes in the buffers will be replayed during recovery. If the 643 * original newly allocated inode images have not yet been flushed 644 * when the buffer is so relogged, then we need to make sure that we 645 * keep the old images in the 'active' portion of the log. We do this 646 * by returning the original lsn of that transaction here rather than 647 * the current one. 648 */ 649 STATIC xfs_lsn_t 650 xfs_buf_item_committed( 651 struct xfs_log_item *lip, 652 xfs_lsn_t lsn) 653 { 654 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 655 656 trace_xfs_buf_item_committed(bip); 657 658 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0) 659 return lip->li_lsn; 660 return lsn; 661 } 662 663 STATIC void 664 xfs_buf_item_committing( 665 struct xfs_log_item *lip, 666 xfs_lsn_t commit_lsn) 667 { 668 } 669 670 /* 671 * This is the ops vector shared by all buf log items. 672 */ 673 static const struct xfs_item_ops xfs_buf_item_ops = { 674 .iop_size = xfs_buf_item_size, 675 .iop_format = xfs_buf_item_format, 676 .iop_pin = xfs_buf_item_pin, 677 .iop_unpin = xfs_buf_item_unpin, 678 .iop_unlock = xfs_buf_item_unlock, 679 .iop_committed = xfs_buf_item_committed, 680 .iop_push = xfs_buf_item_push, 681 .iop_committing = xfs_buf_item_committing 682 }; 683 684 STATIC int 685 xfs_buf_item_get_format( 686 struct xfs_buf_log_item *bip, 687 int count) 688 { 689 ASSERT(bip->bli_formats == NULL); 690 bip->bli_format_count = count; 691 692 if (count == 1) { 693 bip->bli_formats = &bip->__bli_format; 694 return 0; 695 } 696 697 bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format), 698 KM_SLEEP); 699 if (!bip->bli_formats) 700 return -ENOMEM; 701 return 0; 702 } 703 704 STATIC void 705 xfs_buf_item_free_format( 706 struct xfs_buf_log_item *bip) 707 { 708 if (bip->bli_formats != &bip->__bli_format) { 709 kmem_free(bip->bli_formats); 710 bip->bli_formats = NULL; 711 } 712 } 713 714 /* 715 * Allocate a new buf log item to go with the given buffer. 716 * Set the buffer's b_log_item field to point to the new 717 * buf log item. 718 */ 719 int 720 xfs_buf_item_init( 721 struct xfs_buf *bp, 722 struct xfs_mount *mp) 723 { 724 struct xfs_buf_log_item *bip = bp->b_log_item; 725 int chunks; 726 int map_size; 727 int error; 728 int i; 729 730 /* 731 * Check to see if there is already a buf log item for 732 * this buffer. If we do already have one, there is 733 * nothing to do here so return. 734 */ 735 ASSERT(bp->b_target->bt_mount == mp); 736 if (bip) { 737 ASSERT(bip->bli_item.li_type == XFS_LI_BUF); 738 ASSERT(!bp->b_transp); 739 ASSERT(bip->bli_buf == bp); 740 return 0; 741 } 742 743 bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP); 744 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops); 745 bip->bli_buf = bp; 746 747 /* 748 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer 749 * can be divided into. Make sure not to truncate any pieces. 750 * map_size is the size of the bitmap needed to describe the 751 * chunks of the buffer. 752 * 753 * Discontiguous buffer support follows the layout of the underlying 754 * buffer. This makes the implementation as simple as possible. 755 */ 756 error = xfs_buf_item_get_format(bip, bp->b_map_count); 757 ASSERT(error == 0); 758 if (error) { /* to stop gcc throwing set-but-unused warnings */ 759 kmem_zone_free(xfs_buf_item_zone, bip); 760 return error; 761 } 762 763 764 for (i = 0; i < bip->bli_format_count; i++) { 765 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len), 766 XFS_BLF_CHUNK); 767 map_size = DIV_ROUND_UP(chunks, NBWORD); 768 769 bip->bli_formats[i].blf_type = XFS_LI_BUF; 770 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn; 771 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len; 772 bip->bli_formats[i].blf_map_size = map_size; 773 } 774 775 bp->b_log_item = bip; 776 xfs_buf_hold(bp); 777 return 0; 778 } 779 780 781 /* 782 * Mark bytes first through last inclusive as dirty in the buf 783 * item's bitmap. 784 */ 785 static void 786 xfs_buf_item_log_segment( 787 uint first, 788 uint last, 789 uint *map) 790 { 791 uint first_bit; 792 uint last_bit; 793 uint bits_to_set; 794 uint bits_set; 795 uint word_num; 796 uint *wordp; 797 uint bit; 798 uint end_bit; 799 uint mask; 800 801 /* 802 * Convert byte offsets to bit numbers. 803 */ 804 first_bit = first >> XFS_BLF_SHIFT; 805 last_bit = last >> XFS_BLF_SHIFT; 806 807 /* 808 * Calculate the total number of bits to be set. 809 */ 810 bits_to_set = last_bit - first_bit + 1; 811 812 /* 813 * Get a pointer to the first word in the bitmap 814 * to set a bit in. 815 */ 816 word_num = first_bit >> BIT_TO_WORD_SHIFT; 817 wordp = &map[word_num]; 818 819 /* 820 * Calculate the starting bit in the first word. 821 */ 822 bit = first_bit & (uint)(NBWORD - 1); 823 824 /* 825 * First set any bits in the first word of our range. 826 * If it starts at bit 0 of the word, it will be 827 * set below rather than here. That is what the variable 828 * bit tells us. The variable bits_set tracks the number 829 * of bits that have been set so far. End_bit is the number 830 * of the last bit to be set in this word plus one. 831 */ 832 if (bit) { 833 end_bit = min(bit + bits_to_set, (uint)NBWORD); 834 mask = ((1U << (end_bit - bit)) - 1) << bit; 835 *wordp |= mask; 836 wordp++; 837 bits_set = end_bit - bit; 838 } else { 839 bits_set = 0; 840 } 841 842 /* 843 * Now set bits a whole word at a time that are between 844 * first_bit and last_bit. 845 */ 846 while ((bits_to_set - bits_set) >= NBWORD) { 847 *wordp |= 0xffffffff; 848 bits_set += NBWORD; 849 wordp++; 850 } 851 852 /* 853 * Finally, set any bits left to be set in one last partial word. 854 */ 855 end_bit = bits_to_set - bits_set; 856 if (end_bit) { 857 mask = (1U << end_bit) - 1; 858 *wordp |= mask; 859 } 860 } 861 862 /* 863 * Mark bytes first through last inclusive as dirty in the buf 864 * item's bitmap. 865 */ 866 void 867 xfs_buf_item_log( 868 struct xfs_buf_log_item *bip, 869 uint first, 870 uint last) 871 { 872 int i; 873 uint start; 874 uint end; 875 struct xfs_buf *bp = bip->bli_buf; 876 877 /* 878 * walk each buffer segment and mark them dirty appropriately. 879 */ 880 start = 0; 881 for (i = 0; i < bip->bli_format_count; i++) { 882 if (start > last) 883 break; 884 end = start + BBTOB(bp->b_maps[i].bm_len) - 1; 885 886 /* skip to the map that includes the first byte to log */ 887 if (first > end) { 888 start += BBTOB(bp->b_maps[i].bm_len); 889 continue; 890 } 891 892 /* 893 * Trim the range to this segment and mark it in the bitmap. 894 * Note that we must convert buffer offsets to segment relative 895 * offsets (e.g., the first byte of each segment is byte 0 of 896 * that segment). 897 */ 898 if (first < start) 899 first = start; 900 if (end > last) 901 end = last; 902 xfs_buf_item_log_segment(first - start, end - start, 903 &bip->bli_formats[i].blf_data_map[0]); 904 905 start += BBTOB(bp->b_maps[i].bm_len); 906 } 907 } 908 909 910 /* 911 * Return true if the buffer has any ranges logged/dirtied by a transaction, 912 * false otherwise. 913 */ 914 bool 915 xfs_buf_item_dirty_format( 916 struct xfs_buf_log_item *bip) 917 { 918 int i; 919 920 for (i = 0; i < bip->bli_format_count; i++) { 921 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map, 922 bip->bli_formats[i].blf_map_size)) 923 return true; 924 } 925 926 return false; 927 } 928 929 STATIC void 930 xfs_buf_item_free( 931 struct xfs_buf_log_item *bip) 932 { 933 xfs_buf_item_free_format(bip); 934 kmem_free(bip->bli_item.li_lv_shadow); 935 kmem_zone_free(xfs_buf_item_zone, bip); 936 } 937 938 /* 939 * This is called when the buf log item is no longer needed. It should 940 * free the buf log item associated with the given buffer and clear 941 * the buffer's pointer to the buf log item. If there are no more 942 * items in the list, clear the b_iodone field of the buffer (see 943 * xfs_buf_attach_iodone() below). 944 */ 945 void 946 xfs_buf_item_relse( 947 xfs_buf_t *bp) 948 { 949 struct xfs_buf_log_item *bip = bp->b_log_item; 950 951 trace_xfs_buf_item_relse(bp, _RET_IP_); 952 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL)); 953 954 bp->b_log_item = NULL; 955 if (list_empty(&bp->b_li_list)) 956 bp->b_iodone = NULL; 957 958 xfs_buf_rele(bp); 959 xfs_buf_item_free(bip); 960 } 961 962 963 /* 964 * Add the given log item with its callback to the list of callbacks 965 * to be called when the buffer's I/O completes. If it is not set 966 * already, set the buffer's b_iodone() routine to be 967 * xfs_buf_iodone_callbacks() and link the log item into the list of 968 * items rooted at b_li_list. 969 */ 970 void 971 xfs_buf_attach_iodone( 972 xfs_buf_t *bp, 973 void (*cb)(xfs_buf_t *, xfs_log_item_t *), 974 xfs_log_item_t *lip) 975 { 976 ASSERT(xfs_buf_islocked(bp)); 977 978 lip->li_cb = cb; 979 list_add_tail(&lip->li_bio_list, &bp->b_li_list); 980 981 ASSERT(bp->b_iodone == NULL || 982 bp->b_iodone == xfs_buf_iodone_callbacks); 983 bp->b_iodone = xfs_buf_iodone_callbacks; 984 } 985 986 /* 987 * We can have many callbacks on a buffer. Running the callbacks individually 988 * can cause a lot of contention on the AIL lock, so we allow for a single 989 * callback to be able to scan the remaining items in bp->b_li_list for other 990 * items of the same type and callback to be processed in the first call. 991 * 992 * As a result, the loop walking the callback list below will also modify the 993 * list. it removes the first item from the list and then runs the callback. 994 * The loop then restarts from the new first item int the list. This allows the 995 * callback to scan and modify the list attached to the buffer and we don't 996 * have to care about maintaining a next item pointer. 997 */ 998 STATIC void 999 xfs_buf_do_callbacks( 1000 struct xfs_buf *bp) 1001 { 1002 struct xfs_buf_log_item *blip = bp->b_log_item; 1003 struct xfs_log_item *lip; 1004 1005 /* If there is a buf_log_item attached, run its callback */ 1006 if (blip) { 1007 lip = &blip->bli_item; 1008 lip->li_cb(bp, lip); 1009 } 1010 1011 while (!list_empty(&bp->b_li_list)) { 1012 lip = list_first_entry(&bp->b_li_list, struct xfs_log_item, 1013 li_bio_list); 1014 1015 /* 1016 * Remove the item from the list, so we don't have any 1017 * confusion if the item is added to another buf. 1018 * Don't touch the log item after calling its 1019 * callback, because it could have freed itself. 1020 */ 1021 list_del_init(&lip->li_bio_list); 1022 lip->li_cb(bp, lip); 1023 } 1024 } 1025 1026 /* 1027 * Invoke the error state callback for each log item affected by the failed I/O. 1028 * 1029 * If a metadata buffer write fails with a non-permanent error, the buffer is 1030 * eventually resubmitted and so the completion callbacks are not run. The error 1031 * state may need to be propagated to the log items attached to the buffer, 1032 * however, so the next AIL push of the item knows hot to handle it correctly. 1033 */ 1034 STATIC void 1035 xfs_buf_do_callbacks_fail( 1036 struct xfs_buf *bp) 1037 { 1038 struct xfs_log_item *lip; 1039 struct xfs_ail *ailp; 1040 1041 /* 1042 * Buffer log item errors are handled directly by xfs_buf_item_push() 1043 * and xfs_buf_iodone_callback_error, and they have no IO error 1044 * callbacks. Check only for items in b_li_list. 1045 */ 1046 if (list_empty(&bp->b_li_list)) 1047 return; 1048 1049 lip = list_first_entry(&bp->b_li_list, struct xfs_log_item, 1050 li_bio_list); 1051 ailp = lip->li_ailp; 1052 spin_lock(&ailp->ail_lock); 1053 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) { 1054 if (lip->li_ops->iop_error) 1055 lip->li_ops->iop_error(lip, bp); 1056 } 1057 spin_unlock(&ailp->ail_lock); 1058 } 1059 1060 static bool 1061 xfs_buf_iodone_callback_error( 1062 struct xfs_buf *bp) 1063 { 1064 struct xfs_buf_log_item *bip = bp->b_log_item; 1065 struct xfs_log_item *lip; 1066 struct xfs_mount *mp; 1067 static ulong lasttime; 1068 static xfs_buftarg_t *lasttarg; 1069 struct xfs_error_cfg *cfg; 1070 1071 /* 1072 * The failed buffer might not have a buf_log_item attached or the 1073 * log_item list might be empty. Get the mp from the available 1074 * xfs_log_item 1075 */ 1076 lip = list_first_entry_or_null(&bp->b_li_list, struct xfs_log_item, 1077 li_bio_list); 1078 mp = lip ? lip->li_mountp : bip->bli_item.li_mountp; 1079 1080 /* 1081 * If we've already decided to shutdown the filesystem because of 1082 * I/O errors, there's no point in giving this a retry. 1083 */ 1084 if (XFS_FORCED_SHUTDOWN(mp)) 1085 goto out_stale; 1086 1087 if (bp->b_target != lasttarg || 1088 time_after(jiffies, (lasttime + 5*HZ))) { 1089 lasttime = jiffies; 1090 xfs_buf_ioerror_alert(bp, __func__); 1091 } 1092 lasttarg = bp->b_target; 1093 1094 /* synchronous writes will have callers process the error */ 1095 if (!(bp->b_flags & XBF_ASYNC)) 1096 goto out_stale; 1097 1098 trace_xfs_buf_item_iodone_async(bp, _RET_IP_); 1099 ASSERT(bp->b_iodone != NULL); 1100 1101 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error); 1102 1103 /* 1104 * If the write was asynchronous then no one will be looking for the 1105 * error. If this is the first failure of this type, clear the error 1106 * state and write the buffer out again. This means we always retry an 1107 * async write failure at least once, but we also need to set the buffer 1108 * up to behave correctly now for repeated failures. 1109 */ 1110 if (!(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL)) || 1111 bp->b_last_error != bp->b_error) { 1112 bp->b_flags |= (XBF_WRITE | XBF_DONE | XBF_WRITE_FAIL); 1113 bp->b_last_error = bp->b_error; 1114 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER && 1115 !bp->b_first_retry_time) 1116 bp->b_first_retry_time = jiffies; 1117 1118 xfs_buf_ioerror(bp, 0); 1119 xfs_buf_submit(bp); 1120 return true; 1121 } 1122 1123 /* 1124 * Repeated failure on an async write. Take action according to the 1125 * error configuration we have been set up to use. 1126 */ 1127 1128 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER && 1129 ++bp->b_retries > cfg->max_retries) 1130 goto permanent_error; 1131 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER && 1132 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time)) 1133 goto permanent_error; 1134 1135 /* At unmount we may treat errors differently */ 1136 if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount) 1137 goto permanent_error; 1138 1139 /* 1140 * Still a transient error, run IO completion failure callbacks and let 1141 * the higher layers retry the buffer. 1142 */ 1143 xfs_buf_do_callbacks_fail(bp); 1144 xfs_buf_ioerror(bp, 0); 1145 xfs_buf_relse(bp); 1146 return true; 1147 1148 /* 1149 * Permanent error - we need to trigger a shutdown if we haven't already 1150 * to indicate that inconsistency will result from this action. 1151 */ 1152 permanent_error: 1153 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1154 out_stale: 1155 xfs_buf_stale(bp); 1156 bp->b_flags |= XBF_DONE; 1157 trace_xfs_buf_error_relse(bp, _RET_IP_); 1158 return false; 1159 } 1160 1161 /* 1162 * This is the iodone() function for buffers which have had callbacks attached 1163 * to them by xfs_buf_attach_iodone(). We need to iterate the items on the 1164 * callback list, mark the buffer as having no more callbacks and then push the 1165 * buffer through IO completion processing. 1166 */ 1167 void 1168 xfs_buf_iodone_callbacks( 1169 struct xfs_buf *bp) 1170 { 1171 /* 1172 * If there is an error, process it. Some errors require us 1173 * to run callbacks after failure processing is done so we 1174 * detect that and take appropriate action. 1175 */ 1176 if (bp->b_error && xfs_buf_iodone_callback_error(bp)) 1177 return; 1178 1179 /* 1180 * Successful IO or permanent error. Either way, we can clear the 1181 * retry state here in preparation for the next error that may occur. 1182 */ 1183 bp->b_last_error = 0; 1184 bp->b_retries = 0; 1185 bp->b_first_retry_time = 0; 1186 1187 xfs_buf_do_callbacks(bp); 1188 bp->b_log_item = NULL; 1189 list_del_init(&bp->b_li_list); 1190 bp->b_iodone = NULL; 1191 xfs_buf_ioend(bp); 1192 } 1193 1194 /* 1195 * This is the iodone() function for buffers which have been 1196 * logged. It is called when they are eventually flushed out. 1197 * It should remove the buf item from the AIL, and free the buf item. 1198 * It is called by xfs_buf_iodone_callbacks() above which will take 1199 * care of cleaning up the buffer itself. 1200 */ 1201 void 1202 xfs_buf_iodone( 1203 struct xfs_buf *bp, 1204 struct xfs_log_item *lip) 1205 { 1206 struct xfs_ail *ailp = lip->li_ailp; 1207 1208 ASSERT(BUF_ITEM(lip)->bli_buf == bp); 1209 1210 xfs_buf_rele(bp); 1211 1212 /* 1213 * If we are forcibly shutting down, this may well be 1214 * off the AIL already. That's because we simulate the 1215 * log-committed callbacks to unpin these buffers. Or we may never 1216 * have put this item on AIL because of the transaction was 1217 * aborted forcibly. xfs_trans_ail_delete() takes care of these. 1218 * 1219 * Either way, AIL is useless if we're forcing a shutdown. 1220 */ 1221 spin_lock(&ailp->ail_lock); 1222 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE); 1223 xfs_buf_item_free(BUF_ITEM(lip)); 1224 } 1225 1226 /* 1227 * Requeue a failed buffer for writeback 1228 * 1229 * Return true if the buffer has been re-queued properly, false otherwise 1230 */ 1231 bool 1232 xfs_buf_resubmit_failed_buffers( 1233 struct xfs_buf *bp, 1234 struct list_head *buffer_list) 1235 { 1236 struct xfs_log_item *lip; 1237 1238 /* 1239 * Clear XFS_LI_FAILED flag from all items before resubmit 1240 * 1241 * XFS_LI_FAILED set/clear is protected by ail_lock, caller this 1242 * function already have it acquired 1243 */ 1244 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) 1245 xfs_clear_li_failed(lip); 1246 1247 /* Add this buffer back to the delayed write list */ 1248 return xfs_buf_delwri_queue(bp, buffer_list); 1249 } 1250