xref: /openbmc/linux/fs/xfs/xfs_buf_item.c (revision a1c7c49c2091926962f8c1c866d386febffec5d8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_inode.h"
18 #include "xfs_inode_item.h"
19 #include "xfs_quota.h"
20 #include "xfs_dquot_item.h"
21 #include "xfs_dquot.h"
22 #include "xfs_trace.h"
23 #include "xfs_log.h"
24 
25 
26 struct kmem_cache	*xfs_buf_item_cache;
27 
28 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
29 {
30 	return container_of(lip, struct xfs_buf_log_item, bli_item);
31 }
32 
33 /* Is this log iovec plausibly large enough to contain the buffer log format? */
34 bool
35 xfs_buf_log_check_iovec(
36 	struct xfs_log_iovec		*iovec)
37 {
38 	struct xfs_buf_log_format	*blfp = iovec->i_addr;
39 	char				*bmp_end;
40 	char				*item_end;
41 
42 	if (offsetof(struct xfs_buf_log_format, blf_data_map) > iovec->i_len)
43 		return false;
44 
45 	item_end = (char *)iovec->i_addr + iovec->i_len;
46 	bmp_end = (char *)&blfp->blf_data_map[blfp->blf_map_size];
47 	return bmp_end <= item_end;
48 }
49 
50 static inline int
51 xfs_buf_log_format_size(
52 	struct xfs_buf_log_format *blfp)
53 {
54 	return offsetof(struct xfs_buf_log_format, blf_data_map) +
55 			(blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
56 }
57 
58 static inline bool
59 xfs_buf_item_straddle(
60 	struct xfs_buf		*bp,
61 	uint			offset,
62 	int			first_bit,
63 	int			nbits)
64 {
65 	void			*first, *last;
66 
67 	first = xfs_buf_offset(bp, offset + (first_bit << XFS_BLF_SHIFT));
68 	last = xfs_buf_offset(bp,
69 			offset + ((first_bit + nbits) << XFS_BLF_SHIFT));
70 
71 	if (last - first != nbits * XFS_BLF_CHUNK)
72 		return true;
73 	return false;
74 }
75 
76 /*
77  * Return the number of log iovecs and space needed to log the given buf log
78  * item segment.
79  *
80  * It calculates this as 1 iovec for the buf log format structure and 1 for each
81  * stretch of non-contiguous chunks to be logged.  Contiguous chunks are logged
82  * in a single iovec.
83  */
84 STATIC void
85 xfs_buf_item_size_segment(
86 	struct xfs_buf_log_item		*bip,
87 	struct xfs_buf_log_format	*blfp,
88 	uint				offset,
89 	int				*nvecs,
90 	int				*nbytes)
91 {
92 	struct xfs_buf			*bp = bip->bli_buf;
93 	int				first_bit;
94 	int				nbits;
95 	int				next_bit;
96 	int				last_bit;
97 
98 	first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
99 	if (first_bit == -1)
100 		return;
101 
102 	(*nvecs)++;
103 	*nbytes += xfs_buf_log_format_size(blfp);
104 
105 	do {
106 		nbits = xfs_contig_bits(blfp->blf_data_map,
107 					blfp->blf_map_size, first_bit);
108 		ASSERT(nbits > 0);
109 
110 		/*
111 		 * Straddling a page is rare because we don't log contiguous
112 		 * chunks of unmapped buffers anywhere.
113 		 */
114 		if (nbits > 1 &&
115 		    xfs_buf_item_straddle(bp, offset, first_bit, nbits))
116 			goto slow_scan;
117 
118 		(*nvecs)++;
119 		*nbytes += nbits * XFS_BLF_CHUNK;
120 
121 		/*
122 		 * This takes the bit number to start looking from and
123 		 * returns the next set bit from there.  It returns -1
124 		 * if there are no more bits set or the start bit is
125 		 * beyond the end of the bitmap.
126 		 */
127 		first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
128 					(uint)first_bit + nbits + 1);
129 	} while (first_bit != -1);
130 
131 	return;
132 
133 slow_scan:
134 	/* Count the first bit we jumped out of the above loop from */
135 	(*nvecs)++;
136 	*nbytes += XFS_BLF_CHUNK;
137 	last_bit = first_bit;
138 	while (last_bit != -1) {
139 		/*
140 		 * This takes the bit number to start looking from and
141 		 * returns the next set bit from there.  It returns -1
142 		 * if there are no more bits set or the start bit is
143 		 * beyond the end of the bitmap.
144 		 */
145 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
146 					last_bit + 1);
147 		/*
148 		 * If we run out of bits, leave the loop,
149 		 * else if we find a new set of bits bump the number of vecs,
150 		 * else keep scanning the current set of bits.
151 		 */
152 		if (next_bit == -1) {
153 			break;
154 		} else if (next_bit != last_bit + 1 ||
155 		           xfs_buf_item_straddle(bp, offset, first_bit, nbits)) {
156 			last_bit = next_bit;
157 			first_bit = next_bit;
158 			(*nvecs)++;
159 			nbits = 1;
160 		} else {
161 			last_bit++;
162 			nbits++;
163 		}
164 		*nbytes += XFS_BLF_CHUNK;
165 	}
166 }
167 
168 /*
169  * Return the number of log iovecs and space needed to log the given buf log
170  * item.
171  *
172  * Discontiguous buffers need a format structure per region that is being
173  * logged. This makes the changes in the buffer appear to log recovery as though
174  * they came from separate buffers, just like would occur if multiple buffers
175  * were used instead of a single discontiguous buffer. This enables
176  * discontiguous buffers to be in-memory constructs, completely transparent to
177  * what ends up on disk.
178  *
179  * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
180  * format structures. If the item has previously been logged and has dirty
181  * regions, we do not relog them in stale buffers. This has the effect of
182  * reducing the size of the relogged item by the amount of dirty data tracked
183  * by the log item. This can result in the committing transaction reducing the
184  * amount of space being consumed by the CIL.
185  */
186 STATIC void
187 xfs_buf_item_size(
188 	struct xfs_log_item	*lip,
189 	int			*nvecs,
190 	int			*nbytes)
191 {
192 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
193 	struct xfs_buf		*bp = bip->bli_buf;
194 	int			i;
195 	int			bytes;
196 	uint			offset = 0;
197 
198 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
199 	if (bip->bli_flags & XFS_BLI_STALE) {
200 		/*
201 		 * The buffer is stale, so all we need to log is the buf log
202 		 * format structure with the cancel flag in it as we are never
203 		 * going to replay the changes tracked in the log item.
204 		 */
205 		trace_xfs_buf_item_size_stale(bip);
206 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
207 		*nvecs += bip->bli_format_count;
208 		for (i = 0; i < bip->bli_format_count; i++) {
209 			*nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
210 		}
211 		return;
212 	}
213 
214 	ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
215 
216 	if (bip->bli_flags & XFS_BLI_ORDERED) {
217 		/*
218 		 * The buffer has been logged just to order it. It is not being
219 		 * included in the transaction commit, so no vectors are used at
220 		 * all.
221 		 */
222 		trace_xfs_buf_item_size_ordered(bip);
223 		*nvecs = XFS_LOG_VEC_ORDERED;
224 		return;
225 	}
226 
227 	/*
228 	 * The vector count is based on the number of buffer vectors we have
229 	 * dirty bits in. This will only be greater than one when we have a
230 	 * compound buffer with more than one segment dirty. Hence for compound
231 	 * buffers we need to track which segment the dirty bits correspond to,
232 	 * and when we move from one segment to the next increment the vector
233 	 * count for the extra buf log format structure that will need to be
234 	 * written.
235 	 */
236 	bytes = 0;
237 	for (i = 0; i < bip->bli_format_count; i++) {
238 		xfs_buf_item_size_segment(bip, &bip->bli_formats[i], offset,
239 					  nvecs, &bytes);
240 		offset += BBTOB(bp->b_maps[i].bm_len);
241 	}
242 
243 	/*
244 	 * Round up the buffer size required to minimise the number of memory
245 	 * allocations that need to be done as this item grows when relogged by
246 	 * repeated modifications.
247 	 */
248 	*nbytes = round_up(bytes, 512);
249 	trace_xfs_buf_item_size(bip);
250 }
251 
252 static inline void
253 xfs_buf_item_copy_iovec(
254 	struct xfs_log_vec	*lv,
255 	struct xfs_log_iovec	**vecp,
256 	struct xfs_buf		*bp,
257 	uint			offset,
258 	int			first_bit,
259 	uint			nbits)
260 {
261 	offset += first_bit * XFS_BLF_CHUNK;
262 	xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
263 			xfs_buf_offset(bp, offset),
264 			nbits * XFS_BLF_CHUNK);
265 }
266 
267 static void
268 xfs_buf_item_format_segment(
269 	struct xfs_buf_log_item	*bip,
270 	struct xfs_log_vec	*lv,
271 	struct xfs_log_iovec	**vecp,
272 	uint			offset,
273 	struct xfs_buf_log_format *blfp)
274 {
275 	struct xfs_buf		*bp = bip->bli_buf;
276 	uint			base_size;
277 	int			first_bit;
278 	int			last_bit;
279 	int			next_bit;
280 	uint			nbits;
281 
282 	/* copy the flags across from the base format item */
283 	blfp->blf_flags = bip->__bli_format.blf_flags;
284 
285 	/*
286 	 * Base size is the actual size of the ondisk structure - it reflects
287 	 * the actual size of the dirty bitmap rather than the size of the in
288 	 * memory structure.
289 	 */
290 	base_size = xfs_buf_log_format_size(blfp);
291 
292 	first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
293 	if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
294 		/*
295 		 * If the map is not be dirty in the transaction, mark
296 		 * the size as zero and do not advance the vector pointer.
297 		 */
298 		return;
299 	}
300 
301 	blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
302 	blfp->blf_size = 1;
303 
304 	if (bip->bli_flags & XFS_BLI_STALE) {
305 		/*
306 		 * The buffer is stale, so all we need to log
307 		 * is the buf log format structure with the
308 		 * cancel flag in it.
309 		 */
310 		trace_xfs_buf_item_format_stale(bip);
311 		ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
312 		return;
313 	}
314 
315 
316 	/*
317 	 * Fill in an iovec for each set of contiguous chunks.
318 	 */
319 	do {
320 		ASSERT(first_bit >= 0);
321 		nbits = xfs_contig_bits(blfp->blf_data_map,
322 					blfp->blf_map_size, first_bit);
323 		ASSERT(nbits > 0);
324 
325 		/*
326 		 * Straddling a page is rare because we don't log contiguous
327 		 * chunks of unmapped buffers anywhere.
328 		 */
329 		if (nbits > 1 &&
330 		    xfs_buf_item_straddle(bp, offset, first_bit, nbits))
331 			goto slow_scan;
332 
333 		xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
334 					first_bit, nbits);
335 		blfp->blf_size++;
336 
337 		/*
338 		 * This takes the bit number to start looking from and
339 		 * returns the next set bit from there.  It returns -1
340 		 * if there are no more bits set or the start bit is
341 		 * beyond the end of the bitmap.
342 		 */
343 		first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
344 					(uint)first_bit + nbits + 1);
345 	} while (first_bit != -1);
346 
347 	return;
348 
349 slow_scan:
350 	ASSERT(bp->b_addr == NULL);
351 	last_bit = first_bit;
352 	nbits = 1;
353 	for (;;) {
354 		/*
355 		 * This takes the bit number to start looking from and
356 		 * returns the next set bit from there.  It returns -1
357 		 * if there are no more bits set or the start bit is
358 		 * beyond the end of the bitmap.
359 		 */
360 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
361 					(uint)last_bit + 1);
362 		/*
363 		 * If we run out of bits fill in the last iovec and get out of
364 		 * the loop.  Else if we start a new set of bits then fill in
365 		 * the iovec for the series we were looking at and start
366 		 * counting the bits in the new one.  Else we're still in the
367 		 * same set of bits so just keep counting and scanning.
368 		 */
369 		if (next_bit == -1) {
370 			xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
371 						first_bit, nbits);
372 			blfp->blf_size++;
373 			break;
374 		} else if (next_bit != last_bit + 1 ||
375 		           xfs_buf_item_straddle(bp, offset, first_bit, nbits)) {
376 			xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
377 						first_bit, nbits);
378 			blfp->blf_size++;
379 			first_bit = next_bit;
380 			last_bit = next_bit;
381 			nbits = 1;
382 		} else {
383 			last_bit++;
384 			nbits++;
385 		}
386 	}
387 }
388 
389 /*
390  * This is called to fill in the vector of log iovecs for the
391  * given log buf item.  It fills the first entry with a buf log
392  * format structure, and the rest point to contiguous chunks
393  * within the buffer.
394  */
395 STATIC void
396 xfs_buf_item_format(
397 	struct xfs_log_item	*lip,
398 	struct xfs_log_vec	*lv)
399 {
400 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
401 	struct xfs_buf		*bp = bip->bli_buf;
402 	struct xfs_log_iovec	*vecp = NULL;
403 	uint			offset = 0;
404 	int			i;
405 
406 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
407 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
408 	       (bip->bli_flags & XFS_BLI_STALE));
409 	ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
410 	       (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
411 	        && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
412 	ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) ||
413 	       (bip->bli_flags & XFS_BLI_STALE));
414 
415 
416 	/*
417 	 * If it is an inode buffer, transfer the in-memory state to the
418 	 * format flags and clear the in-memory state.
419 	 *
420 	 * For buffer based inode allocation, we do not transfer
421 	 * this state if the inode buffer allocation has not yet been committed
422 	 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
423 	 * correct replay of the inode allocation.
424 	 *
425 	 * For icreate item based inode allocation, the buffers aren't written
426 	 * to the journal during allocation, and hence we should always tag the
427 	 * buffer as an inode buffer so that the correct unlinked list replay
428 	 * occurs during recovery.
429 	 */
430 	if (bip->bli_flags & XFS_BLI_INODE_BUF) {
431 		if (xfs_has_v3inodes(lip->li_mountp) ||
432 		    !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
433 		      xfs_log_item_in_current_chkpt(lip)))
434 			bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
435 		bip->bli_flags &= ~XFS_BLI_INODE_BUF;
436 	}
437 
438 	for (i = 0; i < bip->bli_format_count; i++) {
439 		xfs_buf_item_format_segment(bip, lv, &vecp, offset,
440 					    &bip->bli_formats[i]);
441 		offset += BBTOB(bp->b_maps[i].bm_len);
442 	}
443 
444 	/*
445 	 * Check to make sure everything is consistent.
446 	 */
447 	trace_xfs_buf_item_format(bip);
448 }
449 
450 /*
451  * This is called to pin the buffer associated with the buf log item in memory
452  * so it cannot be written out.
453  *
454  * We also always take a reference to the buffer log item here so that the bli
455  * is held while the item is pinned in memory. This means that we can
456  * unconditionally drop the reference count a transaction holds when the
457  * transaction is completed.
458  */
459 STATIC void
460 xfs_buf_item_pin(
461 	struct xfs_log_item	*lip)
462 {
463 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
464 
465 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
466 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
467 	       (bip->bli_flags & XFS_BLI_ORDERED) ||
468 	       (bip->bli_flags & XFS_BLI_STALE));
469 
470 	trace_xfs_buf_item_pin(bip);
471 
472 	atomic_inc(&bip->bli_refcount);
473 	atomic_inc(&bip->bli_buf->b_pin_count);
474 }
475 
476 /*
477  * This is called to unpin the buffer associated with the buf log item which
478  * was previously pinned with a call to xfs_buf_item_pin().
479  */
480 STATIC void
481 xfs_buf_item_unpin(
482 	struct xfs_log_item	*lip,
483 	int			remove)
484 {
485 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
486 	struct xfs_buf		*bp = bip->bli_buf;
487 	int			stale = bip->bli_flags & XFS_BLI_STALE;
488 	int			freed;
489 
490 	ASSERT(bp->b_log_item == bip);
491 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
492 
493 	trace_xfs_buf_item_unpin(bip);
494 
495 	/*
496 	 * Drop the bli ref associated with the pin and grab the hold required
497 	 * for the I/O simulation failure in the abort case. We have to do this
498 	 * before the pin count drops because the AIL doesn't acquire a bli
499 	 * reference. Therefore if the refcount drops to zero, the bli could
500 	 * still be AIL resident and the buffer submitted for I/O (and freed on
501 	 * completion) at any point before we return. This can be removed once
502 	 * the AIL properly holds a reference on the bli.
503 	 */
504 	freed = atomic_dec_and_test(&bip->bli_refcount);
505 	if (freed && !stale && remove)
506 		xfs_buf_hold(bp);
507 	if (atomic_dec_and_test(&bp->b_pin_count))
508 		wake_up_all(&bp->b_waiters);
509 
510 	 /* nothing to do but drop the pin count if the bli is active */
511 	if (!freed)
512 		return;
513 
514 	if (stale) {
515 		ASSERT(bip->bli_flags & XFS_BLI_STALE);
516 		ASSERT(xfs_buf_islocked(bp));
517 		ASSERT(bp->b_flags & XBF_STALE);
518 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
519 		ASSERT(list_empty(&lip->li_trans));
520 		ASSERT(!bp->b_transp);
521 
522 		trace_xfs_buf_item_unpin_stale(bip);
523 
524 		/*
525 		 * If we get called here because of an IO error, we may or may
526 		 * not have the item on the AIL. xfs_trans_ail_delete() will
527 		 * take care of that situation. xfs_trans_ail_delete() drops
528 		 * the AIL lock.
529 		 */
530 		if (bip->bli_flags & XFS_BLI_STALE_INODE) {
531 			xfs_buf_item_done(bp);
532 			xfs_buf_inode_iodone(bp);
533 			ASSERT(list_empty(&bp->b_li_list));
534 		} else {
535 			xfs_trans_ail_delete(lip, SHUTDOWN_LOG_IO_ERROR);
536 			xfs_buf_item_relse(bp);
537 			ASSERT(bp->b_log_item == NULL);
538 		}
539 		xfs_buf_relse(bp);
540 	} else if (remove) {
541 		/*
542 		 * The buffer must be locked and held by the caller to simulate
543 		 * an async I/O failure. We acquired the hold for this case
544 		 * before the buffer was unpinned.
545 		 */
546 		xfs_buf_lock(bp);
547 		bp->b_flags |= XBF_ASYNC;
548 		xfs_buf_ioend_fail(bp);
549 	}
550 }
551 
552 STATIC uint
553 xfs_buf_item_push(
554 	struct xfs_log_item	*lip,
555 	struct list_head	*buffer_list)
556 {
557 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
558 	struct xfs_buf		*bp = bip->bli_buf;
559 	uint			rval = XFS_ITEM_SUCCESS;
560 
561 	if (xfs_buf_ispinned(bp))
562 		return XFS_ITEM_PINNED;
563 	if (!xfs_buf_trylock(bp)) {
564 		/*
565 		 * If we have just raced with a buffer being pinned and it has
566 		 * been marked stale, we could end up stalling until someone else
567 		 * issues a log force to unpin the stale buffer. Check for the
568 		 * race condition here so xfsaild recognizes the buffer is pinned
569 		 * and queues a log force to move it along.
570 		 */
571 		if (xfs_buf_ispinned(bp))
572 			return XFS_ITEM_PINNED;
573 		return XFS_ITEM_LOCKED;
574 	}
575 
576 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
577 
578 	trace_xfs_buf_item_push(bip);
579 
580 	/* has a previous flush failed due to IO errors? */
581 	if (bp->b_flags & XBF_WRITE_FAIL) {
582 		xfs_buf_alert_ratelimited(bp, "XFS: Failing async write",
583 	    "Failing async write on buffer block 0x%llx. Retrying async write.",
584 					  (long long)xfs_buf_daddr(bp));
585 	}
586 
587 	if (!xfs_buf_delwri_queue(bp, buffer_list))
588 		rval = XFS_ITEM_FLUSHING;
589 	xfs_buf_unlock(bp);
590 	return rval;
591 }
592 
593 /*
594  * Drop the buffer log item refcount and take appropriate action. This helper
595  * determines whether the bli must be freed or not, since a decrement to zero
596  * does not necessarily mean the bli is unused.
597  *
598  * Return true if the bli is freed, false otherwise.
599  */
600 bool
601 xfs_buf_item_put(
602 	struct xfs_buf_log_item	*bip)
603 {
604 	struct xfs_log_item	*lip = &bip->bli_item;
605 	bool			aborted;
606 	bool			dirty;
607 
608 	/* drop the bli ref and return if it wasn't the last one */
609 	if (!atomic_dec_and_test(&bip->bli_refcount))
610 		return false;
611 
612 	/*
613 	 * We dropped the last ref and must free the item if clean or aborted.
614 	 * If the bli is dirty and non-aborted, the buffer was clean in the
615 	 * transaction but still awaiting writeback from previous changes. In
616 	 * that case, the bli is freed on buffer writeback completion.
617 	 */
618 	aborted = test_bit(XFS_LI_ABORTED, &lip->li_flags) ||
619 		  xfs_is_shutdown(lip->li_mountp);
620 	dirty = bip->bli_flags & XFS_BLI_DIRTY;
621 	if (dirty && !aborted)
622 		return false;
623 
624 	/*
625 	 * The bli is aborted or clean. An aborted item may be in the AIL
626 	 * regardless of dirty state.  For example, consider an aborted
627 	 * transaction that invalidated a dirty bli and cleared the dirty
628 	 * state.
629 	 */
630 	if (aborted)
631 		xfs_trans_ail_delete(lip, 0);
632 	xfs_buf_item_relse(bip->bli_buf);
633 	return true;
634 }
635 
636 /*
637  * Release the buffer associated with the buf log item.  If there is no dirty
638  * logged data associated with the buffer recorded in the buf log item, then
639  * free the buf log item and remove the reference to it in the buffer.
640  *
641  * This call ignores the recursion count.  It is only called when the buffer
642  * should REALLY be unlocked, regardless of the recursion count.
643  *
644  * We unconditionally drop the transaction's reference to the log item. If the
645  * item was logged, then another reference was taken when it was pinned, so we
646  * can safely drop the transaction reference now.  This also allows us to avoid
647  * potential races with the unpin code freeing the bli by not referencing the
648  * bli after we've dropped the reference count.
649  *
650  * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
651  * if necessary but do not unlock the buffer.  This is for support of
652  * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
653  * free the item.
654  */
655 STATIC void
656 xfs_buf_item_release(
657 	struct xfs_log_item	*lip)
658 {
659 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
660 	struct xfs_buf		*bp = bip->bli_buf;
661 	bool			released;
662 	bool			hold = bip->bli_flags & XFS_BLI_HOLD;
663 	bool			stale = bip->bli_flags & XFS_BLI_STALE;
664 #if defined(DEBUG) || defined(XFS_WARN)
665 	bool			ordered = bip->bli_flags & XFS_BLI_ORDERED;
666 	bool			dirty = bip->bli_flags & XFS_BLI_DIRTY;
667 	bool			aborted = test_bit(XFS_LI_ABORTED,
668 						   &lip->li_flags);
669 #endif
670 
671 	trace_xfs_buf_item_release(bip);
672 
673 	/*
674 	 * The bli dirty state should match whether the blf has logged segments
675 	 * except for ordered buffers, where only the bli should be dirty.
676 	 */
677 	ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) ||
678 	       (ordered && dirty && !xfs_buf_item_dirty_format(bip)));
679 	ASSERT(!stale || (bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
680 
681 	/*
682 	 * Clear the buffer's association with this transaction and
683 	 * per-transaction state from the bli, which has been copied above.
684 	 */
685 	bp->b_transp = NULL;
686 	bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
687 
688 	/*
689 	 * Unref the item and unlock the buffer unless held or stale. Stale
690 	 * buffers remain locked until final unpin unless the bli is freed by
691 	 * the unref call. The latter implies shutdown because buffer
692 	 * invalidation dirties the bli and transaction.
693 	 */
694 	released = xfs_buf_item_put(bip);
695 	if (hold || (stale && !released))
696 		return;
697 	ASSERT(!stale || aborted);
698 	xfs_buf_relse(bp);
699 }
700 
701 STATIC void
702 xfs_buf_item_committing(
703 	struct xfs_log_item	*lip,
704 	xfs_csn_t		seq)
705 {
706 	return xfs_buf_item_release(lip);
707 }
708 
709 /*
710  * This is called to find out where the oldest active copy of the
711  * buf log item in the on disk log resides now that the last log
712  * write of it completed at the given lsn.
713  * We always re-log all the dirty data in a buffer, so usually the
714  * latest copy in the on disk log is the only one that matters.  For
715  * those cases we simply return the given lsn.
716  *
717  * The one exception to this is for buffers full of newly allocated
718  * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
719  * flag set, indicating that only the di_next_unlinked fields from the
720  * inodes in the buffers will be replayed during recovery.  If the
721  * original newly allocated inode images have not yet been flushed
722  * when the buffer is so relogged, then we need to make sure that we
723  * keep the old images in the 'active' portion of the log.  We do this
724  * by returning the original lsn of that transaction here rather than
725  * the current one.
726  */
727 STATIC xfs_lsn_t
728 xfs_buf_item_committed(
729 	struct xfs_log_item	*lip,
730 	xfs_lsn_t		lsn)
731 {
732 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
733 
734 	trace_xfs_buf_item_committed(bip);
735 
736 	if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
737 		return lip->li_lsn;
738 	return lsn;
739 }
740 
741 static const struct xfs_item_ops xfs_buf_item_ops = {
742 	.iop_size	= xfs_buf_item_size,
743 	.iop_format	= xfs_buf_item_format,
744 	.iop_pin	= xfs_buf_item_pin,
745 	.iop_unpin	= xfs_buf_item_unpin,
746 	.iop_release	= xfs_buf_item_release,
747 	.iop_committing	= xfs_buf_item_committing,
748 	.iop_committed	= xfs_buf_item_committed,
749 	.iop_push	= xfs_buf_item_push,
750 };
751 
752 STATIC void
753 xfs_buf_item_get_format(
754 	struct xfs_buf_log_item	*bip,
755 	int			count)
756 {
757 	ASSERT(bip->bli_formats == NULL);
758 	bip->bli_format_count = count;
759 
760 	if (count == 1) {
761 		bip->bli_formats = &bip->__bli_format;
762 		return;
763 	}
764 
765 	bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
766 				0);
767 }
768 
769 STATIC void
770 xfs_buf_item_free_format(
771 	struct xfs_buf_log_item	*bip)
772 {
773 	if (bip->bli_formats != &bip->__bli_format) {
774 		kmem_free(bip->bli_formats);
775 		bip->bli_formats = NULL;
776 	}
777 }
778 
779 /*
780  * Allocate a new buf log item to go with the given buffer.
781  * Set the buffer's b_log_item field to point to the new
782  * buf log item.
783  */
784 int
785 xfs_buf_item_init(
786 	struct xfs_buf	*bp,
787 	struct xfs_mount *mp)
788 {
789 	struct xfs_buf_log_item	*bip = bp->b_log_item;
790 	int			chunks;
791 	int			map_size;
792 	int			i;
793 
794 	/*
795 	 * Check to see if there is already a buf log item for
796 	 * this buffer. If we do already have one, there is
797 	 * nothing to do here so return.
798 	 */
799 	ASSERT(bp->b_mount == mp);
800 	if (bip) {
801 		ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
802 		ASSERT(!bp->b_transp);
803 		ASSERT(bip->bli_buf == bp);
804 		return 0;
805 	}
806 
807 	bip = kmem_cache_zalloc(xfs_buf_item_cache, GFP_KERNEL | __GFP_NOFAIL);
808 	xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
809 	bip->bli_buf = bp;
810 
811 	/*
812 	 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
813 	 * can be divided into. Make sure not to truncate any pieces.
814 	 * map_size is the size of the bitmap needed to describe the
815 	 * chunks of the buffer.
816 	 *
817 	 * Discontiguous buffer support follows the layout of the underlying
818 	 * buffer. This makes the implementation as simple as possible.
819 	 */
820 	xfs_buf_item_get_format(bip, bp->b_map_count);
821 
822 	for (i = 0; i < bip->bli_format_count; i++) {
823 		chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
824 				      XFS_BLF_CHUNK);
825 		map_size = DIV_ROUND_UP(chunks, NBWORD);
826 
827 		if (map_size > XFS_BLF_DATAMAP_SIZE) {
828 			kmem_cache_free(xfs_buf_item_cache, bip);
829 			xfs_err(mp,
830 	"buffer item dirty bitmap (%u uints) too small to reflect %u bytes!",
831 					map_size,
832 					BBTOB(bp->b_maps[i].bm_len));
833 			return -EFSCORRUPTED;
834 		}
835 
836 		bip->bli_formats[i].blf_type = XFS_LI_BUF;
837 		bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
838 		bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
839 		bip->bli_formats[i].blf_map_size = map_size;
840 	}
841 
842 	bp->b_log_item = bip;
843 	xfs_buf_hold(bp);
844 	return 0;
845 }
846 
847 
848 /*
849  * Mark bytes first through last inclusive as dirty in the buf
850  * item's bitmap.
851  */
852 static void
853 xfs_buf_item_log_segment(
854 	uint			first,
855 	uint			last,
856 	uint			*map)
857 {
858 	uint		first_bit;
859 	uint		last_bit;
860 	uint		bits_to_set;
861 	uint		bits_set;
862 	uint		word_num;
863 	uint		*wordp;
864 	uint		bit;
865 	uint		end_bit;
866 	uint		mask;
867 
868 	ASSERT(first < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
869 	ASSERT(last < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
870 
871 	/*
872 	 * Convert byte offsets to bit numbers.
873 	 */
874 	first_bit = first >> XFS_BLF_SHIFT;
875 	last_bit = last >> XFS_BLF_SHIFT;
876 
877 	/*
878 	 * Calculate the total number of bits to be set.
879 	 */
880 	bits_to_set = last_bit - first_bit + 1;
881 
882 	/*
883 	 * Get a pointer to the first word in the bitmap
884 	 * to set a bit in.
885 	 */
886 	word_num = first_bit >> BIT_TO_WORD_SHIFT;
887 	wordp = &map[word_num];
888 
889 	/*
890 	 * Calculate the starting bit in the first word.
891 	 */
892 	bit = first_bit & (uint)(NBWORD - 1);
893 
894 	/*
895 	 * First set any bits in the first word of our range.
896 	 * If it starts at bit 0 of the word, it will be
897 	 * set below rather than here.  That is what the variable
898 	 * bit tells us. The variable bits_set tracks the number
899 	 * of bits that have been set so far.  End_bit is the number
900 	 * of the last bit to be set in this word plus one.
901 	 */
902 	if (bit) {
903 		end_bit = min(bit + bits_to_set, (uint)NBWORD);
904 		mask = ((1U << (end_bit - bit)) - 1) << bit;
905 		*wordp |= mask;
906 		wordp++;
907 		bits_set = end_bit - bit;
908 	} else {
909 		bits_set = 0;
910 	}
911 
912 	/*
913 	 * Now set bits a whole word at a time that are between
914 	 * first_bit and last_bit.
915 	 */
916 	while ((bits_to_set - bits_set) >= NBWORD) {
917 		*wordp = 0xffffffff;
918 		bits_set += NBWORD;
919 		wordp++;
920 	}
921 
922 	/*
923 	 * Finally, set any bits left to be set in one last partial word.
924 	 */
925 	end_bit = bits_to_set - bits_set;
926 	if (end_bit) {
927 		mask = (1U << end_bit) - 1;
928 		*wordp |= mask;
929 	}
930 }
931 
932 /*
933  * Mark bytes first through last inclusive as dirty in the buf
934  * item's bitmap.
935  */
936 void
937 xfs_buf_item_log(
938 	struct xfs_buf_log_item	*bip,
939 	uint			first,
940 	uint			last)
941 {
942 	int			i;
943 	uint			start;
944 	uint			end;
945 	struct xfs_buf		*bp = bip->bli_buf;
946 
947 	/*
948 	 * walk each buffer segment and mark them dirty appropriately.
949 	 */
950 	start = 0;
951 	for (i = 0; i < bip->bli_format_count; i++) {
952 		if (start > last)
953 			break;
954 		end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
955 
956 		/* skip to the map that includes the first byte to log */
957 		if (first > end) {
958 			start += BBTOB(bp->b_maps[i].bm_len);
959 			continue;
960 		}
961 
962 		/*
963 		 * Trim the range to this segment and mark it in the bitmap.
964 		 * Note that we must convert buffer offsets to segment relative
965 		 * offsets (e.g., the first byte of each segment is byte 0 of
966 		 * that segment).
967 		 */
968 		if (first < start)
969 			first = start;
970 		if (end > last)
971 			end = last;
972 		xfs_buf_item_log_segment(first - start, end - start,
973 					 &bip->bli_formats[i].blf_data_map[0]);
974 
975 		start += BBTOB(bp->b_maps[i].bm_len);
976 	}
977 }
978 
979 
980 /*
981  * Return true if the buffer has any ranges logged/dirtied by a transaction,
982  * false otherwise.
983  */
984 bool
985 xfs_buf_item_dirty_format(
986 	struct xfs_buf_log_item	*bip)
987 {
988 	int			i;
989 
990 	for (i = 0; i < bip->bli_format_count; i++) {
991 		if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
992 			     bip->bli_formats[i].blf_map_size))
993 			return true;
994 	}
995 
996 	return false;
997 }
998 
999 STATIC void
1000 xfs_buf_item_free(
1001 	struct xfs_buf_log_item	*bip)
1002 {
1003 	xfs_buf_item_free_format(bip);
1004 	kmem_free(bip->bli_item.li_lv_shadow);
1005 	kmem_cache_free(xfs_buf_item_cache, bip);
1006 }
1007 
1008 /*
1009  * xfs_buf_item_relse() is called when the buf log item is no longer needed.
1010  */
1011 void
1012 xfs_buf_item_relse(
1013 	struct xfs_buf	*bp)
1014 {
1015 	struct xfs_buf_log_item	*bip = bp->b_log_item;
1016 
1017 	trace_xfs_buf_item_relse(bp, _RET_IP_);
1018 	ASSERT(!test_bit(XFS_LI_IN_AIL, &bip->bli_item.li_flags));
1019 
1020 	bp->b_log_item = NULL;
1021 	xfs_buf_rele(bp);
1022 	xfs_buf_item_free(bip);
1023 }
1024 
1025 void
1026 xfs_buf_item_done(
1027 	struct xfs_buf		*bp)
1028 {
1029 	/*
1030 	 * If we are forcibly shutting down, this may well be off the AIL
1031 	 * already. That's because we simulate the log-committed callbacks to
1032 	 * unpin these buffers. Or we may never have put this item on AIL
1033 	 * because of the transaction was aborted forcibly.
1034 	 * xfs_trans_ail_delete() takes care of these.
1035 	 *
1036 	 * Either way, AIL is useless if we're forcing a shutdown.
1037 	 *
1038 	 * Note that log recovery writes might have buffer items that are not on
1039 	 * the AIL even when the file system is not shut down.
1040 	 */
1041 	xfs_trans_ail_delete(&bp->b_log_item->bli_item,
1042 			     (bp->b_flags & _XBF_LOGRECOVERY) ? 0 :
1043 			     SHUTDOWN_CORRUPT_INCORE);
1044 	xfs_buf_item_relse(bp);
1045 }
1046