1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_trans.h" 24 #include "xfs_sb.h" 25 #include "xfs_ag.h" 26 #include "xfs_mount.h" 27 #include "xfs_buf_item.h" 28 #include "xfs_trans_priv.h" 29 #include "xfs_error.h" 30 #include "xfs_trace.h" 31 32 33 kmem_zone_t *xfs_buf_item_zone; 34 35 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip) 36 { 37 return container_of(lip, struct xfs_buf_log_item, bli_item); 38 } 39 40 STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp); 41 42 /* 43 * This returns the number of log iovecs needed to log the 44 * given buf log item. 45 * 46 * It calculates this as 1 iovec for the buf log format structure 47 * and 1 for each stretch of non-contiguous chunks to be logged. 48 * Contiguous chunks are logged in a single iovec. 49 * 50 * If the XFS_BLI_STALE flag has been set, then log nothing. 51 */ 52 STATIC uint 53 xfs_buf_item_size_segment( 54 struct xfs_buf_log_item *bip, 55 struct xfs_buf_log_format *blfp) 56 { 57 struct xfs_buf *bp = bip->bli_buf; 58 uint nvecs; 59 int next_bit; 60 int last_bit; 61 62 last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0); 63 if (last_bit == -1) 64 return 0; 65 66 /* 67 * initial count for a dirty buffer is 2 vectors - the format structure 68 * and the first dirty region. 69 */ 70 nvecs = 2; 71 72 while (last_bit != -1) { 73 /* 74 * This takes the bit number to start looking from and 75 * returns the next set bit from there. It returns -1 76 * if there are no more bits set or the start bit is 77 * beyond the end of the bitmap. 78 */ 79 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 80 last_bit + 1); 81 /* 82 * If we run out of bits, leave the loop, 83 * else if we find a new set of bits bump the number of vecs, 84 * else keep scanning the current set of bits. 85 */ 86 if (next_bit == -1) { 87 break; 88 } else if (next_bit != last_bit + 1) { 89 last_bit = next_bit; 90 nvecs++; 91 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) != 92 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) + 93 XFS_BLF_CHUNK)) { 94 last_bit = next_bit; 95 nvecs++; 96 } else { 97 last_bit++; 98 } 99 } 100 101 return nvecs; 102 } 103 104 /* 105 * This returns the number of log iovecs needed to log the given buf log item. 106 * 107 * It calculates this as 1 iovec for the buf log format structure and 1 for each 108 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged 109 * in a single iovec. 110 * 111 * Discontiguous buffers need a format structure per region that that is being 112 * logged. This makes the changes in the buffer appear to log recovery as though 113 * they came from separate buffers, just like would occur if multiple buffers 114 * were used instead of a single discontiguous buffer. This enables 115 * discontiguous buffers to be in-memory constructs, completely transparent to 116 * what ends up on disk. 117 * 118 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log 119 * format structures. 120 */ 121 STATIC uint 122 xfs_buf_item_size( 123 struct xfs_log_item *lip) 124 { 125 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 126 uint nvecs; 127 int i; 128 129 ASSERT(atomic_read(&bip->bli_refcount) > 0); 130 if (bip->bli_flags & XFS_BLI_STALE) { 131 /* 132 * The buffer is stale, so all we need to log 133 * is the buf log format structure with the 134 * cancel flag in it. 135 */ 136 trace_xfs_buf_item_size_stale(bip); 137 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 138 return bip->bli_format_count; 139 } 140 141 ASSERT(bip->bli_flags & XFS_BLI_LOGGED); 142 143 /* 144 * the vector count is based on the number of buffer vectors we have 145 * dirty bits in. This will only be greater than one when we have a 146 * compound buffer with more than one segment dirty. Hence for compound 147 * buffers we need to track which segment the dirty bits correspond to, 148 * and when we move from one segment to the next increment the vector 149 * count for the extra buf log format structure that will need to be 150 * written. 151 */ 152 nvecs = 0; 153 for (i = 0; i < bip->bli_format_count; i++) { 154 nvecs += xfs_buf_item_size_segment(bip, &bip->bli_formats[i]); 155 } 156 157 trace_xfs_buf_item_size(bip); 158 return nvecs; 159 } 160 161 static struct xfs_log_iovec * 162 xfs_buf_item_format_segment( 163 struct xfs_buf_log_item *bip, 164 struct xfs_log_iovec *vecp, 165 uint offset, 166 struct xfs_buf_log_format *blfp) 167 { 168 struct xfs_buf *bp = bip->bli_buf; 169 uint base_size; 170 uint nvecs; 171 int first_bit; 172 int last_bit; 173 int next_bit; 174 uint nbits; 175 uint buffer_offset; 176 177 /* copy the flags across from the base format item */ 178 blfp->blf_flags = bip->__bli_format.blf_flags; 179 180 /* 181 * Base size is the actual size of the ondisk structure - it reflects 182 * the actual size of the dirty bitmap rather than the size of the in 183 * memory structure. 184 */ 185 base_size = offsetof(struct xfs_buf_log_format, blf_data_map) + 186 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0])); 187 188 nvecs = 0; 189 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0); 190 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) { 191 /* 192 * If the map is not be dirty in the transaction, mark 193 * the size as zero and do not advance the vector pointer. 194 */ 195 goto out; 196 } 197 198 vecp->i_addr = blfp; 199 vecp->i_len = base_size; 200 vecp->i_type = XLOG_REG_TYPE_BFORMAT; 201 vecp++; 202 nvecs = 1; 203 204 if (bip->bli_flags & XFS_BLI_STALE) { 205 /* 206 * The buffer is stale, so all we need to log 207 * is the buf log format structure with the 208 * cancel flag in it. 209 */ 210 trace_xfs_buf_item_format_stale(bip); 211 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL); 212 goto out; 213 } 214 215 /* 216 * Fill in an iovec for each set of contiguous chunks. 217 */ 218 219 last_bit = first_bit; 220 nbits = 1; 221 for (;;) { 222 /* 223 * This takes the bit number to start looking from and 224 * returns the next set bit from there. It returns -1 225 * if there are no more bits set or the start bit is 226 * beyond the end of the bitmap. 227 */ 228 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 229 (uint)last_bit + 1); 230 /* 231 * If we run out of bits fill in the last iovec and get 232 * out of the loop. 233 * Else if we start a new set of bits then fill in the 234 * iovec for the series we were looking at and start 235 * counting the bits in the new one. 236 * Else we're still in the same set of bits so just 237 * keep counting and scanning. 238 */ 239 if (next_bit == -1) { 240 buffer_offset = offset + first_bit * XFS_BLF_CHUNK; 241 vecp->i_addr = xfs_buf_offset(bp, buffer_offset); 242 vecp->i_len = nbits * XFS_BLF_CHUNK; 243 vecp->i_type = XLOG_REG_TYPE_BCHUNK; 244 nvecs++; 245 break; 246 } else if (next_bit != last_bit + 1) { 247 buffer_offset = offset + first_bit * XFS_BLF_CHUNK; 248 vecp->i_addr = xfs_buf_offset(bp, buffer_offset); 249 vecp->i_len = nbits * XFS_BLF_CHUNK; 250 vecp->i_type = XLOG_REG_TYPE_BCHUNK; 251 nvecs++; 252 vecp++; 253 first_bit = next_bit; 254 last_bit = next_bit; 255 nbits = 1; 256 } else if (xfs_buf_offset(bp, offset + 257 (next_bit << XFS_BLF_SHIFT)) != 258 (xfs_buf_offset(bp, offset + 259 (last_bit << XFS_BLF_SHIFT)) + 260 XFS_BLF_CHUNK)) { 261 buffer_offset = offset + first_bit * XFS_BLF_CHUNK; 262 vecp->i_addr = xfs_buf_offset(bp, buffer_offset); 263 vecp->i_len = nbits * XFS_BLF_CHUNK; 264 vecp->i_type = XLOG_REG_TYPE_BCHUNK; 265 /* 266 * You would think we need to bump the nvecs here too, but we do not 267 * this number is used by recovery, and it gets confused by the boundary 268 * split here 269 * nvecs++; 270 */ 271 vecp++; 272 first_bit = next_bit; 273 last_bit = next_bit; 274 nbits = 1; 275 } else { 276 last_bit++; 277 nbits++; 278 } 279 } 280 out: 281 blfp->blf_size = nvecs; 282 return vecp; 283 } 284 285 /* 286 * This is called to fill in the vector of log iovecs for the 287 * given log buf item. It fills the first entry with a buf log 288 * format structure, and the rest point to contiguous chunks 289 * within the buffer. 290 */ 291 STATIC void 292 xfs_buf_item_format( 293 struct xfs_log_item *lip, 294 struct xfs_log_iovec *vecp) 295 { 296 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 297 struct xfs_buf *bp = bip->bli_buf; 298 uint offset = 0; 299 int i; 300 301 ASSERT(atomic_read(&bip->bli_refcount) > 0); 302 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || 303 (bip->bli_flags & XFS_BLI_STALE)); 304 305 /* 306 * If it is an inode buffer, transfer the in-memory state to the 307 * format flags and clear the in-memory state. We do not transfer 308 * this state if the inode buffer allocation has not yet been committed 309 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent 310 * correct replay of the inode allocation. 311 */ 312 if (bip->bli_flags & XFS_BLI_INODE_BUF) { 313 if (!((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && 314 xfs_log_item_in_current_chkpt(lip))) 315 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF; 316 bip->bli_flags &= ~XFS_BLI_INODE_BUF; 317 } 318 319 for (i = 0; i < bip->bli_format_count; i++) { 320 vecp = xfs_buf_item_format_segment(bip, vecp, offset, 321 &bip->bli_formats[i]); 322 offset += bp->b_maps[i].bm_len; 323 } 324 325 /* 326 * Check to make sure everything is consistent. 327 */ 328 trace_xfs_buf_item_format(bip); 329 } 330 331 /* 332 * This is called to pin the buffer associated with the buf log item in memory 333 * so it cannot be written out. 334 * 335 * We also always take a reference to the buffer log item here so that the bli 336 * is held while the item is pinned in memory. This means that we can 337 * unconditionally drop the reference count a transaction holds when the 338 * transaction is completed. 339 */ 340 STATIC void 341 xfs_buf_item_pin( 342 struct xfs_log_item *lip) 343 { 344 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 345 346 ASSERT(atomic_read(&bip->bli_refcount) > 0); 347 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || 348 (bip->bli_flags & XFS_BLI_STALE)); 349 350 trace_xfs_buf_item_pin(bip); 351 352 atomic_inc(&bip->bli_refcount); 353 atomic_inc(&bip->bli_buf->b_pin_count); 354 } 355 356 /* 357 * This is called to unpin the buffer associated with the buf log 358 * item which was previously pinned with a call to xfs_buf_item_pin(). 359 * 360 * Also drop the reference to the buf item for the current transaction. 361 * If the XFS_BLI_STALE flag is set and we are the last reference, 362 * then free up the buf log item and unlock the buffer. 363 * 364 * If the remove flag is set we are called from uncommit in the 365 * forced-shutdown path. If that is true and the reference count on 366 * the log item is going to drop to zero we need to free the item's 367 * descriptor in the transaction. 368 */ 369 STATIC void 370 xfs_buf_item_unpin( 371 struct xfs_log_item *lip, 372 int remove) 373 { 374 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 375 xfs_buf_t *bp = bip->bli_buf; 376 struct xfs_ail *ailp = lip->li_ailp; 377 int stale = bip->bli_flags & XFS_BLI_STALE; 378 int freed; 379 380 ASSERT(bp->b_fspriv == bip); 381 ASSERT(atomic_read(&bip->bli_refcount) > 0); 382 383 trace_xfs_buf_item_unpin(bip); 384 385 freed = atomic_dec_and_test(&bip->bli_refcount); 386 387 if (atomic_dec_and_test(&bp->b_pin_count)) 388 wake_up_all(&bp->b_waiters); 389 390 if (freed && stale) { 391 ASSERT(bip->bli_flags & XFS_BLI_STALE); 392 ASSERT(xfs_buf_islocked(bp)); 393 ASSERT(XFS_BUF_ISSTALE(bp)); 394 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 395 396 trace_xfs_buf_item_unpin_stale(bip); 397 398 if (remove) { 399 /* 400 * If we are in a transaction context, we have to 401 * remove the log item from the transaction as we are 402 * about to release our reference to the buffer. If we 403 * don't, the unlock that occurs later in 404 * xfs_trans_uncommit() will try to reference the 405 * buffer which we no longer have a hold on. 406 */ 407 if (lip->li_desc) 408 xfs_trans_del_item(lip); 409 410 /* 411 * Since the transaction no longer refers to the buffer, 412 * the buffer should no longer refer to the transaction. 413 */ 414 bp->b_transp = NULL; 415 } 416 417 /* 418 * If we get called here because of an IO error, we may 419 * or may not have the item on the AIL. xfs_trans_ail_delete() 420 * will take care of that situation. 421 * xfs_trans_ail_delete() drops the AIL lock. 422 */ 423 if (bip->bli_flags & XFS_BLI_STALE_INODE) { 424 xfs_buf_do_callbacks(bp); 425 bp->b_fspriv = NULL; 426 bp->b_iodone = NULL; 427 } else { 428 spin_lock(&ailp->xa_lock); 429 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR); 430 xfs_buf_item_relse(bp); 431 ASSERT(bp->b_fspriv == NULL); 432 } 433 xfs_buf_relse(bp); 434 } else if (freed && remove) { 435 /* 436 * There are currently two references to the buffer - the active 437 * LRU reference and the buf log item. What we are about to do 438 * here - simulate a failed IO completion - requires 3 439 * references. 440 * 441 * The LRU reference is removed by the xfs_buf_stale() call. The 442 * buf item reference is removed by the xfs_buf_iodone() 443 * callback that is run by xfs_buf_do_callbacks() during ioend 444 * processing (via the bp->b_iodone callback), and then finally 445 * the ioend processing will drop the IO reference if the buffer 446 * is marked XBF_ASYNC. 447 * 448 * Hence we need to take an additional reference here so that IO 449 * completion processing doesn't free the buffer prematurely. 450 */ 451 xfs_buf_lock(bp); 452 xfs_buf_hold(bp); 453 bp->b_flags |= XBF_ASYNC; 454 xfs_buf_ioerror(bp, EIO); 455 XFS_BUF_UNDONE(bp); 456 xfs_buf_stale(bp); 457 xfs_buf_ioend(bp, 0); 458 } 459 } 460 461 STATIC uint 462 xfs_buf_item_push( 463 struct xfs_log_item *lip, 464 struct list_head *buffer_list) 465 { 466 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 467 struct xfs_buf *bp = bip->bli_buf; 468 uint rval = XFS_ITEM_SUCCESS; 469 470 if (xfs_buf_ispinned(bp)) 471 return XFS_ITEM_PINNED; 472 if (!xfs_buf_trylock(bp)) { 473 /* 474 * If we have just raced with a buffer being pinned and it has 475 * been marked stale, we could end up stalling until someone else 476 * issues a log force to unpin the stale buffer. Check for the 477 * race condition here so xfsaild recognizes the buffer is pinned 478 * and queues a log force to move it along. 479 */ 480 if (xfs_buf_ispinned(bp)) 481 return XFS_ITEM_PINNED; 482 return XFS_ITEM_LOCKED; 483 } 484 485 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 486 487 trace_xfs_buf_item_push(bip); 488 489 if (!xfs_buf_delwri_queue(bp, buffer_list)) 490 rval = XFS_ITEM_FLUSHING; 491 xfs_buf_unlock(bp); 492 return rval; 493 } 494 495 /* 496 * Release the buffer associated with the buf log item. If there is no dirty 497 * logged data associated with the buffer recorded in the buf log item, then 498 * free the buf log item and remove the reference to it in the buffer. 499 * 500 * This call ignores the recursion count. It is only called when the buffer 501 * should REALLY be unlocked, regardless of the recursion count. 502 * 503 * We unconditionally drop the transaction's reference to the log item. If the 504 * item was logged, then another reference was taken when it was pinned, so we 505 * can safely drop the transaction reference now. This also allows us to avoid 506 * potential races with the unpin code freeing the bli by not referencing the 507 * bli after we've dropped the reference count. 508 * 509 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item 510 * if necessary but do not unlock the buffer. This is for support of 511 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't 512 * free the item. 513 */ 514 STATIC void 515 xfs_buf_item_unlock( 516 struct xfs_log_item *lip) 517 { 518 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 519 struct xfs_buf *bp = bip->bli_buf; 520 int aborted, clean, i; 521 uint hold; 522 523 /* Clear the buffer's association with this transaction. */ 524 bp->b_transp = NULL; 525 526 /* 527 * If this is a transaction abort, don't return early. Instead, allow 528 * the brelse to happen. Normally it would be done for stale 529 * (cancelled) buffers at unpin time, but we'll never go through the 530 * pin/unpin cycle if we abort inside commit. 531 */ 532 aborted = (lip->li_flags & XFS_LI_ABORTED) != 0; 533 534 /* 535 * Before possibly freeing the buf item, determine if we should 536 * release the buffer at the end of this routine. 537 */ 538 hold = bip->bli_flags & XFS_BLI_HOLD; 539 540 /* Clear the per transaction state. */ 541 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD); 542 543 /* 544 * If the buf item is marked stale, then don't do anything. We'll 545 * unlock the buffer and free the buf item when the buffer is unpinned 546 * for the last time. 547 */ 548 if (bip->bli_flags & XFS_BLI_STALE) { 549 trace_xfs_buf_item_unlock_stale(bip); 550 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 551 if (!aborted) { 552 atomic_dec(&bip->bli_refcount); 553 return; 554 } 555 } 556 557 trace_xfs_buf_item_unlock(bip); 558 559 /* 560 * If the buf item isn't tracking any data, free it, otherwise drop the 561 * reference we hold to it. If we are aborting the transaction, this may 562 * be the only reference to the buf item, so we free it anyway 563 * regardless of whether it is dirty or not. A dirty abort implies a 564 * shutdown, anyway. 565 */ 566 clean = 1; 567 for (i = 0; i < bip->bli_format_count; i++) { 568 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map, 569 bip->bli_formats[i].blf_map_size)) { 570 clean = 0; 571 break; 572 } 573 } 574 if (clean) 575 xfs_buf_item_relse(bp); 576 else if (aborted) { 577 if (atomic_dec_and_test(&bip->bli_refcount)) { 578 ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp)); 579 xfs_buf_item_relse(bp); 580 } 581 } else 582 atomic_dec(&bip->bli_refcount); 583 584 if (!hold) 585 xfs_buf_relse(bp); 586 } 587 588 /* 589 * This is called to find out where the oldest active copy of the 590 * buf log item in the on disk log resides now that the last log 591 * write of it completed at the given lsn. 592 * We always re-log all the dirty data in a buffer, so usually the 593 * latest copy in the on disk log is the only one that matters. For 594 * those cases we simply return the given lsn. 595 * 596 * The one exception to this is for buffers full of newly allocated 597 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF 598 * flag set, indicating that only the di_next_unlinked fields from the 599 * inodes in the buffers will be replayed during recovery. If the 600 * original newly allocated inode images have not yet been flushed 601 * when the buffer is so relogged, then we need to make sure that we 602 * keep the old images in the 'active' portion of the log. We do this 603 * by returning the original lsn of that transaction here rather than 604 * the current one. 605 */ 606 STATIC xfs_lsn_t 607 xfs_buf_item_committed( 608 struct xfs_log_item *lip, 609 xfs_lsn_t lsn) 610 { 611 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 612 613 trace_xfs_buf_item_committed(bip); 614 615 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0) 616 return lip->li_lsn; 617 return lsn; 618 } 619 620 STATIC void 621 xfs_buf_item_committing( 622 struct xfs_log_item *lip, 623 xfs_lsn_t commit_lsn) 624 { 625 } 626 627 /* 628 * This is the ops vector shared by all buf log items. 629 */ 630 static const struct xfs_item_ops xfs_buf_item_ops = { 631 .iop_size = xfs_buf_item_size, 632 .iop_format = xfs_buf_item_format, 633 .iop_pin = xfs_buf_item_pin, 634 .iop_unpin = xfs_buf_item_unpin, 635 .iop_unlock = xfs_buf_item_unlock, 636 .iop_committed = xfs_buf_item_committed, 637 .iop_push = xfs_buf_item_push, 638 .iop_committing = xfs_buf_item_committing 639 }; 640 641 STATIC int 642 xfs_buf_item_get_format( 643 struct xfs_buf_log_item *bip, 644 int count) 645 { 646 ASSERT(bip->bli_formats == NULL); 647 bip->bli_format_count = count; 648 649 if (count == 1) { 650 bip->bli_formats = &bip->__bli_format; 651 return 0; 652 } 653 654 bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format), 655 KM_SLEEP); 656 if (!bip->bli_formats) 657 return ENOMEM; 658 return 0; 659 } 660 661 STATIC void 662 xfs_buf_item_free_format( 663 struct xfs_buf_log_item *bip) 664 { 665 if (bip->bli_formats != &bip->__bli_format) { 666 kmem_free(bip->bli_formats); 667 bip->bli_formats = NULL; 668 } 669 } 670 671 /* 672 * Allocate a new buf log item to go with the given buffer. 673 * Set the buffer's b_fsprivate field to point to the new 674 * buf log item. If there are other item's attached to the 675 * buffer (see xfs_buf_attach_iodone() below), then put the 676 * buf log item at the front. 677 */ 678 void 679 xfs_buf_item_init( 680 xfs_buf_t *bp, 681 xfs_mount_t *mp) 682 { 683 xfs_log_item_t *lip = bp->b_fspriv; 684 xfs_buf_log_item_t *bip; 685 int chunks; 686 int map_size; 687 int error; 688 int i; 689 690 /* 691 * Check to see if there is already a buf log item for 692 * this buffer. If there is, it is guaranteed to be 693 * the first. If we do already have one, there is 694 * nothing to do here so return. 695 */ 696 ASSERT(bp->b_target->bt_mount == mp); 697 if (lip != NULL && lip->li_type == XFS_LI_BUF) 698 return; 699 700 bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP); 701 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops); 702 bip->bli_buf = bp; 703 xfs_buf_hold(bp); 704 705 /* 706 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer 707 * can be divided into. Make sure not to truncate any pieces. 708 * map_size is the size of the bitmap needed to describe the 709 * chunks of the buffer. 710 * 711 * Discontiguous buffer support follows the layout of the underlying 712 * buffer. This makes the implementation as simple as possible. 713 */ 714 error = xfs_buf_item_get_format(bip, bp->b_map_count); 715 ASSERT(error == 0); 716 717 for (i = 0; i < bip->bli_format_count; i++) { 718 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len), 719 XFS_BLF_CHUNK); 720 map_size = DIV_ROUND_UP(chunks, NBWORD); 721 722 bip->bli_formats[i].blf_type = XFS_LI_BUF; 723 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn; 724 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len; 725 bip->bli_formats[i].blf_map_size = map_size; 726 } 727 728 #ifdef XFS_TRANS_DEBUG 729 /* 730 * Allocate the arrays for tracking what needs to be logged 731 * and what our callers request to be logged. bli_orig 732 * holds a copy of the original, clean buffer for comparison 733 * against, and bli_logged keeps a 1 bit flag per byte in 734 * the buffer to indicate which bytes the callers have asked 735 * to have logged. 736 */ 737 bip->bli_orig = kmem_alloc(BBTOB(bp->b_length), KM_SLEEP); 738 memcpy(bip->bli_orig, bp->b_addr, BBTOB(bp->b_length)); 739 bip->bli_logged = kmem_zalloc(BBTOB(bp->b_length) / NBBY, KM_SLEEP); 740 #endif 741 742 /* 743 * Put the buf item into the list of items attached to the 744 * buffer at the front. 745 */ 746 if (bp->b_fspriv) 747 bip->bli_item.li_bio_list = bp->b_fspriv; 748 bp->b_fspriv = bip; 749 } 750 751 752 /* 753 * Mark bytes first through last inclusive as dirty in the buf 754 * item's bitmap. 755 */ 756 void 757 xfs_buf_item_log_segment( 758 struct xfs_buf_log_item *bip, 759 uint first, 760 uint last, 761 uint *map) 762 { 763 uint first_bit; 764 uint last_bit; 765 uint bits_to_set; 766 uint bits_set; 767 uint word_num; 768 uint *wordp; 769 uint bit; 770 uint end_bit; 771 uint mask; 772 773 /* 774 * Convert byte offsets to bit numbers. 775 */ 776 first_bit = first >> XFS_BLF_SHIFT; 777 last_bit = last >> XFS_BLF_SHIFT; 778 779 /* 780 * Calculate the total number of bits to be set. 781 */ 782 bits_to_set = last_bit - first_bit + 1; 783 784 /* 785 * Get a pointer to the first word in the bitmap 786 * to set a bit in. 787 */ 788 word_num = first_bit >> BIT_TO_WORD_SHIFT; 789 wordp = &map[word_num]; 790 791 /* 792 * Calculate the starting bit in the first word. 793 */ 794 bit = first_bit & (uint)(NBWORD - 1); 795 796 /* 797 * First set any bits in the first word of our range. 798 * If it starts at bit 0 of the word, it will be 799 * set below rather than here. That is what the variable 800 * bit tells us. The variable bits_set tracks the number 801 * of bits that have been set so far. End_bit is the number 802 * of the last bit to be set in this word plus one. 803 */ 804 if (bit) { 805 end_bit = MIN(bit + bits_to_set, (uint)NBWORD); 806 mask = ((1 << (end_bit - bit)) - 1) << bit; 807 *wordp |= mask; 808 wordp++; 809 bits_set = end_bit - bit; 810 } else { 811 bits_set = 0; 812 } 813 814 /* 815 * Now set bits a whole word at a time that are between 816 * first_bit and last_bit. 817 */ 818 while ((bits_to_set - bits_set) >= NBWORD) { 819 *wordp |= 0xffffffff; 820 bits_set += NBWORD; 821 wordp++; 822 } 823 824 /* 825 * Finally, set any bits left to be set in one last partial word. 826 */ 827 end_bit = bits_to_set - bits_set; 828 if (end_bit) { 829 mask = (1 << end_bit) - 1; 830 *wordp |= mask; 831 } 832 } 833 834 /* 835 * Mark bytes first through last inclusive as dirty in the buf 836 * item's bitmap. 837 */ 838 void 839 xfs_buf_item_log( 840 xfs_buf_log_item_t *bip, 841 uint first, 842 uint last) 843 { 844 int i; 845 uint start; 846 uint end; 847 struct xfs_buf *bp = bip->bli_buf; 848 849 /* 850 * Mark the item as having some dirty data for 851 * quick reference in xfs_buf_item_dirty. 852 */ 853 bip->bli_flags |= XFS_BLI_DIRTY; 854 855 /* 856 * walk each buffer segment and mark them dirty appropriately. 857 */ 858 start = 0; 859 for (i = 0; i < bip->bli_format_count; i++) { 860 if (start > last) 861 break; 862 end = start + BBTOB(bp->b_maps[i].bm_len); 863 if (first > end) { 864 start += BBTOB(bp->b_maps[i].bm_len); 865 continue; 866 } 867 if (first < start) 868 first = start; 869 if (end > last) 870 end = last; 871 872 xfs_buf_item_log_segment(bip, first, end, 873 &bip->bli_formats[i].blf_data_map[0]); 874 875 start += bp->b_maps[i].bm_len; 876 } 877 } 878 879 880 /* 881 * Return 1 if the buffer has some data that has been logged (at any 882 * point, not just the current transaction) and 0 if not. 883 */ 884 uint 885 xfs_buf_item_dirty( 886 xfs_buf_log_item_t *bip) 887 { 888 return (bip->bli_flags & XFS_BLI_DIRTY); 889 } 890 891 STATIC void 892 xfs_buf_item_free( 893 xfs_buf_log_item_t *bip) 894 { 895 #ifdef XFS_TRANS_DEBUG 896 kmem_free(bip->bli_orig); 897 kmem_free(bip->bli_logged); 898 #endif /* XFS_TRANS_DEBUG */ 899 900 xfs_buf_item_free_format(bip); 901 kmem_zone_free(xfs_buf_item_zone, bip); 902 } 903 904 /* 905 * This is called when the buf log item is no longer needed. It should 906 * free the buf log item associated with the given buffer and clear 907 * the buffer's pointer to the buf log item. If there are no more 908 * items in the list, clear the b_iodone field of the buffer (see 909 * xfs_buf_attach_iodone() below). 910 */ 911 void 912 xfs_buf_item_relse( 913 xfs_buf_t *bp) 914 { 915 xfs_buf_log_item_t *bip; 916 917 trace_xfs_buf_item_relse(bp, _RET_IP_); 918 919 bip = bp->b_fspriv; 920 bp->b_fspriv = bip->bli_item.li_bio_list; 921 if (bp->b_fspriv == NULL) 922 bp->b_iodone = NULL; 923 924 xfs_buf_rele(bp); 925 xfs_buf_item_free(bip); 926 } 927 928 929 /* 930 * Add the given log item with its callback to the list of callbacks 931 * to be called when the buffer's I/O completes. If it is not set 932 * already, set the buffer's b_iodone() routine to be 933 * xfs_buf_iodone_callbacks() and link the log item into the list of 934 * items rooted at b_fsprivate. Items are always added as the second 935 * entry in the list if there is a first, because the buf item code 936 * assumes that the buf log item is first. 937 */ 938 void 939 xfs_buf_attach_iodone( 940 xfs_buf_t *bp, 941 void (*cb)(xfs_buf_t *, xfs_log_item_t *), 942 xfs_log_item_t *lip) 943 { 944 xfs_log_item_t *head_lip; 945 946 ASSERT(xfs_buf_islocked(bp)); 947 948 lip->li_cb = cb; 949 head_lip = bp->b_fspriv; 950 if (head_lip) { 951 lip->li_bio_list = head_lip->li_bio_list; 952 head_lip->li_bio_list = lip; 953 } else { 954 bp->b_fspriv = lip; 955 } 956 957 ASSERT(bp->b_iodone == NULL || 958 bp->b_iodone == xfs_buf_iodone_callbacks); 959 bp->b_iodone = xfs_buf_iodone_callbacks; 960 } 961 962 /* 963 * We can have many callbacks on a buffer. Running the callbacks individually 964 * can cause a lot of contention on the AIL lock, so we allow for a single 965 * callback to be able to scan the remaining lip->li_bio_list for other items 966 * of the same type and callback to be processed in the first call. 967 * 968 * As a result, the loop walking the callback list below will also modify the 969 * list. it removes the first item from the list and then runs the callback. 970 * The loop then restarts from the new head of the list. This allows the 971 * callback to scan and modify the list attached to the buffer and we don't 972 * have to care about maintaining a next item pointer. 973 */ 974 STATIC void 975 xfs_buf_do_callbacks( 976 struct xfs_buf *bp) 977 { 978 struct xfs_log_item *lip; 979 980 while ((lip = bp->b_fspriv) != NULL) { 981 bp->b_fspriv = lip->li_bio_list; 982 ASSERT(lip->li_cb != NULL); 983 /* 984 * Clear the next pointer so we don't have any 985 * confusion if the item is added to another buf. 986 * Don't touch the log item after calling its 987 * callback, because it could have freed itself. 988 */ 989 lip->li_bio_list = NULL; 990 lip->li_cb(bp, lip); 991 } 992 } 993 994 /* 995 * This is the iodone() function for buffers which have had callbacks 996 * attached to them by xfs_buf_attach_iodone(). It should remove each 997 * log item from the buffer's list and call the callback of each in turn. 998 * When done, the buffer's fsprivate field is set to NULL and the buffer 999 * is unlocked with a call to iodone(). 1000 */ 1001 void 1002 xfs_buf_iodone_callbacks( 1003 struct xfs_buf *bp) 1004 { 1005 struct xfs_log_item *lip = bp->b_fspriv; 1006 struct xfs_mount *mp = lip->li_mountp; 1007 static ulong lasttime; 1008 static xfs_buftarg_t *lasttarg; 1009 1010 if (likely(!xfs_buf_geterror(bp))) 1011 goto do_callbacks; 1012 1013 /* 1014 * If we've already decided to shutdown the filesystem because of 1015 * I/O errors, there's no point in giving this a retry. 1016 */ 1017 if (XFS_FORCED_SHUTDOWN(mp)) { 1018 xfs_buf_stale(bp); 1019 XFS_BUF_DONE(bp); 1020 trace_xfs_buf_item_iodone(bp, _RET_IP_); 1021 goto do_callbacks; 1022 } 1023 1024 if (bp->b_target != lasttarg || 1025 time_after(jiffies, (lasttime + 5*HZ))) { 1026 lasttime = jiffies; 1027 xfs_buf_ioerror_alert(bp, __func__); 1028 } 1029 lasttarg = bp->b_target; 1030 1031 /* 1032 * If the write was asynchronous then no one will be looking for the 1033 * error. Clear the error state and write the buffer out again. 1034 * 1035 * XXX: This helps against transient write errors, but we need to find 1036 * a way to shut the filesystem down if the writes keep failing. 1037 * 1038 * In practice we'll shut the filesystem down soon as non-transient 1039 * erorrs tend to affect the whole device and a failing log write 1040 * will make us give up. But we really ought to do better here. 1041 */ 1042 if (XFS_BUF_ISASYNC(bp)) { 1043 ASSERT(bp->b_iodone != NULL); 1044 1045 trace_xfs_buf_item_iodone_async(bp, _RET_IP_); 1046 1047 xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */ 1048 1049 if (!XFS_BUF_ISSTALE(bp)) { 1050 bp->b_flags |= XBF_WRITE | XBF_ASYNC | XBF_DONE; 1051 xfs_buf_iorequest(bp); 1052 } else { 1053 xfs_buf_relse(bp); 1054 } 1055 1056 return; 1057 } 1058 1059 /* 1060 * If the write of the buffer was synchronous, we want to make 1061 * sure to return the error to the caller of xfs_bwrite(). 1062 */ 1063 xfs_buf_stale(bp); 1064 XFS_BUF_DONE(bp); 1065 1066 trace_xfs_buf_error_relse(bp, _RET_IP_); 1067 1068 do_callbacks: 1069 xfs_buf_do_callbacks(bp); 1070 bp->b_fspriv = NULL; 1071 bp->b_iodone = NULL; 1072 xfs_buf_ioend(bp, 0); 1073 } 1074 1075 /* 1076 * This is the iodone() function for buffers which have been 1077 * logged. It is called when they are eventually flushed out. 1078 * It should remove the buf item from the AIL, and free the buf item. 1079 * It is called by xfs_buf_iodone_callbacks() above which will take 1080 * care of cleaning up the buffer itself. 1081 */ 1082 void 1083 xfs_buf_iodone( 1084 struct xfs_buf *bp, 1085 struct xfs_log_item *lip) 1086 { 1087 struct xfs_ail *ailp = lip->li_ailp; 1088 1089 ASSERT(BUF_ITEM(lip)->bli_buf == bp); 1090 1091 xfs_buf_rele(bp); 1092 1093 /* 1094 * If we are forcibly shutting down, this may well be 1095 * off the AIL already. That's because we simulate the 1096 * log-committed callbacks to unpin these buffers. Or we may never 1097 * have put this item on AIL because of the transaction was 1098 * aborted forcibly. xfs_trans_ail_delete() takes care of these. 1099 * 1100 * Either way, AIL is useless if we're forcing a shutdown. 1101 */ 1102 spin_lock(&ailp->xa_lock); 1103 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE); 1104 xfs_buf_item_free(BUF_ITEM(lip)); 1105 } 1106