xref: /openbmc/linux/fs/xfs/xfs_buf_item.c (revision 95e9fd10)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_error.h"
30 #include "xfs_trace.h"
31 
32 
33 kmem_zone_t	*xfs_buf_item_zone;
34 
35 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
36 {
37 	return container_of(lip, struct xfs_buf_log_item, bli_item);
38 }
39 
40 
41 #ifdef XFS_TRANS_DEBUG
42 /*
43  * This function uses an alternate strategy for tracking the bytes
44  * that the user requests to be logged.  This can then be used
45  * in conjunction with the bli_orig array in the buf log item to
46  * catch bugs in our callers' code.
47  *
48  * We also double check the bits set in xfs_buf_item_log using a
49  * simple algorithm to check that every byte is accounted for.
50  */
51 STATIC void
52 xfs_buf_item_log_debug(
53 	xfs_buf_log_item_t	*bip,
54 	uint			first,
55 	uint			last)
56 {
57 	uint	x;
58 	uint	byte;
59 	uint	nbytes;
60 	uint	chunk_num;
61 	uint	word_num;
62 	uint	bit_num;
63 	uint	bit_set;
64 	uint	*wordp;
65 
66 	ASSERT(bip->bli_logged != NULL);
67 	byte = first;
68 	nbytes = last - first + 1;
69 	bfset(bip->bli_logged, first, nbytes);
70 	for (x = 0; x < nbytes; x++) {
71 		chunk_num = byte >> XFS_BLF_SHIFT;
72 		word_num = chunk_num >> BIT_TO_WORD_SHIFT;
73 		bit_num = chunk_num & (NBWORD - 1);
74 		wordp = &(bip->bli_format.blf_data_map[word_num]);
75 		bit_set = *wordp & (1 << bit_num);
76 		ASSERT(bit_set);
77 		byte++;
78 	}
79 }
80 
81 /*
82  * This function is called when we flush something into a buffer without
83  * logging it.  This happens for things like inodes which are logged
84  * separately from the buffer.
85  */
86 void
87 xfs_buf_item_flush_log_debug(
88 	xfs_buf_t	*bp,
89 	uint		first,
90 	uint		last)
91 {
92 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
93 	uint			nbytes;
94 
95 	if (bip == NULL || (bip->bli_item.li_type != XFS_LI_BUF))
96 		return;
97 
98 	ASSERT(bip->bli_logged != NULL);
99 	nbytes = last - first + 1;
100 	bfset(bip->bli_logged, first, nbytes);
101 }
102 
103 /*
104  * This function is called to verify that our callers have logged
105  * all the bytes that they changed.
106  *
107  * It does this by comparing the original copy of the buffer stored in
108  * the buf log item's bli_orig array to the current copy of the buffer
109  * and ensuring that all bytes which mismatch are set in the bli_logged
110  * array of the buf log item.
111  */
112 STATIC void
113 xfs_buf_item_log_check(
114 	xfs_buf_log_item_t	*bip)
115 {
116 	char		*orig;
117 	char		*buffer;
118 	int		x;
119 	xfs_buf_t	*bp;
120 
121 	ASSERT(bip->bli_orig != NULL);
122 	ASSERT(bip->bli_logged != NULL);
123 
124 	bp = bip->bli_buf;
125 	ASSERT(bp->b_length > 0);
126 	ASSERT(bp->b_addr != NULL);
127 	orig = bip->bli_orig;
128 	buffer = bp->b_addr;
129 	for (x = 0; x < BBTOB(bp->b_length); x++) {
130 		if (orig[x] != buffer[x] && !btst(bip->bli_logged, x)) {
131 			xfs_emerg(bp->b_mount,
132 				"%s: bip %x buffer %x orig %x index %d",
133 				__func__, bip, bp, orig, x);
134 			ASSERT(0);
135 		}
136 	}
137 }
138 #else
139 #define		xfs_buf_item_log_debug(x,y,z)
140 #define		xfs_buf_item_log_check(x)
141 #endif
142 
143 STATIC void	xfs_buf_do_callbacks(struct xfs_buf *bp);
144 
145 /*
146  * This returns the number of log iovecs needed to log the
147  * given buf log item.
148  *
149  * It calculates this as 1 iovec for the buf log format structure
150  * and 1 for each stretch of non-contiguous chunks to be logged.
151  * Contiguous chunks are logged in a single iovec.
152  *
153  * If the XFS_BLI_STALE flag has been set, then log nothing.
154  */
155 STATIC uint
156 xfs_buf_item_size_segment(
157 	struct xfs_buf_log_item	*bip,
158 	struct xfs_buf_log_format *blfp)
159 {
160 	struct xfs_buf		*bp = bip->bli_buf;
161 	uint			nvecs;
162 	int			next_bit;
163 	int			last_bit;
164 
165 	last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
166 	if (last_bit == -1)
167 		return 0;
168 
169 	/*
170 	 * initial count for a dirty buffer is 2 vectors - the format structure
171 	 * and the first dirty region.
172 	 */
173 	nvecs = 2;
174 
175 	while (last_bit != -1) {
176 		/*
177 		 * This takes the bit number to start looking from and
178 		 * returns the next set bit from there.  It returns -1
179 		 * if there are no more bits set or the start bit is
180 		 * beyond the end of the bitmap.
181 		 */
182 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
183 					last_bit + 1);
184 		/*
185 		 * If we run out of bits, leave the loop,
186 		 * else if we find a new set of bits bump the number of vecs,
187 		 * else keep scanning the current set of bits.
188 		 */
189 		if (next_bit == -1) {
190 			break;
191 		} else if (next_bit != last_bit + 1) {
192 			last_bit = next_bit;
193 			nvecs++;
194 		} else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
195 			   (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
196 			    XFS_BLF_CHUNK)) {
197 			last_bit = next_bit;
198 			nvecs++;
199 		} else {
200 			last_bit++;
201 		}
202 	}
203 
204 	return nvecs;
205 }
206 
207 /*
208  * This returns the number of log iovecs needed to log the given buf log item.
209  *
210  * It calculates this as 1 iovec for the buf log format structure and 1 for each
211  * stretch of non-contiguous chunks to be logged.  Contiguous chunks are logged
212  * in a single iovec.
213  *
214  * Discontiguous buffers need a format structure per region that that is being
215  * logged. This makes the changes in the buffer appear to log recovery as though
216  * they came from separate buffers, just like would occur if multiple buffers
217  * were used instead of a single discontiguous buffer. This enables
218  * discontiguous buffers to be in-memory constructs, completely transparent to
219  * what ends up on disk.
220  *
221  * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
222  * format structures.
223  */
224 STATIC uint
225 xfs_buf_item_size(
226 	struct xfs_log_item	*lip)
227 {
228 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
229 	uint			nvecs;
230 	int			i;
231 
232 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
233 	if (bip->bli_flags & XFS_BLI_STALE) {
234 		/*
235 		 * The buffer is stale, so all we need to log
236 		 * is the buf log format structure with the
237 		 * cancel flag in it.
238 		 */
239 		trace_xfs_buf_item_size_stale(bip);
240 		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
241 		return bip->bli_format_count;
242 	}
243 
244 	ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
245 
246 	/*
247 	 * the vector count is based on the number of buffer vectors we have
248 	 * dirty bits in. This will only be greater than one when we have a
249 	 * compound buffer with more than one segment dirty. Hence for compound
250 	 * buffers we need to track which segment the dirty bits correspond to,
251 	 * and when we move from one segment to the next increment the vector
252 	 * count for the extra buf log format structure that will need to be
253 	 * written.
254 	 */
255 	nvecs = 0;
256 	for (i = 0; i < bip->bli_format_count; i++) {
257 		nvecs += xfs_buf_item_size_segment(bip, &bip->bli_formats[i]);
258 	}
259 
260 	trace_xfs_buf_item_size(bip);
261 	return nvecs;
262 }
263 
264 static struct xfs_log_iovec *
265 xfs_buf_item_format_segment(
266 	struct xfs_buf_log_item	*bip,
267 	struct xfs_log_iovec	*vecp,
268 	uint			offset,
269 	struct xfs_buf_log_format *blfp)
270 {
271 	struct xfs_buf	*bp = bip->bli_buf;
272 	uint		base_size;
273 	uint		nvecs;
274 	int		first_bit;
275 	int		last_bit;
276 	int		next_bit;
277 	uint		nbits;
278 	uint		buffer_offset;
279 
280 	/* copy the flags across from the base format item */
281 	blfp->blf_flags = bip->bli_format.blf_flags;
282 
283 	/*
284 	 * Base size is the actual size of the ondisk structure - it reflects
285 	 * the actual size of the dirty bitmap rather than the size of the in
286 	 * memory structure.
287 	 */
288 	base_size = offsetof(struct xfs_buf_log_format, blf_data_map) +
289 			(blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
290 	vecp->i_addr = blfp;
291 	vecp->i_len = base_size;
292 	vecp->i_type = XLOG_REG_TYPE_BFORMAT;
293 	vecp++;
294 	nvecs = 1;
295 
296 	if (bip->bli_flags & XFS_BLI_STALE) {
297 		/*
298 		 * The buffer is stale, so all we need to log
299 		 * is the buf log format structure with the
300 		 * cancel flag in it.
301 		 */
302 		trace_xfs_buf_item_format_stale(bip);
303 		ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
304 		blfp->blf_size = nvecs;
305 		return vecp;
306 	}
307 
308 	/*
309 	 * Fill in an iovec for each set of contiguous chunks.
310 	 */
311 	first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
312 	ASSERT(first_bit != -1);
313 	last_bit = first_bit;
314 	nbits = 1;
315 	for (;;) {
316 		/*
317 		 * This takes the bit number to start looking from and
318 		 * returns the next set bit from there.  It returns -1
319 		 * if there are no more bits set or the start bit is
320 		 * beyond the end of the bitmap.
321 		 */
322 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
323 					(uint)last_bit + 1);
324 		/*
325 		 * If we run out of bits fill in the last iovec and get
326 		 * out of the loop.
327 		 * Else if we start a new set of bits then fill in the
328 		 * iovec for the series we were looking at and start
329 		 * counting the bits in the new one.
330 		 * Else we're still in the same set of bits so just
331 		 * keep counting and scanning.
332 		 */
333 		if (next_bit == -1) {
334 			buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
335 			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
336 			vecp->i_len = nbits * XFS_BLF_CHUNK;
337 			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
338 			nvecs++;
339 			break;
340 		} else if (next_bit != last_bit + 1) {
341 			buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
342 			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
343 			vecp->i_len = nbits * XFS_BLF_CHUNK;
344 			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
345 			nvecs++;
346 			vecp++;
347 			first_bit = next_bit;
348 			last_bit = next_bit;
349 			nbits = 1;
350 		} else if (xfs_buf_offset(bp, offset +
351 					      (next_bit << XFS_BLF_SHIFT)) !=
352 			   (xfs_buf_offset(bp, offset +
353 					       (last_bit << XFS_BLF_SHIFT)) +
354 			    XFS_BLF_CHUNK)) {
355 			buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
356 			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
357 			vecp->i_len = nbits * XFS_BLF_CHUNK;
358 			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
359 /*
360  * You would think we need to bump the nvecs here too, but we do not
361  * this number is used by recovery, and it gets confused by the boundary
362  * split here
363  *			nvecs++;
364  */
365 			vecp++;
366 			first_bit = next_bit;
367 			last_bit = next_bit;
368 			nbits = 1;
369 		} else {
370 			last_bit++;
371 			nbits++;
372 		}
373 	}
374 	bip->bli_format.blf_size = nvecs;
375 	return vecp;
376 }
377 
378 /*
379  * This is called to fill in the vector of log iovecs for the
380  * given log buf item.  It fills the first entry with a buf log
381  * format structure, and the rest point to contiguous chunks
382  * within the buffer.
383  */
384 STATIC void
385 xfs_buf_item_format(
386 	struct xfs_log_item	*lip,
387 	struct xfs_log_iovec	*vecp)
388 {
389 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
390 	struct xfs_buf		*bp = bip->bli_buf;
391 	uint			offset = 0;
392 	int			i;
393 
394 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
395 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
396 	       (bip->bli_flags & XFS_BLI_STALE));
397 
398 	/*
399 	 * If it is an inode buffer, transfer the in-memory state to the
400 	 * format flags and clear the in-memory state. We do not transfer
401 	 * this state if the inode buffer allocation has not yet been committed
402 	 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
403 	 * correct replay of the inode allocation.
404 	 */
405 	if (bip->bli_flags & XFS_BLI_INODE_BUF) {
406 		if (!((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
407 		      xfs_log_item_in_current_chkpt(lip)))
408 			bip->bli_format.blf_flags |= XFS_BLF_INODE_BUF;
409 		bip->bli_flags &= ~XFS_BLI_INODE_BUF;
410 	}
411 
412 	for (i = 0; i < bip->bli_format_count; i++) {
413 		vecp = xfs_buf_item_format_segment(bip, vecp, offset,
414 						&bip->bli_formats[i]);
415 		offset += bp->b_maps[i].bm_len;
416 	}
417 
418 	/*
419 	 * Check to make sure everything is consistent.
420 	 */
421 	trace_xfs_buf_item_format(bip);
422 	xfs_buf_item_log_check(bip);
423 }
424 
425 /*
426  * This is called to pin the buffer associated with the buf log item in memory
427  * so it cannot be written out.
428  *
429  * We also always take a reference to the buffer log item here so that the bli
430  * is held while the item is pinned in memory. This means that we can
431  * unconditionally drop the reference count a transaction holds when the
432  * transaction is completed.
433  */
434 STATIC void
435 xfs_buf_item_pin(
436 	struct xfs_log_item	*lip)
437 {
438 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
439 
440 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
441 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
442 	       (bip->bli_flags & XFS_BLI_STALE));
443 
444 	trace_xfs_buf_item_pin(bip);
445 
446 	atomic_inc(&bip->bli_refcount);
447 	atomic_inc(&bip->bli_buf->b_pin_count);
448 }
449 
450 /*
451  * This is called to unpin the buffer associated with the buf log
452  * item which was previously pinned with a call to xfs_buf_item_pin().
453  *
454  * Also drop the reference to the buf item for the current transaction.
455  * If the XFS_BLI_STALE flag is set and we are the last reference,
456  * then free up the buf log item and unlock the buffer.
457  *
458  * If the remove flag is set we are called from uncommit in the
459  * forced-shutdown path.  If that is true and the reference count on
460  * the log item is going to drop to zero we need to free the item's
461  * descriptor in the transaction.
462  */
463 STATIC void
464 xfs_buf_item_unpin(
465 	struct xfs_log_item	*lip,
466 	int			remove)
467 {
468 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
469 	xfs_buf_t	*bp = bip->bli_buf;
470 	struct xfs_ail	*ailp = lip->li_ailp;
471 	int		stale = bip->bli_flags & XFS_BLI_STALE;
472 	int		freed;
473 
474 	ASSERT(bp->b_fspriv == bip);
475 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
476 
477 	trace_xfs_buf_item_unpin(bip);
478 
479 	freed = atomic_dec_and_test(&bip->bli_refcount);
480 
481 	if (atomic_dec_and_test(&bp->b_pin_count))
482 		wake_up_all(&bp->b_waiters);
483 
484 	if (freed && stale) {
485 		ASSERT(bip->bli_flags & XFS_BLI_STALE);
486 		ASSERT(xfs_buf_islocked(bp));
487 		ASSERT(XFS_BUF_ISSTALE(bp));
488 		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
489 
490 		trace_xfs_buf_item_unpin_stale(bip);
491 
492 		if (remove) {
493 			/*
494 			 * If we are in a transaction context, we have to
495 			 * remove the log item from the transaction as we are
496 			 * about to release our reference to the buffer.  If we
497 			 * don't, the unlock that occurs later in
498 			 * xfs_trans_uncommit() will try to reference the
499 			 * buffer which we no longer have a hold on.
500 			 */
501 			if (lip->li_desc)
502 				xfs_trans_del_item(lip);
503 
504 			/*
505 			 * Since the transaction no longer refers to the buffer,
506 			 * the buffer should no longer refer to the transaction.
507 			 */
508 			bp->b_transp = NULL;
509 		}
510 
511 		/*
512 		 * If we get called here because of an IO error, we may
513 		 * or may not have the item on the AIL. xfs_trans_ail_delete()
514 		 * will take care of that situation.
515 		 * xfs_trans_ail_delete() drops the AIL lock.
516 		 */
517 		if (bip->bli_flags & XFS_BLI_STALE_INODE) {
518 			xfs_buf_do_callbacks(bp);
519 			bp->b_fspriv = NULL;
520 			bp->b_iodone = NULL;
521 		} else {
522 			spin_lock(&ailp->xa_lock);
523 			xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
524 			xfs_buf_item_relse(bp);
525 			ASSERT(bp->b_fspriv == NULL);
526 		}
527 		xfs_buf_relse(bp);
528 	} else if (freed && remove) {
529 		xfs_buf_lock(bp);
530 		xfs_buf_ioerror(bp, EIO);
531 		XFS_BUF_UNDONE(bp);
532 		xfs_buf_stale(bp);
533 		xfs_buf_ioend(bp, 0);
534 	}
535 }
536 
537 STATIC uint
538 xfs_buf_item_push(
539 	struct xfs_log_item	*lip,
540 	struct list_head	*buffer_list)
541 {
542 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
543 	struct xfs_buf		*bp = bip->bli_buf;
544 	uint			rval = XFS_ITEM_SUCCESS;
545 
546 	if (xfs_buf_ispinned(bp))
547 		return XFS_ITEM_PINNED;
548 	if (!xfs_buf_trylock(bp))
549 		return XFS_ITEM_LOCKED;
550 
551 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
552 
553 	trace_xfs_buf_item_push(bip);
554 
555 	if (!xfs_buf_delwri_queue(bp, buffer_list))
556 		rval = XFS_ITEM_FLUSHING;
557 	xfs_buf_unlock(bp);
558 	return rval;
559 }
560 
561 /*
562  * Release the buffer associated with the buf log item.  If there is no dirty
563  * logged data associated with the buffer recorded in the buf log item, then
564  * free the buf log item and remove the reference to it in the buffer.
565  *
566  * This call ignores the recursion count.  It is only called when the buffer
567  * should REALLY be unlocked, regardless of the recursion count.
568  *
569  * We unconditionally drop the transaction's reference to the log item. If the
570  * item was logged, then another reference was taken when it was pinned, so we
571  * can safely drop the transaction reference now.  This also allows us to avoid
572  * potential races with the unpin code freeing the bli by not referencing the
573  * bli after we've dropped the reference count.
574  *
575  * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
576  * if necessary but do not unlock the buffer.  This is for support of
577  * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
578  * free the item.
579  */
580 STATIC void
581 xfs_buf_item_unlock(
582 	struct xfs_log_item	*lip)
583 {
584 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
585 	struct xfs_buf		*bp = bip->bli_buf;
586 	int			aborted;
587 	uint			hold;
588 
589 	/* Clear the buffer's association with this transaction. */
590 	bp->b_transp = NULL;
591 
592 	/*
593 	 * If this is a transaction abort, don't return early.  Instead, allow
594 	 * the brelse to happen.  Normally it would be done for stale
595 	 * (cancelled) buffers at unpin time, but we'll never go through the
596 	 * pin/unpin cycle if we abort inside commit.
597 	 */
598 	aborted = (lip->li_flags & XFS_LI_ABORTED) != 0;
599 
600 	/*
601 	 * Before possibly freeing the buf item, determine if we should
602 	 * release the buffer at the end of this routine.
603 	 */
604 	hold = bip->bli_flags & XFS_BLI_HOLD;
605 
606 	/* Clear the per transaction state. */
607 	bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD);
608 
609 	/*
610 	 * If the buf item is marked stale, then don't do anything.  We'll
611 	 * unlock the buffer and free the buf item when the buffer is unpinned
612 	 * for the last time.
613 	 */
614 	if (bip->bli_flags & XFS_BLI_STALE) {
615 		trace_xfs_buf_item_unlock_stale(bip);
616 		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
617 		if (!aborted) {
618 			atomic_dec(&bip->bli_refcount);
619 			return;
620 		}
621 	}
622 
623 	trace_xfs_buf_item_unlock(bip);
624 
625 	/*
626 	 * If the buf item isn't tracking any data, free it, otherwise drop the
627 	 * reference we hold to it.
628 	 */
629 	if (xfs_bitmap_empty(bip->bli_format.blf_data_map,
630 			     bip->bli_format.blf_map_size))
631 		xfs_buf_item_relse(bp);
632 	else
633 		atomic_dec(&bip->bli_refcount);
634 
635 	if (!hold)
636 		xfs_buf_relse(bp);
637 }
638 
639 /*
640  * This is called to find out where the oldest active copy of the
641  * buf log item in the on disk log resides now that the last log
642  * write of it completed at the given lsn.
643  * We always re-log all the dirty data in a buffer, so usually the
644  * latest copy in the on disk log is the only one that matters.  For
645  * those cases we simply return the given lsn.
646  *
647  * The one exception to this is for buffers full of newly allocated
648  * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
649  * flag set, indicating that only the di_next_unlinked fields from the
650  * inodes in the buffers will be replayed during recovery.  If the
651  * original newly allocated inode images have not yet been flushed
652  * when the buffer is so relogged, then we need to make sure that we
653  * keep the old images in the 'active' portion of the log.  We do this
654  * by returning the original lsn of that transaction here rather than
655  * the current one.
656  */
657 STATIC xfs_lsn_t
658 xfs_buf_item_committed(
659 	struct xfs_log_item	*lip,
660 	xfs_lsn_t		lsn)
661 {
662 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
663 
664 	trace_xfs_buf_item_committed(bip);
665 
666 	if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
667 		return lip->li_lsn;
668 	return lsn;
669 }
670 
671 STATIC void
672 xfs_buf_item_committing(
673 	struct xfs_log_item	*lip,
674 	xfs_lsn_t		commit_lsn)
675 {
676 }
677 
678 /*
679  * This is the ops vector shared by all buf log items.
680  */
681 static const struct xfs_item_ops xfs_buf_item_ops = {
682 	.iop_size	= xfs_buf_item_size,
683 	.iop_format	= xfs_buf_item_format,
684 	.iop_pin	= xfs_buf_item_pin,
685 	.iop_unpin	= xfs_buf_item_unpin,
686 	.iop_unlock	= xfs_buf_item_unlock,
687 	.iop_committed	= xfs_buf_item_committed,
688 	.iop_push	= xfs_buf_item_push,
689 	.iop_committing = xfs_buf_item_committing
690 };
691 
692 STATIC int
693 xfs_buf_item_get_format(
694 	struct xfs_buf_log_item	*bip,
695 	int			count)
696 {
697 	ASSERT(bip->bli_formats == NULL);
698 	bip->bli_format_count = count;
699 
700 	if (count == 1) {
701 		bip->bli_formats = &bip->bli_format;
702 		return 0;
703 	}
704 
705 	bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
706 				KM_SLEEP);
707 	if (!bip->bli_formats)
708 		return ENOMEM;
709 	return 0;
710 }
711 
712 STATIC void
713 xfs_buf_item_free_format(
714 	struct xfs_buf_log_item	*bip)
715 {
716 	if (bip->bli_formats != &bip->bli_format) {
717 		kmem_free(bip->bli_formats);
718 		bip->bli_formats = NULL;
719 	}
720 }
721 
722 /*
723  * Allocate a new buf log item to go with the given buffer.
724  * Set the buffer's b_fsprivate field to point to the new
725  * buf log item.  If there are other item's attached to the
726  * buffer (see xfs_buf_attach_iodone() below), then put the
727  * buf log item at the front.
728  */
729 void
730 xfs_buf_item_init(
731 	xfs_buf_t	*bp,
732 	xfs_mount_t	*mp)
733 {
734 	xfs_log_item_t		*lip = bp->b_fspriv;
735 	xfs_buf_log_item_t	*bip;
736 	int			chunks;
737 	int			map_size;
738 	int			error;
739 	int			i;
740 
741 	/*
742 	 * Check to see if there is already a buf log item for
743 	 * this buffer.  If there is, it is guaranteed to be
744 	 * the first.  If we do already have one, there is
745 	 * nothing to do here so return.
746 	 */
747 	ASSERT(bp->b_target->bt_mount == mp);
748 	if (lip != NULL && lip->li_type == XFS_LI_BUF)
749 		return;
750 
751 	bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
752 	xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
753 	bip->bli_buf = bp;
754 	xfs_buf_hold(bp);
755 
756 	/*
757 	 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
758 	 * can be divided into. Make sure not to truncate any pieces.
759 	 * map_size is the size of the bitmap needed to describe the
760 	 * chunks of the buffer.
761 	 *
762 	 * Discontiguous buffer support follows the layout of the underlying
763 	 * buffer. This makes the implementation as simple as possible.
764 	 */
765 	error = xfs_buf_item_get_format(bip, bp->b_map_count);
766 	ASSERT(error == 0);
767 
768 	for (i = 0; i < bip->bli_format_count; i++) {
769 		chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
770 				      XFS_BLF_CHUNK);
771 		map_size = DIV_ROUND_UP(chunks, NBWORD);
772 
773 		bip->bli_formats[i].blf_type = XFS_LI_BUF;
774 		bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
775 		bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
776 		bip->bli_formats[i].blf_map_size = map_size;
777 	}
778 
779 #ifdef XFS_TRANS_DEBUG
780 	/*
781 	 * Allocate the arrays for tracking what needs to be logged
782 	 * and what our callers request to be logged.  bli_orig
783 	 * holds a copy of the original, clean buffer for comparison
784 	 * against, and bli_logged keeps a 1 bit flag per byte in
785 	 * the buffer to indicate which bytes the callers have asked
786 	 * to have logged.
787 	 */
788 	bip->bli_orig = kmem_alloc(BBTOB(bp->b_length), KM_SLEEP);
789 	memcpy(bip->bli_orig, bp->b_addr, BBTOB(bp->b_length));
790 	bip->bli_logged = kmem_zalloc(BBTOB(bp->b_length) / NBBY, KM_SLEEP);
791 #endif
792 
793 	/*
794 	 * Put the buf item into the list of items attached to the
795 	 * buffer at the front.
796 	 */
797 	if (bp->b_fspriv)
798 		bip->bli_item.li_bio_list = bp->b_fspriv;
799 	bp->b_fspriv = bip;
800 }
801 
802 
803 /*
804  * Mark bytes first through last inclusive as dirty in the buf
805  * item's bitmap.
806  */
807 void
808 xfs_buf_item_log_segment(
809 	struct xfs_buf_log_item	*bip,
810 	uint			first,
811 	uint			last,
812 	uint			*map)
813 {
814 	uint		first_bit;
815 	uint		last_bit;
816 	uint		bits_to_set;
817 	uint		bits_set;
818 	uint		word_num;
819 	uint		*wordp;
820 	uint		bit;
821 	uint		end_bit;
822 	uint		mask;
823 
824 	/*
825 	 * Convert byte offsets to bit numbers.
826 	 */
827 	first_bit = first >> XFS_BLF_SHIFT;
828 	last_bit = last >> XFS_BLF_SHIFT;
829 
830 	/*
831 	 * Calculate the total number of bits to be set.
832 	 */
833 	bits_to_set = last_bit - first_bit + 1;
834 
835 	/*
836 	 * Get a pointer to the first word in the bitmap
837 	 * to set a bit in.
838 	 */
839 	word_num = first_bit >> BIT_TO_WORD_SHIFT;
840 	wordp = &map[word_num];
841 
842 	/*
843 	 * Calculate the starting bit in the first word.
844 	 */
845 	bit = first_bit & (uint)(NBWORD - 1);
846 
847 	/*
848 	 * First set any bits in the first word of our range.
849 	 * If it starts at bit 0 of the word, it will be
850 	 * set below rather than here.  That is what the variable
851 	 * bit tells us. The variable bits_set tracks the number
852 	 * of bits that have been set so far.  End_bit is the number
853 	 * of the last bit to be set in this word plus one.
854 	 */
855 	if (bit) {
856 		end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
857 		mask = ((1 << (end_bit - bit)) - 1) << bit;
858 		*wordp |= mask;
859 		wordp++;
860 		bits_set = end_bit - bit;
861 	} else {
862 		bits_set = 0;
863 	}
864 
865 	/*
866 	 * Now set bits a whole word at a time that are between
867 	 * first_bit and last_bit.
868 	 */
869 	while ((bits_to_set - bits_set) >= NBWORD) {
870 		*wordp |= 0xffffffff;
871 		bits_set += NBWORD;
872 		wordp++;
873 	}
874 
875 	/*
876 	 * Finally, set any bits left to be set in one last partial word.
877 	 */
878 	end_bit = bits_to_set - bits_set;
879 	if (end_bit) {
880 		mask = (1 << end_bit) - 1;
881 		*wordp |= mask;
882 	}
883 
884 	xfs_buf_item_log_debug(bip, first, last);
885 }
886 
887 /*
888  * Mark bytes first through last inclusive as dirty in the buf
889  * item's bitmap.
890  */
891 void
892 xfs_buf_item_log(
893 	xfs_buf_log_item_t	*bip,
894 	uint			first,
895 	uint			last)
896 {
897 	int			i;
898 	uint			start;
899 	uint			end;
900 	struct xfs_buf		*bp = bip->bli_buf;
901 
902 	/*
903 	 * Mark the item as having some dirty data for
904 	 * quick reference in xfs_buf_item_dirty.
905 	 */
906 	bip->bli_flags |= XFS_BLI_DIRTY;
907 
908 	/*
909 	 * walk each buffer segment and mark them dirty appropriately.
910 	 */
911 	start = 0;
912 	for (i = 0; i < bip->bli_format_count; i++) {
913 		if (start > last)
914 			break;
915 		end = start + BBTOB(bp->b_maps[i].bm_len);
916 		if (first > end) {
917 			start += BBTOB(bp->b_maps[i].bm_len);
918 			continue;
919 		}
920 		if (first < start)
921 			first = start;
922 		if (end > last)
923 			end = last;
924 
925 		xfs_buf_item_log_segment(bip, first, end,
926 					 &bip->bli_formats[i].blf_data_map[0]);
927 
928 		start += bp->b_maps[i].bm_len;
929 	}
930 }
931 
932 
933 /*
934  * Return 1 if the buffer has some data that has been logged (at any
935  * point, not just the current transaction) and 0 if not.
936  */
937 uint
938 xfs_buf_item_dirty(
939 	xfs_buf_log_item_t	*bip)
940 {
941 	return (bip->bli_flags & XFS_BLI_DIRTY);
942 }
943 
944 STATIC void
945 xfs_buf_item_free(
946 	xfs_buf_log_item_t	*bip)
947 {
948 #ifdef XFS_TRANS_DEBUG
949 	kmem_free(bip->bli_orig);
950 	kmem_free(bip->bli_logged);
951 #endif /* XFS_TRANS_DEBUG */
952 
953 	xfs_buf_item_free_format(bip);
954 	kmem_zone_free(xfs_buf_item_zone, bip);
955 }
956 
957 /*
958  * This is called when the buf log item is no longer needed.  It should
959  * free the buf log item associated with the given buffer and clear
960  * the buffer's pointer to the buf log item.  If there are no more
961  * items in the list, clear the b_iodone field of the buffer (see
962  * xfs_buf_attach_iodone() below).
963  */
964 void
965 xfs_buf_item_relse(
966 	xfs_buf_t	*bp)
967 {
968 	xfs_buf_log_item_t	*bip;
969 
970 	trace_xfs_buf_item_relse(bp, _RET_IP_);
971 
972 	bip = bp->b_fspriv;
973 	bp->b_fspriv = bip->bli_item.li_bio_list;
974 	if (bp->b_fspriv == NULL)
975 		bp->b_iodone = NULL;
976 
977 	xfs_buf_rele(bp);
978 	xfs_buf_item_free(bip);
979 }
980 
981 
982 /*
983  * Add the given log item with its callback to the list of callbacks
984  * to be called when the buffer's I/O completes.  If it is not set
985  * already, set the buffer's b_iodone() routine to be
986  * xfs_buf_iodone_callbacks() and link the log item into the list of
987  * items rooted at b_fsprivate.  Items are always added as the second
988  * entry in the list if there is a first, because the buf item code
989  * assumes that the buf log item is first.
990  */
991 void
992 xfs_buf_attach_iodone(
993 	xfs_buf_t	*bp,
994 	void		(*cb)(xfs_buf_t *, xfs_log_item_t *),
995 	xfs_log_item_t	*lip)
996 {
997 	xfs_log_item_t	*head_lip;
998 
999 	ASSERT(xfs_buf_islocked(bp));
1000 
1001 	lip->li_cb = cb;
1002 	head_lip = bp->b_fspriv;
1003 	if (head_lip) {
1004 		lip->li_bio_list = head_lip->li_bio_list;
1005 		head_lip->li_bio_list = lip;
1006 	} else {
1007 		bp->b_fspriv = lip;
1008 	}
1009 
1010 	ASSERT(bp->b_iodone == NULL ||
1011 	       bp->b_iodone == xfs_buf_iodone_callbacks);
1012 	bp->b_iodone = xfs_buf_iodone_callbacks;
1013 }
1014 
1015 /*
1016  * We can have many callbacks on a buffer. Running the callbacks individually
1017  * can cause a lot of contention on the AIL lock, so we allow for a single
1018  * callback to be able to scan the remaining lip->li_bio_list for other items
1019  * of the same type and callback to be processed in the first call.
1020  *
1021  * As a result, the loop walking the callback list below will also modify the
1022  * list. it removes the first item from the list and then runs the callback.
1023  * The loop then restarts from the new head of the list. This allows the
1024  * callback to scan and modify the list attached to the buffer and we don't
1025  * have to care about maintaining a next item pointer.
1026  */
1027 STATIC void
1028 xfs_buf_do_callbacks(
1029 	struct xfs_buf		*bp)
1030 {
1031 	struct xfs_log_item	*lip;
1032 
1033 	while ((lip = bp->b_fspriv) != NULL) {
1034 		bp->b_fspriv = lip->li_bio_list;
1035 		ASSERT(lip->li_cb != NULL);
1036 		/*
1037 		 * Clear the next pointer so we don't have any
1038 		 * confusion if the item is added to another buf.
1039 		 * Don't touch the log item after calling its
1040 		 * callback, because it could have freed itself.
1041 		 */
1042 		lip->li_bio_list = NULL;
1043 		lip->li_cb(bp, lip);
1044 	}
1045 }
1046 
1047 /*
1048  * This is the iodone() function for buffers which have had callbacks
1049  * attached to them by xfs_buf_attach_iodone().  It should remove each
1050  * log item from the buffer's list and call the callback of each in turn.
1051  * When done, the buffer's fsprivate field is set to NULL and the buffer
1052  * is unlocked with a call to iodone().
1053  */
1054 void
1055 xfs_buf_iodone_callbacks(
1056 	struct xfs_buf		*bp)
1057 {
1058 	struct xfs_log_item	*lip = bp->b_fspriv;
1059 	struct xfs_mount	*mp = lip->li_mountp;
1060 	static ulong		lasttime;
1061 	static xfs_buftarg_t	*lasttarg;
1062 
1063 	if (likely(!xfs_buf_geterror(bp)))
1064 		goto do_callbacks;
1065 
1066 	/*
1067 	 * If we've already decided to shutdown the filesystem because of
1068 	 * I/O errors, there's no point in giving this a retry.
1069 	 */
1070 	if (XFS_FORCED_SHUTDOWN(mp)) {
1071 		xfs_buf_stale(bp);
1072 		XFS_BUF_DONE(bp);
1073 		trace_xfs_buf_item_iodone(bp, _RET_IP_);
1074 		goto do_callbacks;
1075 	}
1076 
1077 	if (bp->b_target != lasttarg ||
1078 	    time_after(jiffies, (lasttime + 5*HZ))) {
1079 		lasttime = jiffies;
1080 		xfs_buf_ioerror_alert(bp, __func__);
1081 	}
1082 	lasttarg = bp->b_target;
1083 
1084 	/*
1085 	 * If the write was asynchronous then no one will be looking for the
1086 	 * error.  Clear the error state and write the buffer out again.
1087 	 *
1088 	 * XXX: This helps against transient write errors, but we need to find
1089 	 * a way to shut the filesystem down if the writes keep failing.
1090 	 *
1091 	 * In practice we'll shut the filesystem down soon as non-transient
1092 	 * erorrs tend to affect the whole device and a failing log write
1093 	 * will make us give up.  But we really ought to do better here.
1094 	 */
1095 	if (XFS_BUF_ISASYNC(bp)) {
1096 		ASSERT(bp->b_iodone != NULL);
1097 
1098 		trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1099 
1100 		xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */
1101 
1102 		if (!XFS_BUF_ISSTALE(bp)) {
1103 			bp->b_flags |= XBF_WRITE | XBF_ASYNC | XBF_DONE;
1104 			xfs_buf_iorequest(bp);
1105 		} else {
1106 			xfs_buf_relse(bp);
1107 		}
1108 
1109 		return;
1110 	}
1111 
1112 	/*
1113 	 * If the write of the buffer was synchronous, we want to make
1114 	 * sure to return the error to the caller of xfs_bwrite().
1115 	 */
1116 	xfs_buf_stale(bp);
1117 	XFS_BUF_DONE(bp);
1118 
1119 	trace_xfs_buf_error_relse(bp, _RET_IP_);
1120 
1121 do_callbacks:
1122 	xfs_buf_do_callbacks(bp);
1123 	bp->b_fspriv = NULL;
1124 	bp->b_iodone = NULL;
1125 	xfs_buf_ioend(bp, 0);
1126 }
1127 
1128 /*
1129  * This is the iodone() function for buffers which have been
1130  * logged.  It is called when they are eventually flushed out.
1131  * It should remove the buf item from the AIL, and free the buf item.
1132  * It is called by xfs_buf_iodone_callbacks() above which will take
1133  * care of cleaning up the buffer itself.
1134  */
1135 void
1136 xfs_buf_iodone(
1137 	struct xfs_buf		*bp,
1138 	struct xfs_log_item	*lip)
1139 {
1140 	struct xfs_ail		*ailp = lip->li_ailp;
1141 
1142 	ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1143 
1144 	xfs_buf_rele(bp);
1145 
1146 	/*
1147 	 * If we are forcibly shutting down, this may well be
1148 	 * off the AIL already. That's because we simulate the
1149 	 * log-committed callbacks to unpin these buffers. Or we may never
1150 	 * have put this item on AIL because of the transaction was
1151 	 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1152 	 *
1153 	 * Either way, AIL is useless if we're forcing a shutdown.
1154 	 */
1155 	spin_lock(&ailp->xa_lock);
1156 	xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
1157 	xfs_buf_item_free(BUF_ITEM(lip));
1158 }
1159