1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_trans.h" 24 #include "xfs_sb.h" 25 #include "xfs_ag.h" 26 #include "xfs_mount.h" 27 #include "xfs_buf_item.h" 28 #include "xfs_trans_priv.h" 29 #include "xfs_error.h" 30 #include "xfs_trace.h" 31 32 33 kmem_zone_t *xfs_buf_item_zone; 34 35 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip) 36 { 37 return container_of(lip, struct xfs_buf_log_item, bli_item); 38 } 39 40 41 #ifdef XFS_TRANS_DEBUG 42 /* 43 * This function uses an alternate strategy for tracking the bytes 44 * that the user requests to be logged. This can then be used 45 * in conjunction with the bli_orig array in the buf log item to 46 * catch bugs in our callers' code. 47 * 48 * We also double check the bits set in xfs_buf_item_log using a 49 * simple algorithm to check that every byte is accounted for. 50 */ 51 STATIC void 52 xfs_buf_item_log_debug( 53 xfs_buf_log_item_t *bip, 54 uint first, 55 uint last) 56 { 57 uint x; 58 uint byte; 59 uint nbytes; 60 uint chunk_num; 61 uint word_num; 62 uint bit_num; 63 uint bit_set; 64 uint *wordp; 65 66 ASSERT(bip->bli_logged != NULL); 67 byte = first; 68 nbytes = last - first + 1; 69 bfset(bip->bli_logged, first, nbytes); 70 for (x = 0; x < nbytes; x++) { 71 chunk_num = byte >> XFS_BLF_SHIFT; 72 word_num = chunk_num >> BIT_TO_WORD_SHIFT; 73 bit_num = chunk_num & (NBWORD - 1); 74 wordp = &(bip->bli_format.blf_data_map[word_num]); 75 bit_set = *wordp & (1 << bit_num); 76 ASSERT(bit_set); 77 byte++; 78 } 79 } 80 81 /* 82 * This function is called when we flush something into a buffer without 83 * logging it. This happens for things like inodes which are logged 84 * separately from the buffer. 85 */ 86 void 87 xfs_buf_item_flush_log_debug( 88 xfs_buf_t *bp, 89 uint first, 90 uint last) 91 { 92 xfs_buf_log_item_t *bip = bp->b_fspriv; 93 uint nbytes; 94 95 if (bip == NULL || (bip->bli_item.li_type != XFS_LI_BUF)) 96 return; 97 98 ASSERT(bip->bli_logged != NULL); 99 nbytes = last - first + 1; 100 bfset(bip->bli_logged, first, nbytes); 101 } 102 103 /* 104 * This function is called to verify that our callers have logged 105 * all the bytes that they changed. 106 * 107 * It does this by comparing the original copy of the buffer stored in 108 * the buf log item's bli_orig array to the current copy of the buffer 109 * and ensuring that all bytes which mismatch are set in the bli_logged 110 * array of the buf log item. 111 */ 112 STATIC void 113 xfs_buf_item_log_check( 114 xfs_buf_log_item_t *bip) 115 { 116 char *orig; 117 char *buffer; 118 int x; 119 xfs_buf_t *bp; 120 121 ASSERT(bip->bli_orig != NULL); 122 ASSERT(bip->bli_logged != NULL); 123 124 bp = bip->bli_buf; 125 ASSERT(bp->b_length > 0); 126 ASSERT(bp->b_addr != NULL); 127 orig = bip->bli_orig; 128 buffer = bp->b_addr; 129 for (x = 0; x < BBTOB(bp->b_length); x++) { 130 if (orig[x] != buffer[x] && !btst(bip->bli_logged, x)) { 131 xfs_emerg(bp->b_mount, 132 "%s: bip %x buffer %x orig %x index %d", 133 __func__, bip, bp, orig, x); 134 ASSERT(0); 135 } 136 } 137 } 138 #else 139 #define xfs_buf_item_log_debug(x,y,z) 140 #define xfs_buf_item_log_check(x) 141 #endif 142 143 STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp); 144 145 /* 146 * This returns the number of log iovecs needed to log the 147 * given buf log item. 148 * 149 * It calculates this as 1 iovec for the buf log format structure 150 * and 1 for each stretch of non-contiguous chunks to be logged. 151 * Contiguous chunks are logged in a single iovec. 152 * 153 * If the XFS_BLI_STALE flag has been set, then log nothing. 154 */ 155 STATIC uint 156 xfs_buf_item_size_segment( 157 struct xfs_buf_log_item *bip, 158 struct xfs_buf_log_format *blfp) 159 { 160 struct xfs_buf *bp = bip->bli_buf; 161 uint nvecs; 162 int next_bit; 163 int last_bit; 164 165 last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0); 166 if (last_bit == -1) 167 return 0; 168 169 /* 170 * initial count for a dirty buffer is 2 vectors - the format structure 171 * and the first dirty region. 172 */ 173 nvecs = 2; 174 175 while (last_bit != -1) { 176 /* 177 * This takes the bit number to start looking from and 178 * returns the next set bit from there. It returns -1 179 * if there are no more bits set or the start bit is 180 * beyond the end of the bitmap. 181 */ 182 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 183 last_bit + 1); 184 /* 185 * If we run out of bits, leave the loop, 186 * else if we find a new set of bits bump the number of vecs, 187 * else keep scanning the current set of bits. 188 */ 189 if (next_bit == -1) { 190 break; 191 } else if (next_bit != last_bit + 1) { 192 last_bit = next_bit; 193 nvecs++; 194 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) != 195 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) + 196 XFS_BLF_CHUNK)) { 197 last_bit = next_bit; 198 nvecs++; 199 } else { 200 last_bit++; 201 } 202 } 203 204 return nvecs; 205 } 206 207 /* 208 * This returns the number of log iovecs needed to log the given buf log item. 209 * 210 * It calculates this as 1 iovec for the buf log format structure and 1 for each 211 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged 212 * in a single iovec. 213 * 214 * Discontiguous buffers need a format structure per region that that is being 215 * logged. This makes the changes in the buffer appear to log recovery as though 216 * they came from separate buffers, just like would occur if multiple buffers 217 * were used instead of a single discontiguous buffer. This enables 218 * discontiguous buffers to be in-memory constructs, completely transparent to 219 * what ends up on disk. 220 * 221 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log 222 * format structures. 223 */ 224 STATIC uint 225 xfs_buf_item_size( 226 struct xfs_log_item *lip) 227 { 228 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 229 uint nvecs; 230 int i; 231 232 ASSERT(atomic_read(&bip->bli_refcount) > 0); 233 if (bip->bli_flags & XFS_BLI_STALE) { 234 /* 235 * The buffer is stale, so all we need to log 236 * is the buf log format structure with the 237 * cancel flag in it. 238 */ 239 trace_xfs_buf_item_size_stale(bip); 240 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL); 241 return bip->bli_format_count; 242 } 243 244 ASSERT(bip->bli_flags & XFS_BLI_LOGGED); 245 246 /* 247 * the vector count is based on the number of buffer vectors we have 248 * dirty bits in. This will only be greater than one when we have a 249 * compound buffer with more than one segment dirty. Hence for compound 250 * buffers we need to track which segment the dirty bits correspond to, 251 * and when we move from one segment to the next increment the vector 252 * count for the extra buf log format structure that will need to be 253 * written. 254 */ 255 nvecs = 0; 256 for (i = 0; i < bip->bli_format_count; i++) { 257 nvecs += xfs_buf_item_size_segment(bip, &bip->bli_formats[i]); 258 } 259 260 trace_xfs_buf_item_size(bip); 261 return nvecs; 262 } 263 264 static struct xfs_log_iovec * 265 xfs_buf_item_format_segment( 266 struct xfs_buf_log_item *bip, 267 struct xfs_log_iovec *vecp, 268 uint offset, 269 struct xfs_buf_log_format *blfp) 270 { 271 struct xfs_buf *bp = bip->bli_buf; 272 uint base_size; 273 uint nvecs; 274 int first_bit; 275 int last_bit; 276 int next_bit; 277 uint nbits; 278 uint buffer_offset; 279 280 /* copy the flags across from the base format item */ 281 blfp->blf_flags = bip->bli_format.blf_flags; 282 283 /* 284 * Base size is the actual size of the ondisk structure - it reflects 285 * the actual size of the dirty bitmap rather than the size of the in 286 * memory structure. 287 */ 288 base_size = offsetof(struct xfs_buf_log_format, blf_data_map) + 289 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0])); 290 vecp->i_addr = blfp; 291 vecp->i_len = base_size; 292 vecp->i_type = XLOG_REG_TYPE_BFORMAT; 293 vecp++; 294 nvecs = 1; 295 296 if (bip->bli_flags & XFS_BLI_STALE) { 297 /* 298 * The buffer is stale, so all we need to log 299 * is the buf log format structure with the 300 * cancel flag in it. 301 */ 302 trace_xfs_buf_item_format_stale(bip); 303 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL); 304 blfp->blf_size = nvecs; 305 return vecp; 306 } 307 308 /* 309 * Fill in an iovec for each set of contiguous chunks. 310 */ 311 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0); 312 ASSERT(first_bit != -1); 313 last_bit = first_bit; 314 nbits = 1; 315 for (;;) { 316 /* 317 * This takes the bit number to start looking from and 318 * returns the next set bit from there. It returns -1 319 * if there are no more bits set or the start bit is 320 * beyond the end of the bitmap. 321 */ 322 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 323 (uint)last_bit + 1); 324 /* 325 * If we run out of bits fill in the last iovec and get 326 * out of the loop. 327 * Else if we start a new set of bits then fill in the 328 * iovec for the series we were looking at and start 329 * counting the bits in the new one. 330 * Else we're still in the same set of bits so just 331 * keep counting and scanning. 332 */ 333 if (next_bit == -1) { 334 buffer_offset = offset + first_bit * XFS_BLF_CHUNK; 335 vecp->i_addr = xfs_buf_offset(bp, buffer_offset); 336 vecp->i_len = nbits * XFS_BLF_CHUNK; 337 vecp->i_type = XLOG_REG_TYPE_BCHUNK; 338 nvecs++; 339 break; 340 } else if (next_bit != last_bit + 1) { 341 buffer_offset = offset + first_bit * XFS_BLF_CHUNK; 342 vecp->i_addr = xfs_buf_offset(bp, buffer_offset); 343 vecp->i_len = nbits * XFS_BLF_CHUNK; 344 vecp->i_type = XLOG_REG_TYPE_BCHUNK; 345 nvecs++; 346 vecp++; 347 first_bit = next_bit; 348 last_bit = next_bit; 349 nbits = 1; 350 } else if (xfs_buf_offset(bp, offset + 351 (next_bit << XFS_BLF_SHIFT)) != 352 (xfs_buf_offset(bp, offset + 353 (last_bit << XFS_BLF_SHIFT)) + 354 XFS_BLF_CHUNK)) { 355 buffer_offset = offset + first_bit * XFS_BLF_CHUNK; 356 vecp->i_addr = xfs_buf_offset(bp, buffer_offset); 357 vecp->i_len = nbits * XFS_BLF_CHUNK; 358 vecp->i_type = XLOG_REG_TYPE_BCHUNK; 359 /* 360 * You would think we need to bump the nvecs here too, but we do not 361 * this number is used by recovery, and it gets confused by the boundary 362 * split here 363 * nvecs++; 364 */ 365 vecp++; 366 first_bit = next_bit; 367 last_bit = next_bit; 368 nbits = 1; 369 } else { 370 last_bit++; 371 nbits++; 372 } 373 } 374 bip->bli_format.blf_size = nvecs; 375 return vecp; 376 } 377 378 /* 379 * This is called to fill in the vector of log iovecs for the 380 * given log buf item. It fills the first entry with a buf log 381 * format structure, and the rest point to contiguous chunks 382 * within the buffer. 383 */ 384 STATIC void 385 xfs_buf_item_format( 386 struct xfs_log_item *lip, 387 struct xfs_log_iovec *vecp) 388 { 389 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 390 struct xfs_buf *bp = bip->bli_buf; 391 uint offset = 0; 392 int i; 393 394 ASSERT(atomic_read(&bip->bli_refcount) > 0); 395 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || 396 (bip->bli_flags & XFS_BLI_STALE)); 397 398 /* 399 * If it is an inode buffer, transfer the in-memory state to the 400 * format flags and clear the in-memory state. We do not transfer 401 * this state if the inode buffer allocation has not yet been committed 402 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent 403 * correct replay of the inode allocation. 404 */ 405 if (bip->bli_flags & XFS_BLI_INODE_BUF) { 406 if (!((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && 407 xfs_log_item_in_current_chkpt(lip))) 408 bip->bli_format.blf_flags |= XFS_BLF_INODE_BUF; 409 bip->bli_flags &= ~XFS_BLI_INODE_BUF; 410 } 411 412 for (i = 0; i < bip->bli_format_count; i++) { 413 vecp = xfs_buf_item_format_segment(bip, vecp, offset, 414 &bip->bli_formats[i]); 415 offset += bp->b_maps[i].bm_len; 416 } 417 418 /* 419 * Check to make sure everything is consistent. 420 */ 421 trace_xfs_buf_item_format(bip); 422 xfs_buf_item_log_check(bip); 423 } 424 425 /* 426 * This is called to pin the buffer associated with the buf log item in memory 427 * so it cannot be written out. 428 * 429 * We also always take a reference to the buffer log item here so that the bli 430 * is held while the item is pinned in memory. This means that we can 431 * unconditionally drop the reference count a transaction holds when the 432 * transaction is completed. 433 */ 434 STATIC void 435 xfs_buf_item_pin( 436 struct xfs_log_item *lip) 437 { 438 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 439 440 ASSERT(atomic_read(&bip->bli_refcount) > 0); 441 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || 442 (bip->bli_flags & XFS_BLI_STALE)); 443 444 trace_xfs_buf_item_pin(bip); 445 446 atomic_inc(&bip->bli_refcount); 447 atomic_inc(&bip->bli_buf->b_pin_count); 448 } 449 450 /* 451 * This is called to unpin the buffer associated with the buf log 452 * item which was previously pinned with a call to xfs_buf_item_pin(). 453 * 454 * Also drop the reference to the buf item for the current transaction. 455 * If the XFS_BLI_STALE flag is set and we are the last reference, 456 * then free up the buf log item and unlock the buffer. 457 * 458 * If the remove flag is set we are called from uncommit in the 459 * forced-shutdown path. If that is true and the reference count on 460 * the log item is going to drop to zero we need to free the item's 461 * descriptor in the transaction. 462 */ 463 STATIC void 464 xfs_buf_item_unpin( 465 struct xfs_log_item *lip, 466 int remove) 467 { 468 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 469 xfs_buf_t *bp = bip->bli_buf; 470 struct xfs_ail *ailp = lip->li_ailp; 471 int stale = bip->bli_flags & XFS_BLI_STALE; 472 int freed; 473 474 ASSERT(bp->b_fspriv == bip); 475 ASSERT(atomic_read(&bip->bli_refcount) > 0); 476 477 trace_xfs_buf_item_unpin(bip); 478 479 freed = atomic_dec_and_test(&bip->bli_refcount); 480 481 if (atomic_dec_and_test(&bp->b_pin_count)) 482 wake_up_all(&bp->b_waiters); 483 484 if (freed && stale) { 485 ASSERT(bip->bli_flags & XFS_BLI_STALE); 486 ASSERT(xfs_buf_islocked(bp)); 487 ASSERT(XFS_BUF_ISSTALE(bp)); 488 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL); 489 490 trace_xfs_buf_item_unpin_stale(bip); 491 492 if (remove) { 493 /* 494 * If we are in a transaction context, we have to 495 * remove the log item from the transaction as we are 496 * about to release our reference to the buffer. If we 497 * don't, the unlock that occurs later in 498 * xfs_trans_uncommit() will try to reference the 499 * buffer which we no longer have a hold on. 500 */ 501 if (lip->li_desc) 502 xfs_trans_del_item(lip); 503 504 /* 505 * Since the transaction no longer refers to the buffer, 506 * the buffer should no longer refer to the transaction. 507 */ 508 bp->b_transp = NULL; 509 } 510 511 /* 512 * If we get called here because of an IO error, we may 513 * or may not have the item on the AIL. xfs_trans_ail_delete() 514 * will take care of that situation. 515 * xfs_trans_ail_delete() drops the AIL lock. 516 */ 517 if (bip->bli_flags & XFS_BLI_STALE_INODE) { 518 xfs_buf_do_callbacks(bp); 519 bp->b_fspriv = NULL; 520 bp->b_iodone = NULL; 521 } else { 522 spin_lock(&ailp->xa_lock); 523 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR); 524 xfs_buf_item_relse(bp); 525 ASSERT(bp->b_fspriv == NULL); 526 } 527 xfs_buf_relse(bp); 528 } else if (freed && remove) { 529 xfs_buf_lock(bp); 530 xfs_buf_ioerror(bp, EIO); 531 XFS_BUF_UNDONE(bp); 532 xfs_buf_stale(bp); 533 xfs_buf_ioend(bp, 0); 534 } 535 } 536 537 STATIC uint 538 xfs_buf_item_push( 539 struct xfs_log_item *lip, 540 struct list_head *buffer_list) 541 { 542 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 543 struct xfs_buf *bp = bip->bli_buf; 544 uint rval = XFS_ITEM_SUCCESS; 545 546 if (xfs_buf_ispinned(bp)) 547 return XFS_ITEM_PINNED; 548 if (!xfs_buf_trylock(bp)) 549 return XFS_ITEM_LOCKED; 550 551 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 552 553 trace_xfs_buf_item_push(bip); 554 555 if (!xfs_buf_delwri_queue(bp, buffer_list)) 556 rval = XFS_ITEM_FLUSHING; 557 xfs_buf_unlock(bp); 558 return rval; 559 } 560 561 /* 562 * Release the buffer associated with the buf log item. If there is no dirty 563 * logged data associated with the buffer recorded in the buf log item, then 564 * free the buf log item and remove the reference to it in the buffer. 565 * 566 * This call ignores the recursion count. It is only called when the buffer 567 * should REALLY be unlocked, regardless of the recursion count. 568 * 569 * We unconditionally drop the transaction's reference to the log item. If the 570 * item was logged, then another reference was taken when it was pinned, so we 571 * can safely drop the transaction reference now. This also allows us to avoid 572 * potential races with the unpin code freeing the bli by not referencing the 573 * bli after we've dropped the reference count. 574 * 575 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item 576 * if necessary but do not unlock the buffer. This is for support of 577 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't 578 * free the item. 579 */ 580 STATIC void 581 xfs_buf_item_unlock( 582 struct xfs_log_item *lip) 583 { 584 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 585 struct xfs_buf *bp = bip->bli_buf; 586 int aborted; 587 uint hold; 588 589 /* Clear the buffer's association with this transaction. */ 590 bp->b_transp = NULL; 591 592 /* 593 * If this is a transaction abort, don't return early. Instead, allow 594 * the brelse to happen. Normally it would be done for stale 595 * (cancelled) buffers at unpin time, but we'll never go through the 596 * pin/unpin cycle if we abort inside commit. 597 */ 598 aborted = (lip->li_flags & XFS_LI_ABORTED) != 0; 599 600 /* 601 * Before possibly freeing the buf item, determine if we should 602 * release the buffer at the end of this routine. 603 */ 604 hold = bip->bli_flags & XFS_BLI_HOLD; 605 606 /* Clear the per transaction state. */ 607 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD); 608 609 /* 610 * If the buf item is marked stale, then don't do anything. We'll 611 * unlock the buffer and free the buf item when the buffer is unpinned 612 * for the last time. 613 */ 614 if (bip->bli_flags & XFS_BLI_STALE) { 615 trace_xfs_buf_item_unlock_stale(bip); 616 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL); 617 if (!aborted) { 618 atomic_dec(&bip->bli_refcount); 619 return; 620 } 621 } 622 623 trace_xfs_buf_item_unlock(bip); 624 625 /* 626 * If the buf item isn't tracking any data, free it, otherwise drop the 627 * reference we hold to it. 628 */ 629 if (xfs_bitmap_empty(bip->bli_format.blf_data_map, 630 bip->bli_format.blf_map_size)) 631 xfs_buf_item_relse(bp); 632 else 633 atomic_dec(&bip->bli_refcount); 634 635 if (!hold) 636 xfs_buf_relse(bp); 637 } 638 639 /* 640 * This is called to find out where the oldest active copy of the 641 * buf log item in the on disk log resides now that the last log 642 * write of it completed at the given lsn. 643 * We always re-log all the dirty data in a buffer, so usually the 644 * latest copy in the on disk log is the only one that matters. For 645 * those cases we simply return the given lsn. 646 * 647 * The one exception to this is for buffers full of newly allocated 648 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF 649 * flag set, indicating that only the di_next_unlinked fields from the 650 * inodes in the buffers will be replayed during recovery. If the 651 * original newly allocated inode images have not yet been flushed 652 * when the buffer is so relogged, then we need to make sure that we 653 * keep the old images in the 'active' portion of the log. We do this 654 * by returning the original lsn of that transaction here rather than 655 * the current one. 656 */ 657 STATIC xfs_lsn_t 658 xfs_buf_item_committed( 659 struct xfs_log_item *lip, 660 xfs_lsn_t lsn) 661 { 662 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 663 664 trace_xfs_buf_item_committed(bip); 665 666 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0) 667 return lip->li_lsn; 668 return lsn; 669 } 670 671 STATIC void 672 xfs_buf_item_committing( 673 struct xfs_log_item *lip, 674 xfs_lsn_t commit_lsn) 675 { 676 } 677 678 /* 679 * This is the ops vector shared by all buf log items. 680 */ 681 static const struct xfs_item_ops xfs_buf_item_ops = { 682 .iop_size = xfs_buf_item_size, 683 .iop_format = xfs_buf_item_format, 684 .iop_pin = xfs_buf_item_pin, 685 .iop_unpin = xfs_buf_item_unpin, 686 .iop_unlock = xfs_buf_item_unlock, 687 .iop_committed = xfs_buf_item_committed, 688 .iop_push = xfs_buf_item_push, 689 .iop_committing = xfs_buf_item_committing 690 }; 691 692 STATIC int 693 xfs_buf_item_get_format( 694 struct xfs_buf_log_item *bip, 695 int count) 696 { 697 ASSERT(bip->bli_formats == NULL); 698 bip->bli_format_count = count; 699 700 if (count == 1) { 701 bip->bli_formats = &bip->bli_format; 702 return 0; 703 } 704 705 bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format), 706 KM_SLEEP); 707 if (!bip->bli_formats) 708 return ENOMEM; 709 return 0; 710 } 711 712 STATIC void 713 xfs_buf_item_free_format( 714 struct xfs_buf_log_item *bip) 715 { 716 if (bip->bli_formats != &bip->bli_format) { 717 kmem_free(bip->bli_formats); 718 bip->bli_formats = NULL; 719 } 720 } 721 722 /* 723 * Allocate a new buf log item to go with the given buffer. 724 * Set the buffer's b_fsprivate field to point to the new 725 * buf log item. If there are other item's attached to the 726 * buffer (see xfs_buf_attach_iodone() below), then put the 727 * buf log item at the front. 728 */ 729 void 730 xfs_buf_item_init( 731 xfs_buf_t *bp, 732 xfs_mount_t *mp) 733 { 734 xfs_log_item_t *lip = bp->b_fspriv; 735 xfs_buf_log_item_t *bip; 736 int chunks; 737 int map_size; 738 int error; 739 int i; 740 741 /* 742 * Check to see if there is already a buf log item for 743 * this buffer. If there is, it is guaranteed to be 744 * the first. If we do already have one, there is 745 * nothing to do here so return. 746 */ 747 ASSERT(bp->b_target->bt_mount == mp); 748 if (lip != NULL && lip->li_type == XFS_LI_BUF) 749 return; 750 751 bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP); 752 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops); 753 bip->bli_buf = bp; 754 xfs_buf_hold(bp); 755 756 /* 757 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer 758 * can be divided into. Make sure not to truncate any pieces. 759 * map_size is the size of the bitmap needed to describe the 760 * chunks of the buffer. 761 * 762 * Discontiguous buffer support follows the layout of the underlying 763 * buffer. This makes the implementation as simple as possible. 764 */ 765 error = xfs_buf_item_get_format(bip, bp->b_map_count); 766 ASSERT(error == 0); 767 768 for (i = 0; i < bip->bli_format_count; i++) { 769 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len), 770 XFS_BLF_CHUNK); 771 map_size = DIV_ROUND_UP(chunks, NBWORD); 772 773 bip->bli_formats[i].blf_type = XFS_LI_BUF; 774 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn; 775 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len; 776 bip->bli_formats[i].blf_map_size = map_size; 777 } 778 779 #ifdef XFS_TRANS_DEBUG 780 /* 781 * Allocate the arrays for tracking what needs to be logged 782 * and what our callers request to be logged. bli_orig 783 * holds a copy of the original, clean buffer for comparison 784 * against, and bli_logged keeps a 1 bit flag per byte in 785 * the buffer to indicate which bytes the callers have asked 786 * to have logged. 787 */ 788 bip->bli_orig = kmem_alloc(BBTOB(bp->b_length), KM_SLEEP); 789 memcpy(bip->bli_orig, bp->b_addr, BBTOB(bp->b_length)); 790 bip->bli_logged = kmem_zalloc(BBTOB(bp->b_length) / NBBY, KM_SLEEP); 791 #endif 792 793 /* 794 * Put the buf item into the list of items attached to the 795 * buffer at the front. 796 */ 797 if (bp->b_fspriv) 798 bip->bli_item.li_bio_list = bp->b_fspriv; 799 bp->b_fspriv = bip; 800 } 801 802 803 /* 804 * Mark bytes first through last inclusive as dirty in the buf 805 * item's bitmap. 806 */ 807 void 808 xfs_buf_item_log_segment( 809 struct xfs_buf_log_item *bip, 810 uint first, 811 uint last, 812 uint *map) 813 { 814 uint first_bit; 815 uint last_bit; 816 uint bits_to_set; 817 uint bits_set; 818 uint word_num; 819 uint *wordp; 820 uint bit; 821 uint end_bit; 822 uint mask; 823 824 /* 825 * Convert byte offsets to bit numbers. 826 */ 827 first_bit = first >> XFS_BLF_SHIFT; 828 last_bit = last >> XFS_BLF_SHIFT; 829 830 /* 831 * Calculate the total number of bits to be set. 832 */ 833 bits_to_set = last_bit - first_bit + 1; 834 835 /* 836 * Get a pointer to the first word in the bitmap 837 * to set a bit in. 838 */ 839 word_num = first_bit >> BIT_TO_WORD_SHIFT; 840 wordp = &map[word_num]; 841 842 /* 843 * Calculate the starting bit in the first word. 844 */ 845 bit = first_bit & (uint)(NBWORD - 1); 846 847 /* 848 * First set any bits in the first word of our range. 849 * If it starts at bit 0 of the word, it will be 850 * set below rather than here. That is what the variable 851 * bit tells us. The variable bits_set tracks the number 852 * of bits that have been set so far. End_bit is the number 853 * of the last bit to be set in this word plus one. 854 */ 855 if (bit) { 856 end_bit = MIN(bit + bits_to_set, (uint)NBWORD); 857 mask = ((1 << (end_bit - bit)) - 1) << bit; 858 *wordp |= mask; 859 wordp++; 860 bits_set = end_bit - bit; 861 } else { 862 bits_set = 0; 863 } 864 865 /* 866 * Now set bits a whole word at a time that are between 867 * first_bit and last_bit. 868 */ 869 while ((bits_to_set - bits_set) >= NBWORD) { 870 *wordp |= 0xffffffff; 871 bits_set += NBWORD; 872 wordp++; 873 } 874 875 /* 876 * Finally, set any bits left to be set in one last partial word. 877 */ 878 end_bit = bits_to_set - bits_set; 879 if (end_bit) { 880 mask = (1 << end_bit) - 1; 881 *wordp |= mask; 882 } 883 884 xfs_buf_item_log_debug(bip, first, last); 885 } 886 887 /* 888 * Mark bytes first through last inclusive as dirty in the buf 889 * item's bitmap. 890 */ 891 void 892 xfs_buf_item_log( 893 xfs_buf_log_item_t *bip, 894 uint first, 895 uint last) 896 { 897 int i; 898 uint start; 899 uint end; 900 struct xfs_buf *bp = bip->bli_buf; 901 902 /* 903 * Mark the item as having some dirty data for 904 * quick reference in xfs_buf_item_dirty. 905 */ 906 bip->bli_flags |= XFS_BLI_DIRTY; 907 908 /* 909 * walk each buffer segment and mark them dirty appropriately. 910 */ 911 start = 0; 912 for (i = 0; i < bip->bli_format_count; i++) { 913 if (start > last) 914 break; 915 end = start + BBTOB(bp->b_maps[i].bm_len); 916 if (first > end) { 917 start += BBTOB(bp->b_maps[i].bm_len); 918 continue; 919 } 920 if (first < start) 921 first = start; 922 if (end > last) 923 end = last; 924 925 xfs_buf_item_log_segment(bip, first, end, 926 &bip->bli_formats[i].blf_data_map[0]); 927 928 start += bp->b_maps[i].bm_len; 929 } 930 } 931 932 933 /* 934 * Return 1 if the buffer has some data that has been logged (at any 935 * point, not just the current transaction) and 0 if not. 936 */ 937 uint 938 xfs_buf_item_dirty( 939 xfs_buf_log_item_t *bip) 940 { 941 return (bip->bli_flags & XFS_BLI_DIRTY); 942 } 943 944 STATIC void 945 xfs_buf_item_free( 946 xfs_buf_log_item_t *bip) 947 { 948 #ifdef XFS_TRANS_DEBUG 949 kmem_free(bip->bli_orig); 950 kmem_free(bip->bli_logged); 951 #endif /* XFS_TRANS_DEBUG */ 952 953 xfs_buf_item_free_format(bip); 954 kmem_zone_free(xfs_buf_item_zone, bip); 955 } 956 957 /* 958 * This is called when the buf log item is no longer needed. It should 959 * free the buf log item associated with the given buffer and clear 960 * the buffer's pointer to the buf log item. If there are no more 961 * items in the list, clear the b_iodone field of the buffer (see 962 * xfs_buf_attach_iodone() below). 963 */ 964 void 965 xfs_buf_item_relse( 966 xfs_buf_t *bp) 967 { 968 xfs_buf_log_item_t *bip; 969 970 trace_xfs_buf_item_relse(bp, _RET_IP_); 971 972 bip = bp->b_fspriv; 973 bp->b_fspriv = bip->bli_item.li_bio_list; 974 if (bp->b_fspriv == NULL) 975 bp->b_iodone = NULL; 976 977 xfs_buf_rele(bp); 978 xfs_buf_item_free(bip); 979 } 980 981 982 /* 983 * Add the given log item with its callback to the list of callbacks 984 * to be called when the buffer's I/O completes. If it is not set 985 * already, set the buffer's b_iodone() routine to be 986 * xfs_buf_iodone_callbacks() and link the log item into the list of 987 * items rooted at b_fsprivate. Items are always added as the second 988 * entry in the list if there is a first, because the buf item code 989 * assumes that the buf log item is first. 990 */ 991 void 992 xfs_buf_attach_iodone( 993 xfs_buf_t *bp, 994 void (*cb)(xfs_buf_t *, xfs_log_item_t *), 995 xfs_log_item_t *lip) 996 { 997 xfs_log_item_t *head_lip; 998 999 ASSERT(xfs_buf_islocked(bp)); 1000 1001 lip->li_cb = cb; 1002 head_lip = bp->b_fspriv; 1003 if (head_lip) { 1004 lip->li_bio_list = head_lip->li_bio_list; 1005 head_lip->li_bio_list = lip; 1006 } else { 1007 bp->b_fspriv = lip; 1008 } 1009 1010 ASSERT(bp->b_iodone == NULL || 1011 bp->b_iodone == xfs_buf_iodone_callbacks); 1012 bp->b_iodone = xfs_buf_iodone_callbacks; 1013 } 1014 1015 /* 1016 * We can have many callbacks on a buffer. Running the callbacks individually 1017 * can cause a lot of contention on the AIL lock, so we allow for a single 1018 * callback to be able to scan the remaining lip->li_bio_list for other items 1019 * of the same type and callback to be processed in the first call. 1020 * 1021 * As a result, the loop walking the callback list below will also modify the 1022 * list. it removes the first item from the list and then runs the callback. 1023 * The loop then restarts from the new head of the list. This allows the 1024 * callback to scan and modify the list attached to the buffer and we don't 1025 * have to care about maintaining a next item pointer. 1026 */ 1027 STATIC void 1028 xfs_buf_do_callbacks( 1029 struct xfs_buf *bp) 1030 { 1031 struct xfs_log_item *lip; 1032 1033 while ((lip = bp->b_fspriv) != NULL) { 1034 bp->b_fspriv = lip->li_bio_list; 1035 ASSERT(lip->li_cb != NULL); 1036 /* 1037 * Clear the next pointer so we don't have any 1038 * confusion if the item is added to another buf. 1039 * Don't touch the log item after calling its 1040 * callback, because it could have freed itself. 1041 */ 1042 lip->li_bio_list = NULL; 1043 lip->li_cb(bp, lip); 1044 } 1045 } 1046 1047 /* 1048 * This is the iodone() function for buffers which have had callbacks 1049 * attached to them by xfs_buf_attach_iodone(). It should remove each 1050 * log item from the buffer's list and call the callback of each in turn. 1051 * When done, the buffer's fsprivate field is set to NULL and the buffer 1052 * is unlocked with a call to iodone(). 1053 */ 1054 void 1055 xfs_buf_iodone_callbacks( 1056 struct xfs_buf *bp) 1057 { 1058 struct xfs_log_item *lip = bp->b_fspriv; 1059 struct xfs_mount *mp = lip->li_mountp; 1060 static ulong lasttime; 1061 static xfs_buftarg_t *lasttarg; 1062 1063 if (likely(!xfs_buf_geterror(bp))) 1064 goto do_callbacks; 1065 1066 /* 1067 * If we've already decided to shutdown the filesystem because of 1068 * I/O errors, there's no point in giving this a retry. 1069 */ 1070 if (XFS_FORCED_SHUTDOWN(mp)) { 1071 xfs_buf_stale(bp); 1072 XFS_BUF_DONE(bp); 1073 trace_xfs_buf_item_iodone(bp, _RET_IP_); 1074 goto do_callbacks; 1075 } 1076 1077 if (bp->b_target != lasttarg || 1078 time_after(jiffies, (lasttime + 5*HZ))) { 1079 lasttime = jiffies; 1080 xfs_buf_ioerror_alert(bp, __func__); 1081 } 1082 lasttarg = bp->b_target; 1083 1084 /* 1085 * If the write was asynchronous then no one will be looking for the 1086 * error. Clear the error state and write the buffer out again. 1087 * 1088 * XXX: This helps against transient write errors, but we need to find 1089 * a way to shut the filesystem down if the writes keep failing. 1090 * 1091 * In practice we'll shut the filesystem down soon as non-transient 1092 * erorrs tend to affect the whole device and a failing log write 1093 * will make us give up. But we really ought to do better here. 1094 */ 1095 if (XFS_BUF_ISASYNC(bp)) { 1096 ASSERT(bp->b_iodone != NULL); 1097 1098 trace_xfs_buf_item_iodone_async(bp, _RET_IP_); 1099 1100 xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */ 1101 1102 if (!XFS_BUF_ISSTALE(bp)) { 1103 bp->b_flags |= XBF_WRITE | XBF_ASYNC | XBF_DONE; 1104 xfs_buf_iorequest(bp); 1105 } else { 1106 xfs_buf_relse(bp); 1107 } 1108 1109 return; 1110 } 1111 1112 /* 1113 * If the write of the buffer was synchronous, we want to make 1114 * sure to return the error to the caller of xfs_bwrite(). 1115 */ 1116 xfs_buf_stale(bp); 1117 XFS_BUF_DONE(bp); 1118 1119 trace_xfs_buf_error_relse(bp, _RET_IP_); 1120 1121 do_callbacks: 1122 xfs_buf_do_callbacks(bp); 1123 bp->b_fspriv = NULL; 1124 bp->b_iodone = NULL; 1125 xfs_buf_ioend(bp, 0); 1126 } 1127 1128 /* 1129 * This is the iodone() function for buffers which have been 1130 * logged. It is called when they are eventually flushed out. 1131 * It should remove the buf item from the AIL, and free the buf item. 1132 * It is called by xfs_buf_iodone_callbacks() above which will take 1133 * care of cleaning up the buffer itself. 1134 */ 1135 void 1136 xfs_buf_iodone( 1137 struct xfs_buf *bp, 1138 struct xfs_log_item *lip) 1139 { 1140 struct xfs_ail *ailp = lip->li_ailp; 1141 1142 ASSERT(BUF_ITEM(lip)->bli_buf == bp); 1143 1144 xfs_buf_rele(bp); 1145 1146 /* 1147 * If we are forcibly shutting down, this may well be 1148 * off the AIL already. That's because we simulate the 1149 * log-committed callbacks to unpin these buffers. Or we may never 1150 * have put this item on AIL because of the transaction was 1151 * aborted forcibly. xfs_trans_ail_delete() takes care of these. 1152 * 1153 * Either way, AIL is useless if we're forcing a shutdown. 1154 */ 1155 spin_lock(&ailp->xa_lock); 1156 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE); 1157 xfs_buf_item_free(BUF_ITEM(lip)); 1158 } 1159