xref: /openbmc/linux/fs/xfs/xfs_buf_item.c (revision 92ed1a76)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_buf_item.h"
29 #include "xfs_trans_priv.h"
30 #include "xfs_error.h"
31 #include "xfs_trace.h"
32 
33 
34 kmem_zone_t	*xfs_buf_item_zone;
35 
36 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
37 {
38 	return container_of(lip, struct xfs_buf_log_item, bli_item);
39 }
40 
41 
42 #ifdef XFS_TRANS_DEBUG
43 /*
44  * This function uses an alternate strategy for tracking the bytes
45  * that the user requests to be logged.  This can then be used
46  * in conjunction with the bli_orig array in the buf log item to
47  * catch bugs in our callers' code.
48  *
49  * We also double check the bits set in xfs_buf_item_log using a
50  * simple algorithm to check that every byte is accounted for.
51  */
52 STATIC void
53 xfs_buf_item_log_debug(
54 	xfs_buf_log_item_t	*bip,
55 	uint			first,
56 	uint			last)
57 {
58 	uint	x;
59 	uint	byte;
60 	uint	nbytes;
61 	uint	chunk_num;
62 	uint	word_num;
63 	uint	bit_num;
64 	uint	bit_set;
65 	uint	*wordp;
66 
67 	ASSERT(bip->bli_logged != NULL);
68 	byte = first;
69 	nbytes = last - first + 1;
70 	bfset(bip->bli_logged, first, nbytes);
71 	for (x = 0; x < nbytes; x++) {
72 		chunk_num = byte >> XFS_BLF_SHIFT;
73 		word_num = chunk_num >> BIT_TO_WORD_SHIFT;
74 		bit_num = chunk_num & (NBWORD - 1);
75 		wordp = &(bip->bli_format.blf_data_map[word_num]);
76 		bit_set = *wordp & (1 << bit_num);
77 		ASSERT(bit_set);
78 		byte++;
79 	}
80 }
81 
82 /*
83  * This function is called when we flush something into a buffer without
84  * logging it.  This happens for things like inodes which are logged
85  * separately from the buffer.
86  */
87 void
88 xfs_buf_item_flush_log_debug(
89 	xfs_buf_t	*bp,
90 	uint		first,
91 	uint		last)
92 {
93 	xfs_buf_log_item_t	*bip;
94 	uint			nbytes;
95 
96 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
97 	if ((bip == NULL) || (bip->bli_item.li_type != XFS_LI_BUF)) {
98 		return;
99 	}
100 
101 	ASSERT(bip->bli_logged != NULL);
102 	nbytes = last - first + 1;
103 	bfset(bip->bli_logged, first, nbytes);
104 }
105 
106 /*
107  * This function is called to verify that our callers have logged
108  * all the bytes that they changed.
109  *
110  * It does this by comparing the original copy of the buffer stored in
111  * the buf log item's bli_orig array to the current copy of the buffer
112  * and ensuring that all bytes which mismatch are set in the bli_logged
113  * array of the buf log item.
114  */
115 STATIC void
116 xfs_buf_item_log_check(
117 	xfs_buf_log_item_t	*bip)
118 {
119 	char		*orig;
120 	char		*buffer;
121 	int		x;
122 	xfs_buf_t	*bp;
123 
124 	ASSERT(bip->bli_orig != NULL);
125 	ASSERT(bip->bli_logged != NULL);
126 
127 	bp = bip->bli_buf;
128 	ASSERT(XFS_BUF_COUNT(bp) > 0);
129 	ASSERT(XFS_BUF_PTR(bp) != NULL);
130 	orig = bip->bli_orig;
131 	buffer = XFS_BUF_PTR(bp);
132 	for (x = 0; x < XFS_BUF_COUNT(bp); x++) {
133 		if (orig[x] != buffer[x] && !btst(bip->bli_logged, x))
134 			cmn_err(CE_PANIC,
135 	"xfs_buf_item_log_check bip %x buffer %x orig %x index %d",
136 				bip, bp, orig, x);
137 	}
138 }
139 #else
140 #define		xfs_buf_item_log_debug(x,y,z)
141 #define		xfs_buf_item_log_check(x)
142 #endif
143 
144 STATIC void	xfs_buf_error_relse(xfs_buf_t *bp);
145 STATIC void	xfs_buf_do_callbacks(xfs_buf_t *bp, xfs_log_item_t *lip);
146 
147 /*
148  * This returns the number of log iovecs needed to log the
149  * given buf log item.
150  *
151  * It calculates this as 1 iovec for the buf log format structure
152  * and 1 for each stretch of non-contiguous chunks to be logged.
153  * Contiguous chunks are logged in a single iovec.
154  *
155  * If the XFS_BLI_STALE flag has been set, then log nothing.
156  */
157 STATIC uint
158 xfs_buf_item_size(
159 	struct xfs_log_item	*lip)
160 {
161 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
162 	struct xfs_buf		*bp = bip->bli_buf;
163 	uint			nvecs;
164 	int			next_bit;
165 	int			last_bit;
166 
167 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
168 	if (bip->bli_flags & XFS_BLI_STALE) {
169 		/*
170 		 * The buffer is stale, so all we need to log
171 		 * is the buf log format structure with the
172 		 * cancel flag in it.
173 		 */
174 		trace_xfs_buf_item_size_stale(bip);
175 		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
176 		return 1;
177 	}
178 
179 	ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
180 	nvecs = 1;
181 	last_bit = xfs_next_bit(bip->bli_format.blf_data_map,
182 					 bip->bli_format.blf_map_size, 0);
183 	ASSERT(last_bit != -1);
184 	nvecs++;
185 	while (last_bit != -1) {
186 		/*
187 		 * This takes the bit number to start looking from and
188 		 * returns the next set bit from there.  It returns -1
189 		 * if there are no more bits set or the start bit is
190 		 * beyond the end of the bitmap.
191 		 */
192 		next_bit = xfs_next_bit(bip->bli_format.blf_data_map,
193 						 bip->bli_format.blf_map_size,
194 						 last_bit + 1);
195 		/*
196 		 * If we run out of bits, leave the loop,
197 		 * else if we find a new set of bits bump the number of vecs,
198 		 * else keep scanning the current set of bits.
199 		 */
200 		if (next_bit == -1) {
201 			last_bit = -1;
202 		} else if (next_bit != last_bit + 1) {
203 			last_bit = next_bit;
204 			nvecs++;
205 		} else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
206 			   (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
207 			    XFS_BLF_CHUNK)) {
208 			last_bit = next_bit;
209 			nvecs++;
210 		} else {
211 			last_bit++;
212 		}
213 	}
214 
215 	trace_xfs_buf_item_size(bip);
216 	return nvecs;
217 }
218 
219 /*
220  * This is called to fill in the vector of log iovecs for the
221  * given log buf item.  It fills the first entry with a buf log
222  * format structure, and the rest point to contiguous chunks
223  * within the buffer.
224  */
225 STATIC void
226 xfs_buf_item_format(
227 	struct xfs_log_item	*lip,
228 	struct xfs_log_iovec	*vecp)
229 {
230 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
231 	struct xfs_buf	*bp = bip->bli_buf;
232 	uint		base_size;
233 	uint		nvecs;
234 	int		first_bit;
235 	int		last_bit;
236 	int		next_bit;
237 	uint		nbits;
238 	uint		buffer_offset;
239 
240 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
241 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
242 	       (bip->bli_flags & XFS_BLI_STALE));
243 
244 	/*
245 	 * The size of the base structure is the size of the
246 	 * declared structure plus the space for the extra words
247 	 * of the bitmap.  We subtract one from the map size, because
248 	 * the first element of the bitmap is accounted for in the
249 	 * size of the base structure.
250 	 */
251 	base_size =
252 		(uint)(sizeof(xfs_buf_log_format_t) +
253 		       ((bip->bli_format.blf_map_size - 1) * sizeof(uint)));
254 	vecp->i_addr = &bip->bli_format;
255 	vecp->i_len = base_size;
256 	vecp->i_type = XLOG_REG_TYPE_BFORMAT;
257 	vecp++;
258 	nvecs = 1;
259 
260 	/*
261 	 * If it is an inode buffer, transfer the in-memory state to the
262 	 * format flags and clear the in-memory state. We do not transfer
263 	 * this state if the inode buffer allocation has not yet been committed
264 	 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
265 	 * correct replay of the inode allocation.
266 	 */
267 	if (bip->bli_flags & XFS_BLI_INODE_BUF) {
268 		if (!((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
269 		      xfs_log_item_in_current_chkpt(lip)))
270 			bip->bli_format.blf_flags |= XFS_BLF_INODE_BUF;
271 		bip->bli_flags &= ~XFS_BLI_INODE_BUF;
272 	}
273 
274 	if (bip->bli_flags & XFS_BLI_STALE) {
275 		/*
276 		 * The buffer is stale, so all we need to log
277 		 * is the buf log format structure with the
278 		 * cancel flag in it.
279 		 */
280 		trace_xfs_buf_item_format_stale(bip);
281 		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
282 		bip->bli_format.blf_size = nvecs;
283 		return;
284 	}
285 
286 	/*
287 	 * Fill in an iovec for each set of contiguous chunks.
288 	 */
289 	first_bit = xfs_next_bit(bip->bli_format.blf_data_map,
290 					 bip->bli_format.blf_map_size, 0);
291 	ASSERT(first_bit != -1);
292 	last_bit = first_bit;
293 	nbits = 1;
294 	for (;;) {
295 		/*
296 		 * This takes the bit number to start looking from and
297 		 * returns the next set bit from there.  It returns -1
298 		 * if there are no more bits set or the start bit is
299 		 * beyond the end of the bitmap.
300 		 */
301 		next_bit = xfs_next_bit(bip->bli_format.blf_data_map,
302 						 bip->bli_format.blf_map_size,
303 						 (uint)last_bit + 1);
304 		/*
305 		 * If we run out of bits fill in the last iovec and get
306 		 * out of the loop.
307 		 * Else if we start a new set of bits then fill in the
308 		 * iovec for the series we were looking at and start
309 		 * counting the bits in the new one.
310 		 * Else we're still in the same set of bits so just
311 		 * keep counting and scanning.
312 		 */
313 		if (next_bit == -1) {
314 			buffer_offset = first_bit * XFS_BLF_CHUNK;
315 			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
316 			vecp->i_len = nbits * XFS_BLF_CHUNK;
317 			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
318 			nvecs++;
319 			break;
320 		} else if (next_bit != last_bit + 1) {
321 			buffer_offset = first_bit * XFS_BLF_CHUNK;
322 			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
323 			vecp->i_len = nbits * XFS_BLF_CHUNK;
324 			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
325 			nvecs++;
326 			vecp++;
327 			first_bit = next_bit;
328 			last_bit = next_bit;
329 			nbits = 1;
330 		} else if (xfs_buf_offset(bp, next_bit << XFS_BLF_SHIFT) !=
331 			   (xfs_buf_offset(bp, last_bit << XFS_BLF_SHIFT) +
332 			    XFS_BLF_CHUNK)) {
333 			buffer_offset = first_bit * XFS_BLF_CHUNK;
334 			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
335 			vecp->i_len = nbits * XFS_BLF_CHUNK;
336 			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
337 /* You would think we need to bump the nvecs here too, but we do not
338  * this number is used by recovery, and it gets confused by the boundary
339  * split here
340  *			nvecs++;
341  */
342 			vecp++;
343 			first_bit = next_bit;
344 			last_bit = next_bit;
345 			nbits = 1;
346 		} else {
347 			last_bit++;
348 			nbits++;
349 		}
350 	}
351 	bip->bli_format.blf_size = nvecs;
352 
353 	/*
354 	 * Check to make sure everything is consistent.
355 	 */
356 	trace_xfs_buf_item_format(bip);
357 	xfs_buf_item_log_check(bip);
358 }
359 
360 /*
361  * This is called to pin the buffer associated with the buf log item in memory
362  * so it cannot be written out.
363  *
364  * We also always take a reference to the buffer log item here so that the bli
365  * is held while the item is pinned in memory. This means that we can
366  * unconditionally drop the reference count a transaction holds when the
367  * transaction is completed.
368  */
369 STATIC void
370 xfs_buf_item_pin(
371 	struct xfs_log_item	*lip)
372 {
373 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
374 
375 	ASSERT(XFS_BUF_ISBUSY(bip->bli_buf));
376 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
377 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
378 	       (bip->bli_flags & XFS_BLI_STALE));
379 
380 	trace_xfs_buf_item_pin(bip);
381 
382 	atomic_inc(&bip->bli_refcount);
383 	atomic_inc(&bip->bli_buf->b_pin_count);
384 }
385 
386 /*
387  * This is called to unpin the buffer associated with the buf log
388  * item which was previously pinned with a call to xfs_buf_item_pin().
389  *
390  * Also drop the reference to the buf item for the current transaction.
391  * If the XFS_BLI_STALE flag is set and we are the last reference,
392  * then free up the buf log item and unlock the buffer.
393  *
394  * If the remove flag is set we are called from uncommit in the
395  * forced-shutdown path.  If that is true and the reference count on
396  * the log item is going to drop to zero we need to free the item's
397  * descriptor in the transaction.
398  */
399 STATIC void
400 xfs_buf_item_unpin(
401 	struct xfs_log_item	*lip,
402 	int			remove)
403 {
404 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
405 	xfs_buf_t	*bp = bip->bli_buf;
406 	struct xfs_ail	*ailp = lip->li_ailp;
407 	int		stale = bip->bli_flags & XFS_BLI_STALE;
408 	int		freed;
409 
410 	ASSERT(XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *) == bip);
411 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
412 
413 	trace_xfs_buf_item_unpin(bip);
414 
415 	freed = atomic_dec_and_test(&bip->bli_refcount);
416 
417 	if (atomic_dec_and_test(&bp->b_pin_count))
418 		wake_up_all(&bp->b_waiters);
419 
420 	if (freed && stale) {
421 		ASSERT(bip->bli_flags & XFS_BLI_STALE);
422 		ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
423 		ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
424 		ASSERT(XFS_BUF_ISSTALE(bp));
425 		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
426 
427 		trace_xfs_buf_item_unpin_stale(bip);
428 
429 		if (remove) {
430 			/*
431 			 * We have to remove the log item from the transaction
432 			 * as we are about to release our reference to the
433 			 * buffer.  If we don't, the unlock that occurs later
434 			 * in xfs_trans_uncommit() will ry to reference the
435 			 * buffer which we no longer have a hold on.
436 			 */
437 			xfs_trans_del_item(lip);
438 
439 			/*
440 			 * Since the transaction no longer refers to the buffer,
441 			 * the buffer should no longer refer to the transaction.
442 			 */
443 			XFS_BUF_SET_FSPRIVATE2(bp, NULL);
444 		}
445 
446 		/*
447 		 * If we get called here because of an IO error, we may
448 		 * or may not have the item on the AIL. xfs_trans_ail_delete()
449 		 * will take care of that situation.
450 		 * xfs_trans_ail_delete() drops the AIL lock.
451 		 */
452 		if (bip->bli_flags & XFS_BLI_STALE_INODE) {
453 			xfs_buf_do_callbacks(bp, (xfs_log_item_t *)bip);
454 			XFS_BUF_SET_FSPRIVATE(bp, NULL);
455 			XFS_BUF_CLR_IODONE_FUNC(bp);
456 		} else {
457 			spin_lock(&ailp->xa_lock);
458 			xfs_trans_ail_delete(ailp, (xfs_log_item_t *)bip);
459 			xfs_buf_item_relse(bp);
460 			ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL);
461 		}
462 		xfs_buf_relse(bp);
463 	}
464 }
465 
466 /*
467  * This is called to attempt to lock the buffer associated with this
468  * buf log item.  Don't sleep on the buffer lock.  If we can't get
469  * the lock right away, return 0.  If we can get the lock, take a
470  * reference to the buffer. If this is a delayed write buffer that
471  * needs AIL help to be written back, invoke the pushbuf routine
472  * rather than the normal success path.
473  */
474 STATIC uint
475 xfs_buf_item_trylock(
476 	struct xfs_log_item	*lip)
477 {
478 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
479 	struct xfs_buf		*bp = bip->bli_buf;
480 
481 	if (XFS_BUF_ISPINNED(bp))
482 		return XFS_ITEM_PINNED;
483 	if (!XFS_BUF_CPSEMA(bp))
484 		return XFS_ITEM_LOCKED;
485 
486 	/* take a reference to the buffer.  */
487 	XFS_BUF_HOLD(bp);
488 
489 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
490 	trace_xfs_buf_item_trylock(bip);
491 	if (XFS_BUF_ISDELAYWRITE(bp))
492 		return XFS_ITEM_PUSHBUF;
493 	return XFS_ITEM_SUCCESS;
494 }
495 
496 /*
497  * Release the buffer associated with the buf log item.  If there is no dirty
498  * logged data associated with the buffer recorded in the buf log item, then
499  * free the buf log item and remove the reference to it in the buffer.
500  *
501  * This call ignores the recursion count.  It is only called when the buffer
502  * should REALLY be unlocked, regardless of the recursion count.
503  *
504  * We unconditionally drop the transaction's reference to the log item. If the
505  * item was logged, then another reference was taken when it was pinned, so we
506  * can safely drop the transaction reference now.  This also allows us to avoid
507  * potential races with the unpin code freeing the bli by not referencing the
508  * bli after we've dropped the reference count.
509  *
510  * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
511  * if necessary but do not unlock the buffer.  This is for support of
512  * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
513  * free the item.
514  */
515 STATIC void
516 xfs_buf_item_unlock(
517 	struct xfs_log_item	*lip)
518 {
519 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
520 	struct xfs_buf		*bp = bip->bli_buf;
521 	int			aborted;
522 	uint			hold;
523 
524 	/* Clear the buffer's association with this transaction. */
525 	XFS_BUF_SET_FSPRIVATE2(bp, NULL);
526 
527 	/*
528 	 * If this is a transaction abort, don't return early.  Instead, allow
529 	 * the brelse to happen.  Normally it would be done for stale
530 	 * (cancelled) buffers at unpin time, but we'll never go through the
531 	 * pin/unpin cycle if we abort inside commit.
532 	 */
533 	aborted = (lip->li_flags & XFS_LI_ABORTED) != 0;
534 
535 	/*
536 	 * Before possibly freeing the buf item, determine if we should
537 	 * release the buffer at the end of this routine.
538 	 */
539 	hold = bip->bli_flags & XFS_BLI_HOLD;
540 
541 	/* Clear the per transaction state. */
542 	bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD);
543 
544 	/*
545 	 * If the buf item is marked stale, then don't do anything.  We'll
546 	 * unlock the buffer and free the buf item when the buffer is unpinned
547 	 * for the last time.
548 	 */
549 	if (bip->bli_flags & XFS_BLI_STALE) {
550 		trace_xfs_buf_item_unlock_stale(bip);
551 		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
552 		if (!aborted) {
553 			atomic_dec(&bip->bli_refcount);
554 			return;
555 		}
556 	}
557 
558 	trace_xfs_buf_item_unlock(bip);
559 
560 	/*
561 	 * If the buf item isn't tracking any data, free it, otherwise drop the
562 	 * reference we hold to it.
563 	 */
564 	if (xfs_bitmap_empty(bip->bli_format.blf_data_map,
565 			     bip->bli_format.blf_map_size))
566 		xfs_buf_item_relse(bp);
567 	else
568 		atomic_dec(&bip->bli_refcount);
569 
570 	if (!hold)
571 		xfs_buf_relse(bp);
572 }
573 
574 /*
575  * This is called to find out where the oldest active copy of the
576  * buf log item in the on disk log resides now that the last log
577  * write of it completed at the given lsn.
578  * We always re-log all the dirty data in a buffer, so usually the
579  * latest copy in the on disk log is the only one that matters.  For
580  * those cases we simply return the given lsn.
581  *
582  * The one exception to this is for buffers full of newly allocated
583  * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
584  * flag set, indicating that only the di_next_unlinked fields from the
585  * inodes in the buffers will be replayed during recovery.  If the
586  * original newly allocated inode images have not yet been flushed
587  * when the buffer is so relogged, then we need to make sure that we
588  * keep the old images in the 'active' portion of the log.  We do this
589  * by returning the original lsn of that transaction here rather than
590  * the current one.
591  */
592 STATIC xfs_lsn_t
593 xfs_buf_item_committed(
594 	struct xfs_log_item	*lip,
595 	xfs_lsn_t		lsn)
596 {
597 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
598 
599 	trace_xfs_buf_item_committed(bip);
600 
601 	if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
602 		return lip->li_lsn;
603 	return lsn;
604 }
605 
606 /*
607  * The buffer is locked, but is not a delayed write buffer. This happens
608  * if we race with IO completion and hence we don't want to try to write it
609  * again. Just release the buffer.
610  */
611 STATIC void
612 xfs_buf_item_push(
613 	struct xfs_log_item	*lip)
614 {
615 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
616 	struct xfs_buf		*bp = bip->bli_buf;
617 
618 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
619 	ASSERT(!XFS_BUF_ISDELAYWRITE(bp));
620 
621 	trace_xfs_buf_item_push(bip);
622 
623 	xfs_buf_relse(bp);
624 }
625 
626 /*
627  * The buffer is locked and is a delayed write buffer. Promote the buffer
628  * in the delayed write queue as the caller knows that they must invoke
629  * the xfsbufd to get this buffer written. We have to unlock the buffer
630  * to allow the xfsbufd to write it, too.
631  */
632 STATIC void
633 xfs_buf_item_pushbuf(
634 	struct xfs_log_item	*lip)
635 {
636 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
637 	struct xfs_buf		*bp = bip->bli_buf;
638 
639 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
640 	ASSERT(XFS_BUF_ISDELAYWRITE(bp));
641 
642 	trace_xfs_buf_item_pushbuf(bip);
643 
644 	xfs_buf_delwri_promote(bp);
645 	xfs_buf_relse(bp);
646 }
647 
648 STATIC void
649 xfs_buf_item_committing(
650 	struct xfs_log_item	*lip,
651 	xfs_lsn_t		commit_lsn)
652 {
653 }
654 
655 /*
656  * This is the ops vector shared by all buf log items.
657  */
658 static struct xfs_item_ops xfs_buf_item_ops = {
659 	.iop_size	= xfs_buf_item_size,
660 	.iop_format	= xfs_buf_item_format,
661 	.iop_pin	= xfs_buf_item_pin,
662 	.iop_unpin	= xfs_buf_item_unpin,
663 	.iop_trylock	= xfs_buf_item_trylock,
664 	.iop_unlock	= xfs_buf_item_unlock,
665 	.iop_committed	= xfs_buf_item_committed,
666 	.iop_push	= xfs_buf_item_push,
667 	.iop_pushbuf	= xfs_buf_item_pushbuf,
668 	.iop_committing = xfs_buf_item_committing
669 };
670 
671 
672 /*
673  * Allocate a new buf log item to go with the given buffer.
674  * Set the buffer's b_fsprivate field to point to the new
675  * buf log item.  If there are other item's attached to the
676  * buffer (see xfs_buf_attach_iodone() below), then put the
677  * buf log item at the front.
678  */
679 void
680 xfs_buf_item_init(
681 	xfs_buf_t	*bp,
682 	xfs_mount_t	*mp)
683 {
684 	xfs_log_item_t		*lip;
685 	xfs_buf_log_item_t	*bip;
686 	int			chunks;
687 	int			map_size;
688 
689 	/*
690 	 * Check to see if there is already a buf log item for
691 	 * this buffer.  If there is, it is guaranteed to be
692 	 * the first.  If we do already have one, there is
693 	 * nothing to do here so return.
694 	 */
695 	ASSERT(bp->b_target->bt_mount == mp);
696 	if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) {
697 		lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
698 		if (lip->li_type == XFS_LI_BUF) {
699 			return;
700 		}
701 	}
702 
703 	/*
704 	 * chunks is the number of XFS_BLF_CHUNK size pieces
705 	 * the buffer can be divided into. Make sure not to
706 	 * truncate any pieces.  map_size is the size of the
707 	 * bitmap needed to describe the chunks of the buffer.
708 	 */
709 	chunks = (int)((XFS_BUF_COUNT(bp) + (XFS_BLF_CHUNK - 1)) >> XFS_BLF_SHIFT);
710 	map_size = (int)((chunks + NBWORD) >> BIT_TO_WORD_SHIFT);
711 
712 	bip = (xfs_buf_log_item_t*)kmem_zone_zalloc(xfs_buf_item_zone,
713 						    KM_SLEEP);
714 	xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
715 	bip->bli_buf = bp;
716 	xfs_buf_hold(bp);
717 	bip->bli_format.blf_type = XFS_LI_BUF;
718 	bip->bli_format.blf_blkno = (__int64_t)XFS_BUF_ADDR(bp);
719 	bip->bli_format.blf_len = (ushort)BTOBB(XFS_BUF_COUNT(bp));
720 	bip->bli_format.blf_map_size = map_size;
721 
722 #ifdef XFS_TRANS_DEBUG
723 	/*
724 	 * Allocate the arrays for tracking what needs to be logged
725 	 * and what our callers request to be logged.  bli_orig
726 	 * holds a copy of the original, clean buffer for comparison
727 	 * against, and bli_logged keeps a 1 bit flag per byte in
728 	 * the buffer to indicate which bytes the callers have asked
729 	 * to have logged.
730 	 */
731 	bip->bli_orig = (char *)kmem_alloc(XFS_BUF_COUNT(bp), KM_SLEEP);
732 	memcpy(bip->bli_orig, XFS_BUF_PTR(bp), XFS_BUF_COUNT(bp));
733 	bip->bli_logged = (char *)kmem_zalloc(XFS_BUF_COUNT(bp) / NBBY, KM_SLEEP);
734 #endif
735 
736 	/*
737 	 * Put the buf item into the list of items attached to the
738 	 * buffer at the front.
739 	 */
740 	if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) {
741 		bip->bli_item.li_bio_list =
742 				XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
743 	}
744 	XFS_BUF_SET_FSPRIVATE(bp, bip);
745 }
746 
747 
748 /*
749  * Mark bytes first through last inclusive as dirty in the buf
750  * item's bitmap.
751  */
752 void
753 xfs_buf_item_log(
754 	xfs_buf_log_item_t	*bip,
755 	uint			first,
756 	uint			last)
757 {
758 	uint		first_bit;
759 	uint		last_bit;
760 	uint		bits_to_set;
761 	uint		bits_set;
762 	uint		word_num;
763 	uint		*wordp;
764 	uint		bit;
765 	uint		end_bit;
766 	uint		mask;
767 
768 	/*
769 	 * Mark the item as having some dirty data for
770 	 * quick reference in xfs_buf_item_dirty.
771 	 */
772 	bip->bli_flags |= XFS_BLI_DIRTY;
773 
774 	/*
775 	 * Convert byte offsets to bit numbers.
776 	 */
777 	first_bit = first >> XFS_BLF_SHIFT;
778 	last_bit = last >> XFS_BLF_SHIFT;
779 
780 	/*
781 	 * Calculate the total number of bits to be set.
782 	 */
783 	bits_to_set = last_bit - first_bit + 1;
784 
785 	/*
786 	 * Get a pointer to the first word in the bitmap
787 	 * to set a bit in.
788 	 */
789 	word_num = first_bit >> BIT_TO_WORD_SHIFT;
790 	wordp = &(bip->bli_format.blf_data_map[word_num]);
791 
792 	/*
793 	 * Calculate the starting bit in the first word.
794 	 */
795 	bit = first_bit & (uint)(NBWORD - 1);
796 
797 	/*
798 	 * First set any bits in the first word of our range.
799 	 * If it starts at bit 0 of the word, it will be
800 	 * set below rather than here.  That is what the variable
801 	 * bit tells us. The variable bits_set tracks the number
802 	 * of bits that have been set so far.  End_bit is the number
803 	 * of the last bit to be set in this word plus one.
804 	 */
805 	if (bit) {
806 		end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
807 		mask = ((1 << (end_bit - bit)) - 1) << bit;
808 		*wordp |= mask;
809 		wordp++;
810 		bits_set = end_bit - bit;
811 	} else {
812 		bits_set = 0;
813 	}
814 
815 	/*
816 	 * Now set bits a whole word at a time that are between
817 	 * first_bit and last_bit.
818 	 */
819 	while ((bits_to_set - bits_set) >= NBWORD) {
820 		*wordp |= 0xffffffff;
821 		bits_set += NBWORD;
822 		wordp++;
823 	}
824 
825 	/*
826 	 * Finally, set any bits left to be set in one last partial word.
827 	 */
828 	end_bit = bits_to_set - bits_set;
829 	if (end_bit) {
830 		mask = (1 << end_bit) - 1;
831 		*wordp |= mask;
832 	}
833 
834 	xfs_buf_item_log_debug(bip, first, last);
835 }
836 
837 
838 /*
839  * Return 1 if the buffer has some data that has been logged (at any
840  * point, not just the current transaction) and 0 if not.
841  */
842 uint
843 xfs_buf_item_dirty(
844 	xfs_buf_log_item_t	*bip)
845 {
846 	return (bip->bli_flags & XFS_BLI_DIRTY);
847 }
848 
849 STATIC void
850 xfs_buf_item_free(
851 	xfs_buf_log_item_t	*bip)
852 {
853 #ifdef XFS_TRANS_DEBUG
854 	kmem_free(bip->bli_orig);
855 	kmem_free(bip->bli_logged);
856 #endif /* XFS_TRANS_DEBUG */
857 
858 	kmem_zone_free(xfs_buf_item_zone, bip);
859 }
860 
861 /*
862  * This is called when the buf log item is no longer needed.  It should
863  * free the buf log item associated with the given buffer and clear
864  * the buffer's pointer to the buf log item.  If there are no more
865  * items in the list, clear the b_iodone field of the buffer (see
866  * xfs_buf_attach_iodone() below).
867  */
868 void
869 xfs_buf_item_relse(
870 	xfs_buf_t	*bp)
871 {
872 	xfs_buf_log_item_t	*bip;
873 
874 	trace_xfs_buf_item_relse(bp, _RET_IP_);
875 
876 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
877 	XFS_BUF_SET_FSPRIVATE(bp, bip->bli_item.li_bio_list);
878 	if ((XFS_BUF_FSPRIVATE(bp, void *) == NULL) &&
879 	    (XFS_BUF_IODONE_FUNC(bp) != NULL)) {
880 		XFS_BUF_CLR_IODONE_FUNC(bp);
881 	}
882 	xfs_buf_rele(bp);
883 	xfs_buf_item_free(bip);
884 }
885 
886 
887 /*
888  * Add the given log item with its callback to the list of callbacks
889  * to be called when the buffer's I/O completes.  If it is not set
890  * already, set the buffer's b_iodone() routine to be
891  * xfs_buf_iodone_callbacks() and link the log item into the list of
892  * items rooted at b_fsprivate.  Items are always added as the second
893  * entry in the list if there is a first, because the buf item code
894  * assumes that the buf log item is first.
895  */
896 void
897 xfs_buf_attach_iodone(
898 	xfs_buf_t	*bp,
899 	void		(*cb)(xfs_buf_t *, xfs_log_item_t *),
900 	xfs_log_item_t	*lip)
901 {
902 	xfs_log_item_t	*head_lip;
903 
904 	ASSERT(XFS_BUF_ISBUSY(bp));
905 	ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
906 
907 	lip->li_cb = cb;
908 	if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) {
909 		head_lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
910 		lip->li_bio_list = head_lip->li_bio_list;
911 		head_lip->li_bio_list = lip;
912 	} else {
913 		XFS_BUF_SET_FSPRIVATE(bp, lip);
914 	}
915 
916 	ASSERT((XFS_BUF_IODONE_FUNC(bp) == xfs_buf_iodone_callbacks) ||
917 	       (XFS_BUF_IODONE_FUNC(bp) == NULL));
918 	XFS_BUF_SET_IODONE_FUNC(bp, xfs_buf_iodone_callbacks);
919 }
920 
921 STATIC void
922 xfs_buf_do_callbacks(
923 	xfs_buf_t	*bp,
924 	xfs_log_item_t	*lip)
925 {
926 	xfs_log_item_t	*nlip;
927 
928 	while (lip != NULL) {
929 		nlip = lip->li_bio_list;
930 		ASSERT(lip->li_cb != NULL);
931 		/*
932 		 * Clear the next pointer so we don't have any
933 		 * confusion if the item is added to another buf.
934 		 * Don't touch the log item after calling its
935 		 * callback, because it could have freed itself.
936 		 */
937 		lip->li_bio_list = NULL;
938 		lip->li_cb(bp, lip);
939 		lip = nlip;
940 	}
941 }
942 
943 /*
944  * This is the iodone() function for buffers which have had callbacks
945  * attached to them by xfs_buf_attach_iodone().  It should remove each
946  * log item from the buffer's list and call the callback of each in turn.
947  * When done, the buffer's fsprivate field is set to NULL and the buffer
948  * is unlocked with a call to iodone().
949  */
950 void
951 xfs_buf_iodone_callbacks(
952 	xfs_buf_t	*bp)
953 {
954 	xfs_log_item_t	*lip;
955 	static ulong	lasttime;
956 	static xfs_buftarg_t *lasttarg;
957 	xfs_mount_t	*mp;
958 
959 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
960 	lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
961 
962 	if (XFS_BUF_GETERROR(bp) != 0) {
963 		/*
964 		 * If we've already decided to shutdown the filesystem
965 		 * because of IO errors, there's no point in giving this
966 		 * a retry.
967 		 */
968 		mp = lip->li_mountp;
969 		if (XFS_FORCED_SHUTDOWN(mp)) {
970 			ASSERT(XFS_BUF_TARGET(bp) == mp->m_ddev_targp);
971 			XFS_BUF_SUPER_STALE(bp);
972 			trace_xfs_buf_item_iodone(bp, _RET_IP_);
973 			xfs_buf_do_callbacks(bp, lip);
974 			XFS_BUF_SET_FSPRIVATE(bp, NULL);
975 			XFS_BUF_CLR_IODONE_FUNC(bp);
976 			xfs_buf_ioend(bp, 0);
977 			return;
978 		}
979 
980 		if ((XFS_BUF_TARGET(bp) != lasttarg) ||
981 		    (time_after(jiffies, (lasttime + 5*HZ)))) {
982 			lasttime = jiffies;
983 			cmn_err(CE_ALERT, "Device %s, XFS metadata write error"
984 					" block 0x%llx in %s",
985 				XFS_BUFTARG_NAME(XFS_BUF_TARGET(bp)),
986 			      (__uint64_t)XFS_BUF_ADDR(bp), mp->m_fsname);
987 		}
988 		lasttarg = XFS_BUF_TARGET(bp);
989 
990 		if (XFS_BUF_ISASYNC(bp)) {
991 			/*
992 			 * If the write was asynchronous then noone will be
993 			 * looking for the error.  Clear the error state
994 			 * and write the buffer out again delayed write.
995 			 *
996 			 * XXXsup This is OK, so long as we catch these
997 			 * before we start the umount; we don't want these
998 			 * DELWRI metadata bufs to be hanging around.
999 			 */
1000 			XFS_BUF_ERROR(bp,0); /* errno of 0 unsets the flag */
1001 
1002 			if (!(XFS_BUF_ISSTALE(bp))) {
1003 				XFS_BUF_DELAYWRITE(bp);
1004 				XFS_BUF_DONE(bp);
1005 				XFS_BUF_SET_START(bp);
1006 			}
1007 			ASSERT(XFS_BUF_IODONE_FUNC(bp));
1008 			trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1009 			xfs_buf_relse(bp);
1010 		} else {
1011 			/*
1012 			 * If the write of the buffer was not asynchronous,
1013 			 * then we want to make sure to return the error
1014 			 * to the caller of bwrite().  Because of this we
1015 			 * cannot clear the B_ERROR state at this point.
1016 			 * Instead we install a callback function that
1017 			 * will be called when the buffer is released, and
1018 			 * that routine will clear the error state and
1019 			 * set the buffer to be written out again after
1020 			 * some delay.
1021 			 */
1022 			/* We actually overwrite the existing b-relse
1023 			   function at times, but we're gonna be shutting down
1024 			   anyway. */
1025 			XFS_BUF_SET_BRELSE_FUNC(bp,xfs_buf_error_relse);
1026 			XFS_BUF_DONE(bp);
1027 			XFS_BUF_FINISH_IOWAIT(bp);
1028 		}
1029 		return;
1030 	}
1031 
1032 	xfs_buf_do_callbacks(bp, lip);
1033 	XFS_BUF_SET_FSPRIVATE(bp, NULL);
1034 	XFS_BUF_CLR_IODONE_FUNC(bp);
1035 	xfs_buf_ioend(bp, 0);
1036 }
1037 
1038 /*
1039  * This is a callback routine attached to a buffer which gets an error
1040  * when being written out synchronously.
1041  */
1042 STATIC void
1043 xfs_buf_error_relse(
1044 	xfs_buf_t	*bp)
1045 {
1046 	xfs_log_item_t	*lip;
1047 	xfs_mount_t	*mp;
1048 
1049 	lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
1050 	mp = (xfs_mount_t *)lip->li_mountp;
1051 	ASSERT(XFS_BUF_TARGET(bp) == mp->m_ddev_targp);
1052 
1053 	XFS_BUF_STALE(bp);
1054 	XFS_BUF_DONE(bp);
1055 	XFS_BUF_UNDELAYWRITE(bp);
1056 	XFS_BUF_ERROR(bp,0);
1057 
1058 	trace_xfs_buf_error_relse(bp, _RET_IP_);
1059 
1060 	if (! XFS_FORCED_SHUTDOWN(mp))
1061 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1062 	/*
1063 	 * We have to unpin the pinned buffers so do the
1064 	 * callbacks.
1065 	 */
1066 	xfs_buf_do_callbacks(bp, lip);
1067 	XFS_BUF_SET_FSPRIVATE(bp, NULL);
1068 	XFS_BUF_CLR_IODONE_FUNC(bp);
1069 	XFS_BUF_SET_BRELSE_FUNC(bp,NULL);
1070 	xfs_buf_relse(bp);
1071 }
1072 
1073 
1074 /*
1075  * This is the iodone() function for buffers which have been
1076  * logged.  It is called when they are eventually flushed out.
1077  * It should remove the buf item from the AIL, and free the buf item.
1078  * It is called by xfs_buf_iodone_callbacks() above which will take
1079  * care of cleaning up the buffer itself.
1080  */
1081 void
1082 xfs_buf_iodone(
1083 	struct xfs_buf		*bp,
1084 	struct xfs_log_item	*lip)
1085 {
1086 	struct xfs_ail		*ailp = lip->li_ailp;
1087 
1088 	ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1089 
1090 	xfs_buf_rele(bp);
1091 
1092 	/*
1093 	 * If we are forcibly shutting down, this may well be
1094 	 * off the AIL already. That's because we simulate the
1095 	 * log-committed callbacks to unpin these buffers. Or we may never
1096 	 * have put this item on AIL because of the transaction was
1097 	 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1098 	 *
1099 	 * Either way, AIL is useless if we're forcing a shutdown.
1100 	 */
1101 	spin_lock(&ailp->xa_lock);
1102 	xfs_trans_ail_delete(ailp, lip);
1103 	xfs_buf_item_free(BUF_ITEM(lip));
1104 }
1105