1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_log_format.h" 21 #include "xfs_trans_resv.h" 22 #include "xfs_bit.h" 23 #include "xfs_sb.h" 24 #include "xfs_ag.h" 25 #include "xfs_mount.h" 26 #include "xfs_trans.h" 27 #include "xfs_buf_item.h" 28 #include "xfs_trans_priv.h" 29 #include "xfs_error.h" 30 #include "xfs_trace.h" 31 #include "xfs_log.h" 32 33 34 kmem_zone_t *xfs_buf_item_zone; 35 36 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip) 37 { 38 return container_of(lip, struct xfs_buf_log_item, bli_item); 39 } 40 41 STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp); 42 43 static inline int 44 xfs_buf_log_format_size( 45 struct xfs_buf_log_format *blfp) 46 { 47 return offsetof(struct xfs_buf_log_format, blf_data_map) + 48 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0])); 49 } 50 51 /* 52 * This returns the number of log iovecs needed to log the 53 * given buf log item. 54 * 55 * It calculates this as 1 iovec for the buf log format structure 56 * and 1 for each stretch of non-contiguous chunks to be logged. 57 * Contiguous chunks are logged in a single iovec. 58 * 59 * If the XFS_BLI_STALE flag has been set, then log nothing. 60 */ 61 STATIC void 62 xfs_buf_item_size_segment( 63 struct xfs_buf_log_item *bip, 64 struct xfs_buf_log_format *blfp, 65 int *nvecs, 66 int *nbytes) 67 { 68 struct xfs_buf *bp = bip->bli_buf; 69 int next_bit; 70 int last_bit; 71 72 last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0); 73 if (last_bit == -1) 74 return; 75 76 /* 77 * initial count for a dirty buffer is 2 vectors - the format structure 78 * and the first dirty region. 79 */ 80 *nvecs += 2; 81 *nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK; 82 83 while (last_bit != -1) { 84 /* 85 * This takes the bit number to start looking from and 86 * returns the next set bit from there. It returns -1 87 * if there are no more bits set or the start bit is 88 * beyond the end of the bitmap. 89 */ 90 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 91 last_bit + 1); 92 /* 93 * If we run out of bits, leave the loop, 94 * else if we find a new set of bits bump the number of vecs, 95 * else keep scanning the current set of bits. 96 */ 97 if (next_bit == -1) { 98 break; 99 } else if (next_bit != last_bit + 1) { 100 last_bit = next_bit; 101 (*nvecs)++; 102 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) != 103 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) + 104 XFS_BLF_CHUNK)) { 105 last_bit = next_bit; 106 (*nvecs)++; 107 } else { 108 last_bit++; 109 } 110 *nbytes += XFS_BLF_CHUNK; 111 } 112 } 113 114 /* 115 * This returns the number of log iovecs needed to log the given buf log item. 116 * 117 * It calculates this as 1 iovec for the buf log format structure and 1 for each 118 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged 119 * in a single iovec. 120 * 121 * Discontiguous buffers need a format structure per region that that is being 122 * logged. This makes the changes in the buffer appear to log recovery as though 123 * they came from separate buffers, just like would occur if multiple buffers 124 * were used instead of a single discontiguous buffer. This enables 125 * discontiguous buffers to be in-memory constructs, completely transparent to 126 * what ends up on disk. 127 * 128 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log 129 * format structures. 130 */ 131 STATIC void 132 xfs_buf_item_size( 133 struct xfs_log_item *lip, 134 int *nvecs, 135 int *nbytes) 136 { 137 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 138 int i; 139 140 ASSERT(atomic_read(&bip->bli_refcount) > 0); 141 if (bip->bli_flags & XFS_BLI_STALE) { 142 /* 143 * The buffer is stale, so all we need to log 144 * is the buf log format structure with the 145 * cancel flag in it. 146 */ 147 trace_xfs_buf_item_size_stale(bip); 148 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 149 *nvecs += bip->bli_format_count; 150 for (i = 0; i < bip->bli_format_count; i++) { 151 *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]); 152 } 153 return; 154 } 155 156 ASSERT(bip->bli_flags & XFS_BLI_LOGGED); 157 158 if (bip->bli_flags & XFS_BLI_ORDERED) { 159 /* 160 * The buffer has been logged just to order it. 161 * It is not being included in the transaction 162 * commit, so no vectors are used at all. 163 */ 164 trace_xfs_buf_item_size_ordered(bip); 165 *nvecs = XFS_LOG_VEC_ORDERED; 166 return; 167 } 168 169 /* 170 * the vector count is based on the number of buffer vectors we have 171 * dirty bits in. This will only be greater than one when we have a 172 * compound buffer with more than one segment dirty. Hence for compound 173 * buffers we need to track which segment the dirty bits correspond to, 174 * and when we move from one segment to the next increment the vector 175 * count for the extra buf log format structure that will need to be 176 * written. 177 */ 178 for (i = 0; i < bip->bli_format_count; i++) { 179 xfs_buf_item_size_segment(bip, &bip->bli_formats[i], 180 nvecs, nbytes); 181 } 182 trace_xfs_buf_item_size(bip); 183 } 184 185 static inline void 186 xfs_buf_item_copy_iovec( 187 struct xfs_log_vec *lv, 188 struct xfs_log_iovec **vecp, 189 struct xfs_buf *bp, 190 uint offset, 191 int first_bit, 192 uint nbits) 193 { 194 offset += first_bit * XFS_BLF_CHUNK; 195 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK, 196 xfs_buf_offset(bp, offset), 197 nbits * XFS_BLF_CHUNK); 198 } 199 200 static inline bool 201 xfs_buf_item_straddle( 202 struct xfs_buf *bp, 203 uint offset, 204 int next_bit, 205 int last_bit) 206 { 207 return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) != 208 (xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) + 209 XFS_BLF_CHUNK); 210 } 211 212 static void 213 xfs_buf_item_format_segment( 214 struct xfs_buf_log_item *bip, 215 struct xfs_log_vec *lv, 216 struct xfs_log_iovec **vecp, 217 uint offset, 218 struct xfs_buf_log_format *blfp) 219 { 220 struct xfs_buf *bp = bip->bli_buf; 221 uint base_size; 222 int first_bit; 223 int last_bit; 224 int next_bit; 225 uint nbits; 226 227 /* copy the flags across from the base format item */ 228 blfp->blf_flags = bip->__bli_format.blf_flags; 229 230 /* 231 * Base size is the actual size of the ondisk structure - it reflects 232 * the actual size of the dirty bitmap rather than the size of the in 233 * memory structure. 234 */ 235 base_size = xfs_buf_log_format_size(blfp); 236 237 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0); 238 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) { 239 /* 240 * If the map is not be dirty in the transaction, mark 241 * the size as zero and do not advance the vector pointer. 242 */ 243 return; 244 } 245 246 blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size); 247 blfp->blf_size = 1; 248 249 if (bip->bli_flags & XFS_BLI_STALE) { 250 /* 251 * The buffer is stale, so all we need to log 252 * is the buf log format structure with the 253 * cancel flag in it. 254 */ 255 trace_xfs_buf_item_format_stale(bip); 256 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL); 257 return; 258 } 259 260 261 /* 262 * Fill in an iovec for each set of contiguous chunks. 263 */ 264 last_bit = first_bit; 265 nbits = 1; 266 for (;;) { 267 /* 268 * This takes the bit number to start looking from and 269 * returns the next set bit from there. It returns -1 270 * if there are no more bits set or the start bit is 271 * beyond the end of the bitmap. 272 */ 273 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 274 (uint)last_bit + 1); 275 /* 276 * If we run out of bits fill in the last iovec and get out of 277 * the loop. Else if we start a new set of bits then fill in 278 * the iovec for the series we were looking at and start 279 * counting the bits in the new one. Else we're still in the 280 * same set of bits so just keep counting and scanning. 281 */ 282 if (next_bit == -1) { 283 xfs_buf_item_copy_iovec(lv, vecp, bp, offset, 284 first_bit, nbits); 285 blfp->blf_size++; 286 break; 287 } else if (next_bit != last_bit + 1 || 288 xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) { 289 xfs_buf_item_copy_iovec(lv, vecp, bp, offset, 290 first_bit, nbits); 291 blfp->blf_size++; 292 first_bit = next_bit; 293 last_bit = next_bit; 294 nbits = 1; 295 } else { 296 last_bit++; 297 nbits++; 298 } 299 } 300 } 301 302 /* 303 * This is called to fill in the vector of log iovecs for the 304 * given log buf item. It fills the first entry with a buf log 305 * format structure, and the rest point to contiguous chunks 306 * within the buffer. 307 */ 308 STATIC void 309 xfs_buf_item_format( 310 struct xfs_log_item *lip, 311 struct xfs_log_vec *lv) 312 { 313 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 314 struct xfs_buf *bp = bip->bli_buf; 315 struct xfs_log_iovec *vecp = NULL; 316 uint offset = 0; 317 int i; 318 319 ASSERT(atomic_read(&bip->bli_refcount) > 0); 320 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || 321 (bip->bli_flags & XFS_BLI_STALE)); 322 323 /* 324 * If it is an inode buffer, transfer the in-memory state to the 325 * format flags and clear the in-memory state. 326 * 327 * For buffer based inode allocation, we do not transfer 328 * this state if the inode buffer allocation has not yet been committed 329 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent 330 * correct replay of the inode allocation. 331 * 332 * For icreate item based inode allocation, the buffers aren't written 333 * to the journal during allocation, and hence we should always tag the 334 * buffer as an inode buffer so that the correct unlinked list replay 335 * occurs during recovery. 336 */ 337 if (bip->bli_flags & XFS_BLI_INODE_BUF) { 338 if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) || 339 !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && 340 xfs_log_item_in_current_chkpt(lip))) 341 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF; 342 bip->bli_flags &= ~XFS_BLI_INODE_BUF; 343 } 344 345 if ((bip->bli_flags & (XFS_BLI_ORDERED|XFS_BLI_STALE)) == 346 XFS_BLI_ORDERED) { 347 /* 348 * The buffer has been logged just to order it. It is not being 349 * included in the transaction commit, so don't format it. 350 */ 351 trace_xfs_buf_item_format_ordered(bip); 352 return; 353 } 354 355 for (i = 0; i < bip->bli_format_count; i++) { 356 xfs_buf_item_format_segment(bip, lv, &vecp, offset, 357 &bip->bli_formats[i]); 358 offset += bp->b_maps[i].bm_len; 359 } 360 361 /* 362 * Check to make sure everything is consistent. 363 */ 364 trace_xfs_buf_item_format(bip); 365 } 366 367 /* 368 * This is called to pin the buffer associated with the buf log item in memory 369 * so it cannot be written out. 370 * 371 * We also always take a reference to the buffer log item here so that the bli 372 * is held while the item is pinned in memory. This means that we can 373 * unconditionally drop the reference count a transaction holds when the 374 * transaction is completed. 375 */ 376 STATIC void 377 xfs_buf_item_pin( 378 struct xfs_log_item *lip) 379 { 380 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 381 382 ASSERT(atomic_read(&bip->bli_refcount) > 0); 383 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || 384 (bip->bli_flags & XFS_BLI_ORDERED) || 385 (bip->bli_flags & XFS_BLI_STALE)); 386 387 trace_xfs_buf_item_pin(bip); 388 389 atomic_inc(&bip->bli_refcount); 390 atomic_inc(&bip->bli_buf->b_pin_count); 391 } 392 393 /* 394 * This is called to unpin the buffer associated with the buf log 395 * item which was previously pinned with a call to xfs_buf_item_pin(). 396 * 397 * Also drop the reference to the buf item for the current transaction. 398 * If the XFS_BLI_STALE flag is set and we are the last reference, 399 * then free up the buf log item and unlock the buffer. 400 * 401 * If the remove flag is set we are called from uncommit in the 402 * forced-shutdown path. If that is true and the reference count on 403 * the log item is going to drop to zero we need to free the item's 404 * descriptor in the transaction. 405 */ 406 STATIC void 407 xfs_buf_item_unpin( 408 struct xfs_log_item *lip, 409 int remove) 410 { 411 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 412 xfs_buf_t *bp = bip->bli_buf; 413 struct xfs_ail *ailp = lip->li_ailp; 414 int stale = bip->bli_flags & XFS_BLI_STALE; 415 int freed; 416 417 ASSERT(bp->b_fspriv == bip); 418 ASSERT(atomic_read(&bip->bli_refcount) > 0); 419 420 trace_xfs_buf_item_unpin(bip); 421 422 freed = atomic_dec_and_test(&bip->bli_refcount); 423 424 if (atomic_dec_and_test(&bp->b_pin_count)) 425 wake_up_all(&bp->b_waiters); 426 427 if (freed && stale) { 428 ASSERT(bip->bli_flags & XFS_BLI_STALE); 429 ASSERT(xfs_buf_islocked(bp)); 430 ASSERT(XFS_BUF_ISSTALE(bp)); 431 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 432 433 trace_xfs_buf_item_unpin_stale(bip); 434 435 if (remove) { 436 /* 437 * If we are in a transaction context, we have to 438 * remove the log item from the transaction as we are 439 * about to release our reference to the buffer. If we 440 * don't, the unlock that occurs later in 441 * xfs_trans_uncommit() will try to reference the 442 * buffer which we no longer have a hold on. 443 */ 444 if (lip->li_desc) 445 xfs_trans_del_item(lip); 446 447 /* 448 * Since the transaction no longer refers to the buffer, 449 * the buffer should no longer refer to the transaction. 450 */ 451 bp->b_transp = NULL; 452 } 453 454 /* 455 * If we get called here because of an IO error, we may 456 * or may not have the item on the AIL. xfs_trans_ail_delete() 457 * will take care of that situation. 458 * xfs_trans_ail_delete() drops the AIL lock. 459 */ 460 if (bip->bli_flags & XFS_BLI_STALE_INODE) { 461 xfs_buf_do_callbacks(bp); 462 bp->b_fspriv = NULL; 463 bp->b_iodone = NULL; 464 } else { 465 spin_lock(&ailp->xa_lock); 466 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR); 467 xfs_buf_item_relse(bp); 468 ASSERT(bp->b_fspriv == NULL); 469 } 470 xfs_buf_relse(bp); 471 } else if (freed && remove) { 472 /* 473 * There are currently two references to the buffer - the active 474 * LRU reference and the buf log item. What we are about to do 475 * here - simulate a failed IO completion - requires 3 476 * references. 477 * 478 * The LRU reference is removed by the xfs_buf_stale() call. The 479 * buf item reference is removed by the xfs_buf_iodone() 480 * callback that is run by xfs_buf_do_callbacks() during ioend 481 * processing (via the bp->b_iodone callback), and then finally 482 * the ioend processing will drop the IO reference if the buffer 483 * is marked XBF_ASYNC. 484 * 485 * Hence we need to take an additional reference here so that IO 486 * completion processing doesn't free the buffer prematurely. 487 */ 488 xfs_buf_lock(bp); 489 xfs_buf_hold(bp); 490 bp->b_flags |= XBF_ASYNC; 491 xfs_buf_ioerror(bp, EIO); 492 XFS_BUF_UNDONE(bp); 493 xfs_buf_stale(bp); 494 xfs_buf_ioend(bp, 0); 495 } 496 } 497 498 /* 499 * Buffer IO error rate limiting. Limit it to no more than 10 messages per 30 500 * seconds so as to not spam logs too much on repeated detection of the same 501 * buffer being bad.. 502 */ 503 504 DEFINE_RATELIMIT_STATE(xfs_buf_write_fail_rl_state, 30 * HZ, 10); 505 506 STATIC uint 507 xfs_buf_item_push( 508 struct xfs_log_item *lip, 509 struct list_head *buffer_list) 510 { 511 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 512 struct xfs_buf *bp = bip->bli_buf; 513 uint rval = XFS_ITEM_SUCCESS; 514 515 if (xfs_buf_ispinned(bp)) 516 return XFS_ITEM_PINNED; 517 if (!xfs_buf_trylock(bp)) { 518 /* 519 * If we have just raced with a buffer being pinned and it has 520 * been marked stale, we could end up stalling until someone else 521 * issues a log force to unpin the stale buffer. Check for the 522 * race condition here so xfsaild recognizes the buffer is pinned 523 * and queues a log force to move it along. 524 */ 525 if (xfs_buf_ispinned(bp)) 526 return XFS_ITEM_PINNED; 527 return XFS_ITEM_LOCKED; 528 } 529 530 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 531 532 trace_xfs_buf_item_push(bip); 533 534 /* has a previous flush failed due to IO errors? */ 535 if ((bp->b_flags & XBF_WRITE_FAIL) && 536 ___ratelimit(&xfs_buf_write_fail_rl_state, "XFS:")) { 537 xfs_warn(bp->b_target->bt_mount, 538 "Detected failing async write on buffer block 0x%llx. Retrying async write.\n", 539 (long long)bp->b_bn); 540 } 541 542 if (!xfs_buf_delwri_queue(bp, buffer_list)) 543 rval = XFS_ITEM_FLUSHING; 544 xfs_buf_unlock(bp); 545 return rval; 546 } 547 548 /* 549 * Release the buffer associated with the buf log item. If there is no dirty 550 * logged data associated with the buffer recorded in the buf log item, then 551 * free the buf log item and remove the reference to it in the buffer. 552 * 553 * This call ignores the recursion count. It is only called when the buffer 554 * should REALLY be unlocked, regardless of the recursion count. 555 * 556 * We unconditionally drop the transaction's reference to the log item. If the 557 * item was logged, then another reference was taken when it was pinned, so we 558 * can safely drop the transaction reference now. This also allows us to avoid 559 * potential races with the unpin code freeing the bli by not referencing the 560 * bli after we've dropped the reference count. 561 * 562 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item 563 * if necessary but do not unlock the buffer. This is for support of 564 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't 565 * free the item. 566 */ 567 STATIC void 568 xfs_buf_item_unlock( 569 struct xfs_log_item *lip) 570 { 571 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 572 struct xfs_buf *bp = bip->bli_buf; 573 bool clean; 574 bool aborted; 575 int flags; 576 577 /* Clear the buffer's association with this transaction. */ 578 bp->b_transp = NULL; 579 580 /* 581 * If this is a transaction abort, don't return early. Instead, allow 582 * the brelse to happen. Normally it would be done for stale 583 * (cancelled) buffers at unpin time, but we'll never go through the 584 * pin/unpin cycle if we abort inside commit. 585 */ 586 aborted = (lip->li_flags & XFS_LI_ABORTED) ? true : false; 587 /* 588 * Before possibly freeing the buf item, copy the per-transaction state 589 * so we can reference it safely later after clearing it from the 590 * buffer log item. 591 */ 592 flags = bip->bli_flags; 593 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED); 594 595 /* 596 * If the buf item is marked stale, then don't do anything. We'll 597 * unlock the buffer and free the buf item when the buffer is unpinned 598 * for the last time. 599 */ 600 if (flags & XFS_BLI_STALE) { 601 trace_xfs_buf_item_unlock_stale(bip); 602 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 603 if (!aborted) { 604 atomic_dec(&bip->bli_refcount); 605 return; 606 } 607 } 608 609 trace_xfs_buf_item_unlock(bip); 610 611 /* 612 * If the buf item isn't tracking any data, free it, otherwise drop the 613 * reference we hold to it. If we are aborting the transaction, this may 614 * be the only reference to the buf item, so we free it anyway 615 * regardless of whether it is dirty or not. A dirty abort implies a 616 * shutdown, anyway. 617 * 618 * Ordered buffers are dirty but may have no recorded changes, so ensure 619 * we only release clean items here. 620 */ 621 clean = (flags & XFS_BLI_DIRTY) ? false : true; 622 if (clean) { 623 int i; 624 for (i = 0; i < bip->bli_format_count; i++) { 625 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map, 626 bip->bli_formats[i].blf_map_size)) { 627 clean = false; 628 break; 629 } 630 } 631 } 632 633 /* 634 * Clean buffers, by definition, cannot be in the AIL. However, aborted 635 * buffers may be dirty and hence in the AIL. Therefore if we are 636 * aborting a buffer and we've just taken the last refernce away, we 637 * have to check if it is in the AIL before freeing it. We need to free 638 * it in this case, because an aborted transaction has already shut the 639 * filesystem down and this is the last chance we will have to do so. 640 */ 641 if (atomic_dec_and_test(&bip->bli_refcount)) { 642 if (clean) 643 xfs_buf_item_relse(bp); 644 else if (aborted) { 645 ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp)); 646 if (lip->li_flags & XFS_LI_IN_AIL) { 647 spin_lock(&lip->li_ailp->xa_lock); 648 xfs_trans_ail_delete(lip->li_ailp, lip, 649 SHUTDOWN_LOG_IO_ERROR); 650 } 651 xfs_buf_item_relse(bp); 652 } 653 } 654 655 if (!(flags & XFS_BLI_HOLD)) 656 xfs_buf_relse(bp); 657 } 658 659 /* 660 * This is called to find out where the oldest active copy of the 661 * buf log item in the on disk log resides now that the last log 662 * write of it completed at the given lsn. 663 * We always re-log all the dirty data in a buffer, so usually the 664 * latest copy in the on disk log is the only one that matters. For 665 * those cases we simply return the given lsn. 666 * 667 * The one exception to this is for buffers full of newly allocated 668 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF 669 * flag set, indicating that only the di_next_unlinked fields from the 670 * inodes in the buffers will be replayed during recovery. If the 671 * original newly allocated inode images have not yet been flushed 672 * when the buffer is so relogged, then we need to make sure that we 673 * keep the old images in the 'active' portion of the log. We do this 674 * by returning the original lsn of that transaction here rather than 675 * the current one. 676 */ 677 STATIC xfs_lsn_t 678 xfs_buf_item_committed( 679 struct xfs_log_item *lip, 680 xfs_lsn_t lsn) 681 { 682 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 683 684 trace_xfs_buf_item_committed(bip); 685 686 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0) 687 return lip->li_lsn; 688 return lsn; 689 } 690 691 STATIC void 692 xfs_buf_item_committing( 693 struct xfs_log_item *lip, 694 xfs_lsn_t commit_lsn) 695 { 696 } 697 698 /* 699 * This is the ops vector shared by all buf log items. 700 */ 701 static const struct xfs_item_ops xfs_buf_item_ops = { 702 .iop_size = xfs_buf_item_size, 703 .iop_format = xfs_buf_item_format, 704 .iop_pin = xfs_buf_item_pin, 705 .iop_unpin = xfs_buf_item_unpin, 706 .iop_unlock = xfs_buf_item_unlock, 707 .iop_committed = xfs_buf_item_committed, 708 .iop_push = xfs_buf_item_push, 709 .iop_committing = xfs_buf_item_committing 710 }; 711 712 STATIC int 713 xfs_buf_item_get_format( 714 struct xfs_buf_log_item *bip, 715 int count) 716 { 717 ASSERT(bip->bli_formats == NULL); 718 bip->bli_format_count = count; 719 720 if (count == 1) { 721 bip->bli_formats = &bip->__bli_format; 722 return 0; 723 } 724 725 bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format), 726 KM_SLEEP); 727 if (!bip->bli_formats) 728 return ENOMEM; 729 return 0; 730 } 731 732 STATIC void 733 xfs_buf_item_free_format( 734 struct xfs_buf_log_item *bip) 735 { 736 if (bip->bli_formats != &bip->__bli_format) { 737 kmem_free(bip->bli_formats); 738 bip->bli_formats = NULL; 739 } 740 } 741 742 /* 743 * Allocate a new buf log item to go with the given buffer. 744 * Set the buffer's b_fsprivate field to point to the new 745 * buf log item. If there are other item's attached to the 746 * buffer (see xfs_buf_attach_iodone() below), then put the 747 * buf log item at the front. 748 */ 749 void 750 xfs_buf_item_init( 751 xfs_buf_t *bp, 752 xfs_mount_t *mp) 753 { 754 xfs_log_item_t *lip = bp->b_fspriv; 755 xfs_buf_log_item_t *bip; 756 int chunks; 757 int map_size; 758 int error; 759 int i; 760 761 /* 762 * Check to see if there is already a buf log item for 763 * this buffer. If there is, it is guaranteed to be 764 * the first. If we do already have one, there is 765 * nothing to do here so return. 766 */ 767 ASSERT(bp->b_target->bt_mount == mp); 768 if (lip != NULL && lip->li_type == XFS_LI_BUF) 769 return; 770 771 bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP); 772 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops); 773 bip->bli_buf = bp; 774 xfs_buf_hold(bp); 775 776 /* 777 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer 778 * can be divided into. Make sure not to truncate any pieces. 779 * map_size is the size of the bitmap needed to describe the 780 * chunks of the buffer. 781 * 782 * Discontiguous buffer support follows the layout of the underlying 783 * buffer. This makes the implementation as simple as possible. 784 */ 785 error = xfs_buf_item_get_format(bip, bp->b_map_count); 786 ASSERT(error == 0); 787 788 for (i = 0; i < bip->bli_format_count; i++) { 789 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len), 790 XFS_BLF_CHUNK); 791 map_size = DIV_ROUND_UP(chunks, NBWORD); 792 793 bip->bli_formats[i].blf_type = XFS_LI_BUF; 794 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn; 795 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len; 796 bip->bli_formats[i].blf_map_size = map_size; 797 } 798 799 #ifdef XFS_TRANS_DEBUG 800 /* 801 * Allocate the arrays for tracking what needs to be logged 802 * and what our callers request to be logged. bli_orig 803 * holds a copy of the original, clean buffer for comparison 804 * against, and bli_logged keeps a 1 bit flag per byte in 805 * the buffer to indicate which bytes the callers have asked 806 * to have logged. 807 */ 808 bip->bli_orig = kmem_alloc(BBTOB(bp->b_length), KM_SLEEP); 809 memcpy(bip->bli_orig, bp->b_addr, BBTOB(bp->b_length)); 810 bip->bli_logged = kmem_zalloc(BBTOB(bp->b_length) / NBBY, KM_SLEEP); 811 #endif 812 813 /* 814 * Put the buf item into the list of items attached to the 815 * buffer at the front. 816 */ 817 if (bp->b_fspriv) 818 bip->bli_item.li_bio_list = bp->b_fspriv; 819 bp->b_fspriv = bip; 820 } 821 822 823 /* 824 * Mark bytes first through last inclusive as dirty in the buf 825 * item's bitmap. 826 */ 827 static void 828 xfs_buf_item_log_segment( 829 struct xfs_buf_log_item *bip, 830 uint first, 831 uint last, 832 uint *map) 833 { 834 uint first_bit; 835 uint last_bit; 836 uint bits_to_set; 837 uint bits_set; 838 uint word_num; 839 uint *wordp; 840 uint bit; 841 uint end_bit; 842 uint mask; 843 844 /* 845 * Convert byte offsets to bit numbers. 846 */ 847 first_bit = first >> XFS_BLF_SHIFT; 848 last_bit = last >> XFS_BLF_SHIFT; 849 850 /* 851 * Calculate the total number of bits to be set. 852 */ 853 bits_to_set = last_bit - first_bit + 1; 854 855 /* 856 * Get a pointer to the first word in the bitmap 857 * to set a bit in. 858 */ 859 word_num = first_bit >> BIT_TO_WORD_SHIFT; 860 wordp = &map[word_num]; 861 862 /* 863 * Calculate the starting bit in the first word. 864 */ 865 bit = first_bit & (uint)(NBWORD - 1); 866 867 /* 868 * First set any bits in the first word of our range. 869 * If it starts at bit 0 of the word, it will be 870 * set below rather than here. That is what the variable 871 * bit tells us. The variable bits_set tracks the number 872 * of bits that have been set so far. End_bit is the number 873 * of the last bit to be set in this word plus one. 874 */ 875 if (bit) { 876 end_bit = MIN(bit + bits_to_set, (uint)NBWORD); 877 mask = ((1 << (end_bit - bit)) - 1) << bit; 878 *wordp |= mask; 879 wordp++; 880 bits_set = end_bit - bit; 881 } else { 882 bits_set = 0; 883 } 884 885 /* 886 * Now set bits a whole word at a time that are between 887 * first_bit and last_bit. 888 */ 889 while ((bits_to_set - bits_set) >= NBWORD) { 890 *wordp |= 0xffffffff; 891 bits_set += NBWORD; 892 wordp++; 893 } 894 895 /* 896 * Finally, set any bits left to be set in one last partial word. 897 */ 898 end_bit = bits_to_set - bits_set; 899 if (end_bit) { 900 mask = (1 << end_bit) - 1; 901 *wordp |= mask; 902 } 903 } 904 905 /* 906 * Mark bytes first through last inclusive as dirty in the buf 907 * item's bitmap. 908 */ 909 void 910 xfs_buf_item_log( 911 xfs_buf_log_item_t *bip, 912 uint first, 913 uint last) 914 { 915 int i; 916 uint start; 917 uint end; 918 struct xfs_buf *bp = bip->bli_buf; 919 920 /* 921 * walk each buffer segment and mark them dirty appropriately. 922 */ 923 start = 0; 924 for (i = 0; i < bip->bli_format_count; i++) { 925 if (start > last) 926 break; 927 end = start + BBTOB(bp->b_maps[i].bm_len); 928 if (first > end) { 929 start += BBTOB(bp->b_maps[i].bm_len); 930 continue; 931 } 932 if (first < start) 933 first = start; 934 if (end > last) 935 end = last; 936 937 xfs_buf_item_log_segment(bip, first, end, 938 &bip->bli_formats[i].blf_data_map[0]); 939 940 start += bp->b_maps[i].bm_len; 941 } 942 } 943 944 945 /* 946 * Return 1 if the buffer has been logged or ordered in a transaction (at any 947 * point, not just the current transaction) and 0 if not. 948 */ 949 uint 950 xfs_buf_item_dirty( 951 xfs_buf_log_item_t *bip) 952 { 953 return (bip->bli_flags & XFS_BLI_DIRTY); 954 } 955 956 STATIC void 957 xfs_buf_item_free( 958 xfs_buf_log_item_t *bip) 959 { 960 #ifdef XFS_TRANS_DEBUG 961 kmem_free(bip->bli_orig); 962 kmem_free(bip->bli_logged); 963 #endif /* XFS_TRANS_DEBUG */ 964 965 xfs_buf_item_free_format(bip); 966 kmem_zone_free(xfs_buf_item_zone, bip); 967 } 968 969 /* 970 * This is called when the buf log item is no longer needed. It should 971 * free the buf log item associated with the given buffer and clear 972 * the buffer's pointer to the buf log item. If there are no more 973 * items in the list, clear the b_iodone field of the buffer (see 974 * xfs_buf_attach_iodone() below). 975 */ 976 void 977 xfs_buf_item_relse( 978 xfs_buf_t *bp) 979 { 980 xfs_buf_log_item_t *bip = bp->b_fspriv; 981 982 trace_xfs_buf_item_relse(bp, _RET_IP_); 983 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL)); 984 985 bp->b_fspriv = bip->bli_item.li_bio_list; 986 if (bp->b_fspriv == NULL) 987 bp->b_iodone = NULL; 988 989 xfs_buf_rele(bp); 990 xfs_buf_item_free(bip); 991 } 992 993 994 /* 995 * Add the given log item with its callback to the list of callbacks 996 * to be called when the buffer's I/O completes. If it is not set 997 * already, set the buffer's b_iodone() routine to be 998 * xfs_buf_iodone_callbacks() and link the log item into the list of 999 * items rooted at b_fsprivate. Items are always added as the second 1000 * entry in the list if there is a first, because the buf item code 1001 * assumes that the buf log item is first. 1002 */ 1003 void 1004 xfs_buf_attach_iodone( 1005 xfs_buf_t *bp, 1006 void (*cb)(xfs_buf_t *, xfs_log_item_t *), 1007 xfs_log_item_t *lip) 1008 { 1009 xfs_log_item_t *head_lip; 1010 1011 ASSERT(xfs_buf_islocked(bp)); 1012 1013 lip->li_cb = cb; 1014 head_lip = bp->b_fspriv; 1015 if (head_lip) { 1016 lip->li_bio_list = head_lip->li_bio_list; 1017 head_lip->li_bio_list = lip; 1018 } else { 1019 bp->b_fspriv = lip; 1020 } 1021 1022 ASSERT(bp->b_iodone == NULL || 1023 bp->b_iodone == xfs_buf_iodone_callbacks); 1024 bp->b_iodone = xfs_buf_iodone_callbacks; 1025 } 1026 1027 /* 1028 * We can have many callbacks on a buffer. Running the callbacks individually 1029 * can cause a lot of contention on the AIL lock, so we allow for a single 1030 * callback to be able to scan the remaining lip->li_bio_list for other items 1031 * of the same type and callback to be processed in the first call. 1032 * 1033 * As a result, the loop walking the callback list below will also modify the 1034 * list. it removes the first item from the list and then runs the callback. 1035 * The loop then restarts from the new head of the list. This allows the 1036 * callback to scan and modify the list attached to the buffer and we don't 1037 * have to care about maintaining a next item pointer. 1038 */ 1039 STATIC void 1040 xfs_buf_do_callbacks( 1041 struct xfs_buf *bp) 1042 { 1043 struct xfs_log_item *lip; 1044 1045 while ((lip = bp->b_fspriv) != NULL) { 1046 bp->b_fspriv = lip->li_bio_list; 1047 ASSERT(lip->li_cb != NULL); 1048 /* 1049 * Clear the next pointer so we don't have any 1050 * confusion if the item is added to another buf. 1051 * Don't touch the log item after calling its 1052 * callback, because it could have freed itself. 1053 */ 1054 lip->li_bio_list = NULL; 1055 lip->li_cb(bp, lip); 1056 } 1057 } 1058 1059 /* 1060 * This is the iodone() function for buffers which have had callbacks 1061 * attached to them by xfs_buf_attach_iodone(). It should remove each 1062 * log item from the buffer's list and call the callback of each in turn. 1063 * When done, the buffer's fsprivate field is set to NULL and the buffer 1064 * is unlocked with a call to iodone(). 1065 */ 1066 void 1067 xfs_buf_iodone_callbacks( 1068 struct xfs_buf *bp) 1069 { 1070 struct xfs_log_item *lip = bp->b_fspriv; 1071 struct xfs_mount *mp = lip->li_mountp; 1072 static ulong lasttime; 1073 static xfs_buftarg_t *lasttarg; 1074 1075 if (likely(!xfs_buf_geterror(bp))) 1076 goto do_callbacks; 1077 1078 /* 1079 * If we've already decided to shutdown the filesystem because of 1080 * I/O errors, there's no point in giving this a retry. 1081 */ 1082 if (XFS_FORCED_SHUTDOWN(mp)) { 1083 xfs_buf_stale(bp); 1084 XFS_BUF_DONE(bp); 1085 trace_xfs_buf_item_iodone(bp, _RET_IP_); 1086 goto do_callbacks; 1087 } 1088 1089 if (bp->b_target != lasttarg || 1090 time_after(jiffies, (lasttime + 5*HZ))) { 1091 lasttime = jiffies; 1092 xfs_buf_ioerror_alert(bp, __func__); 1093 } 1094 lasttarg = bp->b_target; 1095 1096 /* 1097 * If the write was asynchronous then no one will be looking for the 1098 * error. Clear the error state and write the buffer out again. 1099 * 1100 * XXX: This helps against transient write errors, but we need to find 1101 * a way to shut the filesystem down if the writes keep failing. 1102 * 1103 * In practice we'll shut the filesystem down soon as non-transient 1104 * erorrs tend to affect the whole device and a failing log write 1105 * will make us give up. But we really ought to do better here. 1106 */ 1107 if (XFS_BUF_ISASYNC(bp)) { 1108 ASSERT(bp->b_iodone != NULL); 1109 1110 trace_xfs_buf_item_iodone_async(bp, _RET_IP_); 1111 1112 xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */ 1113 1114 if (!(bp->b_flags & (XBF_STALE|XBF_WRITE_FAIL))) { 1115 bp->b_flags |= XBF_WRITE | XBF_ASYNC | 1116 XBF_DONE | XBF_WRITE_FAIL; 1117 xfs_buf_iorequest(bp); 1118 } else { 1119 xfs_buf_relse(bp); 1120 } 1121 1122 return; 1123 } 1124 1125 /* 1126 * If the write of the buffer was synchronous, we want to make 1127 * sure to return the error to the caller of xfs_bwrite(). 1128 */ 1129 xfs_buf_stale(bp); 1130 XFS_BUF_DONE(bp); 1131 1132 trace_xfs_buf_error_relse(bp, _RET_IP_); 1133 1134 do_callbacks: 1135 xfs_buf_do_callbacks(bp); 1136 bp->b_fspriv = NULL; 1137 bp->b_iodone = NULL; 1138 xfs_buf_ioend(bp, 0); 1139 } 1140 1141 /* 1142 * This is the iodone() function for buffers which have been 1143 * logged. It is called when they are eventually flushed out. 1144 * It should remove the buf item from the AIL, and free the buf item. 1145 * It is called by xfs_buf_iodone_callbacks() above which will take 1146 * care of cleaning up the buffer itself. 1147 */ 1148 void 1149 xfs_buf_iodone( 1150 struct xfs_buf *bp, 1151 struct xfs_log_item *lip) 1152 { 1153 struct xfs_ail *ailp = lip->li_ailp; 1154 1155 ASSERT(BUF_ITEM(lip)->bli_buf == bp); 1156 1157 xfs_buf_rele(bp); 1158 1159 /* 1160 * If we are forcibly shutting down, this may well be 1161 * off the AIL already. That's because we simulate the 1162 * log-committed callbacks to unpin these buffers. Or we may never 1163 * have put this item on AIL because of the transaction was 1164 * aborted forcibly. xfs_trans_ail_delete() takes care of these. 1165 * 1166 * Either way, AIL is useless if we're forcing a shutdown. 1167 */ 1168 spin_lock(&ailp->xa_lock); 1169 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE); 1170 xfs_buf_item_free(BUF_ITEM(lip)); 1171 } 1172