xref: /openbmc/linux/fs/xfs/xfs_buf_item.c (revision 81d67439)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_buf_item.h"
29 #include "xfs_trans_priv.h"
30 #include "xfs_error.h"
31 #include "xfs_trace.h"
32 
33 
34 kmem_zone_t	*xfs_buf_item_zone;
35 
36 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
37 {
38 	return container_of(lip, struct xfs_buf_log_item, bli_item);
39 }
40 
41 
42 #ifdef XFS_TRANS_DEBUG
43 /*
44  * This function uses an alternate strategy for tracking the bytes
45  * that the user requests to be logged.  This can then be used
46  * in conjunction with the bli_orig array in the buf log item to
47  * catch bugs in our callers' code.
48  *
49  * We also double check the bits set in xfs_buf_item_log using a
50  * simple algorithm to check that every byte is accounted for.
51  */
52 STATIC void
53 xfs_buf_item_log_debug(
54 	xfs_buf_log_item_t	*bip,
55 	uint			first,
56 	uint			last)
57 {
58 	uint	x;
59 	uint	byte;
60 	uint	nbytes;
61 	uint	chunk_num;
62 	uint	word_num;
63 	uint	bit_num;
64 	uint	bit_set;
65 	uint	*wordp;
66 
67 	ASSERT(bip->bli_logged != NULL);
68 	byte = first;
69 	nbytes = last - first + 1;
70 	bfset(bip->bli_logged, first, nbytes);
71 	for (x = 0; x < nbytes; x++) {
72 		chunk_num = byte >> XFS_BLF_SHIFT;
73 		word_num = chunk_num >> BIT_TO_WORD_SHIFT;
74 		bit_num = chunk_num & (NBWORD - 1);
75 		wordp = &(bip->bli_format.blf_data_map[word_num]);
76 		bit_set = *wordp & (1 << bit_num);
77 		ASSERT(bit_set);
78 		byte++;
79 	}
80 }
81 
82 /*
83  * This function is called when we flush something into a buffer without
84  * logging it.  This happens for things like inodes which are logged
85  * separately from the buffer.
86  */
87 void
88 xfs_buf_item_flush_log_debug(
89 	xfs_buf_t	*bp,
90 	uint		first,
91 	uint		last)
92 {
93 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
94 	uint			nbytes;
95 
96 	if (bip == NULL || (bip->bli_item.li_type != XFS_LI_BUF))
97 		return;
98 
99 	ASSERT(bip->bli_logged != NULL);
100 	nbytes = last - first + 1;
101 	bfset(bip->bli_logged, first, nbytes);
102 }
103 
104 /*
105  * This function is called to verify that our callers have logged
106  * all the bytes that they changed.
107  *
108  * It does this by comparing the original copy of the buffer stored in
109  * the buf log item's bli_orig array to the current copy of the buffer
110  * and ensuring that all bytes which mismatch are set in the bli_logged
111  * array of the buf log item.
112  */
113 STATIC void
114 xfs_buf_item_log_check(
115 	xfs_buf_log_item_t	*bip)
116 {
117 	char		*orig;
118 	char		*buffer;
119 	int		x;
120 	xfs_buf_t	*bp;
121 
122 	ASSERT(bip->bli_orig != NULL);
123 	ASSERT(bip->bli_logged != NULL);
124 
125 	bp = bip->bli_buf;
126 	ASSERT(XFS_BUF_COUNT(bp) > 0);
127 	ASSERT(XFS_BUF_PTR(bp) != NULL);
128 	orig = bip->bli_orig;
129 	buffer = XFS_BUF_PTR(bp);
130 	for (x = 0; x < XFS_BUF_COUNT(bp); x++) {
131 		if (orig[x] != buffer[x] && !btst(bip->bli_logged, x)) {
132 			xfs_emerg(bp->b_mount,
133 				"%s: bip %x buffer %x orig %x index %d",
134 				__func__, bip, bp, orig, x);
135 			ASSERT(0);
136 		}
137 	}
138 }
139 #else
140 #define		xfs_buf_item_log_debug(x,y,z)
141 #define		xfs_buf_item_log_check(x)
142 #endif
143 
144 STATIC void	xfs_buf_do_callbacks(struct xfs_buf *bp);
145 
146 /*
147  * This returns the number of log iovecs needed to log the
148  * given buf log item.
149  *
150  * It calculates this as 1 iovec for the buf log format structure
151  * and 1 for each stretch of non-contiguous chunks to be logged.
152  * Contiguous chunks are logged in a single iovec.
153  *
154  * If the XFS_BLI_STALE flag has been set, then log nothing.
155  */
156 STATIC uint
157 xfs_buf_item_size(
158 	struct xfs_log_item	*lip)
159 {
160 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
161 	struct xfs_buf		*bp = bip->bli_buf;
162 	uint			nvecs;
163 	int			next_bit;
164 	int			last_bit;
165 
166 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
167 	if (bip->bli_flags & XFS_BLI_STALE) {
168 		/*
169 		 * The buffer is stale, so all we need to log
170 		 * is the buf log format structure with the
171 		 * cancel flag in it.
172 		 */
173 		trace_xfs_buf_item_size_stale(bip);
174 		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
175 		return 1;
176 	}
177 
178 	ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
179 	nvecs = 1;
180 	last_bit = xfs_next_bit(bip->bli_format.blf_data_map,
181 					 bip->bli_format.blf_map_size, 0);
182 	ASSERT(last_bit != -1);
183 	nvecs++;
184 	while (last_bit != -1) {
185 		/*
186 		 * This takes the bit number to start looking from and
187 		 * returns the next set bit from there.  It returns -1
188 		 * if there are no more bits set or the start bit is
189 		 * beyond the end of the bitmap.
190 		 */
191 		next_bit = xfs_next_bit(bip->bli_format.blf_data_map,
192 						 bip->bli_format.blf_map_size,
193 						 last_bit + 1);
194 		/*
195 		 * If we run out of bits, leave the loop,
196 		 * else if we find a new set of bits bump the number of vecs,
197 		 * else keep scanning the current set of bits.
198 		 */
199 		if (next_bit == -1) {
200 			last_bit = -1;
201 		} else if (next_bit != last_bit + 1) {
202 			last_bit = next_bit;
203 			nvecs++;
204 		} else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
205 			   (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
206 			    XFS_BLF_CHUNK)) {
207 			last_bit = next_bit;
208 			nvecs++;
209 		} else {
210 			last_bit++;
211 		}
212 	}
213 
214 	trace_xfs_buf_item_size(bip);
215 	return nvecs;
216 }
217 
218 /*
219  * This is called to fill in the vector of log iovecs for the
220  * given log buf item.  It fills the first entry with a buf log
221  * format structure, and the rest point to contiguous chunks
222  * within the buffer.
223  */
224 STATIC void
225 xfs_buf_item_format(
226 	struct xfs_log_item	*lip,
227 	struct xfs_log_iovec	*vecp)
228 {
229 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
230 	struct xfs_buf	*bp = bip->bli_buf;
231 	uint		base_size;
232 	uint		nvecs;
233 	int		first_bit;
234 	int		last_bit;
235 	int		next_bit;
236 	uint		nbits;
237 	uint		buffer_offset;
238 
239 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
240 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
241 	       (bip->bli_flags & XFS_BLI_STALE));
242 
243 	/*
244 	 * The size of the base structure is the size of the
245 	 * declared structure plus the space for the extra words
246 	 * of the bitmap.  We subtract one from the map size, because
247 	 * the first element of the bitmap is accounted for in the
248 	 * size of the base structure.
249 	 */
250 	base_size =
251 		(uint)(sizeof(xfs_buf_log_format_t) +
252 		       ((bip->bli_format.blf_map_size - 1) * sizeof(uint)));
253 	vecp->i_addr = &bip->bli_format;
254 	vecp->i_len = base_size;
255 	vecp->i_type = XLOG_REG_TYPE_BFORMAT;
256 	vecp++;
257 	nvecs = 1;
258 
259 	/*
260 	 * If it is an inode buffer, transfer the in-memory state to the
261 	 * format flags and clear the in-memory state. We do not transfer
262 	 * this state if the inode buffer allocation has not yet been committed
263 	 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
264 	 * correct replay of the inode allocation.
265 	 */
266 	if (bip->bli_flags & XFS_BLI_INODE_BUF) {
267 		if (!((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
268 		      xfs_log_item_in_current_chkpt(lip)))
269 			bip->bli_format.blf_flags |= XFS_BLF_INODE_BUF;
270 		bip->bli_flags &= ~XFS_BLI_INODE_BUF;
271 	}
272 
273 	if (bip->bli_flags & XFS_BLI_STALE) {
274 		/*
275 		 * The buffer is stale, so all we need to log
276 		 * is the buf log format structure with the
277 		 * cancel flag in it.
278 		 */
279 		trace_xfs_buf_item_format_stale(bip);
280 		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
281 		bip->bli_format.blf_size = nvecs;
282 		return;
283 	}
284 
285 	/*
286 	 * Fill in an iovec for each set of contiguous chunks.
287 	 */
288 	first_bit = xfs_next_bit(bip->bli_format.blf_data_map,
289 					 bip->bli_format.blf_map_size, 0);
290 	ASSERT(first_bit != -1);
291 	last_bit = first_bit;
292 	nbits = 1;
293 	for (;;) {
294 		/*
295 		 * This takes the bit number to start looking from and
296 		 * returns the next set bit from there.  It returns -1
297 		 * if there are no more bits set or the start bit is
298 		 * beyond the end of the bitmap.
299 		 */
300 		next_bit = xfs_next_bit(bip->bli_format.blf_data_map,
301 						 bip->bli_format.blf_map_size,
302 						 (uint)last_bit + 1);
303 		/*
304 		 * If we run out of bits fill in the last iovec and get
305 		 * out of the loop.
306 		 * Else if we start a new set of bits then fill in the
307 		 * iovec for the series we were looking at and start
308 		 * counting the bits in the new one.
309 		 * Else we're still in the same set of bits so just
310 		 * keep counting and scanning.
311 		 */
312 		if (next_bit == -1) {
313 			buffer_offset = first_bit * XFS_BLF_CHUNK;
314 			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
315 			vecp->i_len = nbits * XFS_BLF_CHUNK;
316 			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
317 			nvecs++;
318 			break;
319 		} else if (next_bit != last_bit + 1) {
320 			buffer_offset = first_bit * XFS_BLF_CHUNK;
321 			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
322 			vecp->i_len = nbits * XFS_BLF_CHUNK;
323 			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
324 			nvecs++;
325 			vecp++;
326 			first_bit = next_bit;
327 			last_bit = next_bit;
328 			nbits = 1;
329 		} else if (xfs_buf_offset(bp, next_bit << XFS_BLF_SHIFT) !=
330 			   (xfs_buf_offset(bp, last_bit << XFS_BLF_SHIFT) +
331 			    XFS_BLF_CHUNK)) {
332 			buffer_offset = first_bit * XFS_BLF_CHUNK;
333 			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
334 			vecp->i_len = nbits * XFS_BLF_CHUNK;
335 			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
336 /* You would think we need to bump the nvecs here too, but we do not
337  * this number is used by recovery, and it gets confused by the boundary
338  * split here
339  *			nvecs++;
340  */
341 			vecp++;
342 			first_bit = next_bit;
343 			last_bit = next_bit;
344 			nbits = 1;
345 		} else {
346 			last_bit++;
347 			nbits++;
348 		}
349 	}
350 	bip->bli_format.blf_size = nvecs;
351 
352 	/*
353 	 * Check to make sure everything is consistent.
354 	 */
355 	trace_xfs_buf_item_format(bip);
356 	xfs_buf_item_log_check(bip);
357 }
358 
359 /*
360  * This is called to pin the buffer associated with the buf log item in memory
361  * so it cannot be written out.
362  *
363  * We also always take a reference to the buffer log item here so that the bli
364  * is held while the item is pinned in memory. This means that we can
365  * unconditionally drop the reference count a transaction holds when the
366  * transaction is completed.
367  */
368 STATIC void
369 xfs_buf_item_pin(
370 	struct xfs_log_item	*lip)
371 {
372 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
373 
374 	ASSERT(XFS_BUF_ISBUSY(bip->bli_buf));
375 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
376 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
377 	       (bip->bli_flags & XFS_BLI_STALE));
378 
379 	trace_xfs_buf_item_pin(bip);
380 
381 	atomic_inc(&bip->bli_refcount);
382 	atomic_inc(&bip->bli_buf->b_pin_count);
383 }
384 
385 /*
386  * This is called to unpin the buffer associated with the buf log
387  * item which was previously pinned with a call to xfs_buf_item_pin().
388  *
389  * Also drop the reference to the buf item for the current transaction.
390  * If the XFS_BLI_STALE flag is set and we are the last reference,
391  * then free up the buf log item and unlock the buffer.
392  *
393  * If the remove flag is set we are called from uncommit in the
394  * forced-shutdown path.  If that is true and the reference count on
395  * the log item is going to drop to zero we need to free the item's
396  * descriptor in the transaction.
397  */
398 STATIC void
399 xfs_buf_item_unpin(
400 	struct xfs_log_item	*lip,
401 	int			remove)
402 {
403 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
404 	xfs_buf_t	*bp = bip->bli_buf;
405 	struct xfs_ail	*ailp = lip->li_ailp;
406 	int		stale = bip->bli_flags & XFS_BLI_STALE;
407 	int		freed;
408 
409 	ASSERT(bp->b_fspriv == bip);
410 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
411 
412 	trace_xfs_buf_item_unpin(bip);
413 
414 	freed = atomic_dec_and_test(&bip->bli_refcount);
415 
416 	if (atomic_dec_and_test(&bp->b_pin_count))
417 		wake_up_all(&bp->b_waiters);
418 
419 	if (freed && stale) {
420 		ASSERT(bip->bli_flags & XFS_BLI_STALE);
421 		ASSERT(xfs_buf_islocked(bp));
422 		ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
423 		ASSERT(XFS_BUF_ISSTALE(bp));
424 		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
425 
426 		trace_xfs_buf_item_unpin_stale(bip);
427 
428 		if (remove) {
429 			/*
430 			 * If we are in a transaction context, we have to
431 			 * remove the log item from the transaction as we are
432 			 * about to release our reference to the buffer.  If we
433 			 * don't, the unlock that occurs later in
434 			 * xfs_trans_uncommit() will try to reference the
435 			 * buffer which we no longer have a hold on.
436 			 */
437 			if (lip->li_desc)
438 				xfs_trans_del_item(lip);
439 
440 			/*
441 			 * Since the transaction no longer refers to the buffer,
442 			 * the buffer should no longer refer to the transaction.
443 			 */
444 			bp->b_transp = NULL;
445 		}
446 
447 		/*
448 		 * If we get called here because of an IO error, we may
449 		 * or may not have the item on the AIL. xfs_trans_ail_delete()
450 		 * will take care of that situation.
451 		 * xfs_trans_ail_delete() drops the AIL lock.
452 		 */
453 		if (bip->bli_flags & XFS_BLI_STALE_INODE) {
454 			xfs_buf_do_callbacks(bp);
455 			bp->b_fspriv = NULL;
456 			bp->b_iodone = NULL;
457 		} else {
458 			spin_lock(&ailp->xa_lock);
459 			xfs_trans_ail_delete(ailp, (xfs_log_item_t *)bip);
460 			xfs_buf_item_relse(bp);
461 			ASSERT(bp->b_fspriv == NULL);
462 		}
463 		xfs_buf_relse(bp);
464 	}
465 }
466 
467 /*
468  * This is called to attempt to lock the buffer associated with this
469  * buf log item.  Don't sleep on the buffer lock.  If we can't get
470  * the lock right away, return 0.  If we can get the lock, take a
471  * reference to the buffer. If this is a delayed write buffer that
472  * needs AIL help to be written back, invoke the pushbuf routine
473  * rather than the normal success path.
474  */
475 STATIC uint
476 xfs_buf_item_trylock(
477 	struct xfs_log_item	*lip)
478 {
479 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
480 	struct xfs_buf		*bp = bip->bli_buf;
481 
482 	if (XFS_BUF_ISPINNED(bp))
483 		return XFS_ITEM_PINNED;
484 	if (!xfs_buf_trylock(bp))
485 		return XFS_ITEM_LOCKED;
486 
487 	/* take a reference to the buffer.  */
488 	XFS_BUF_HOLD(bp);
489 
490 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
491 	trace_xfs_buf_item_trylock(bip);
492 	if (XFS_BUF_ISDELAYWRITE(bp))
493 		return XFS_ITEM_PUSHBUF;
494 	return XFS_ITEM_SUCCESS;
495 }
496 
497 /*
498  * Release the buffer associated with the buf log item.  If there is no dirty
499  * logged data associated with the buffer recorded in the buf log item, then
500  * free the buf log item and remove the reference to it in the buffer.
501  *
502  * This call ignores the recursion count.  It is only called when the buffer
503  * should REALLY be unlocked, regardless of the recursion count.
504  *
505  * We unconditionally drop the transaction's reference to the log item. If the
506  * item was logged, then another reference was taken when it was pinned, so we
507  * can safely drop the transaction reference now.  This also allows us to avoid
508  * potential races with the unpin code freeing the bli by not referencing the
509  * bli after we've dropped the reference count.
510  *
511  * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
512  * if necessary but do not unlock the buffer.  This is for support of
513  * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
514  * free the item.
515  */
516 STATIC void
517 xfs_buf_item_unlock(
518 	struct xfs_log_item	*lip)
519 {
520 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
521 	struct xfs_buf		*bp = bip->bli_buf;
522 	int			aborted;
523 	uint			hold;
524 
525 	/* Clear the buffer's association with this transaction. */
526 	bp->b_transp = NULL;
527 
528 	/*
529 	 * If this is a transaction abort, don't return early.  Instead, allow
530 	 * the brelse to happen.  Normally it would be done for stale
531 	 * (cancelled) buffers at unpin time, but we'll never go through the
532 	 * pin/unpin cycle if we abort inside commit.
533 	 */
534 	aborted = (lip->li_flags & XFS_LI_ABORTED) != 0;
535 
536 	/*
537 	 * Before possibly freeing the buf item, determine if we should
538 	 * release the buffer at the end of this routine.
539 	 */
540 	hold = bip->bli_flags & XFS_BLI_HOLD;
541 
542 	/* Clear the per transaction state. */
543 	bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD);
544 
545 	/*
546 	 * If the buf item is marked stale, then don't do anything.  We'll
547 	 * unlock the buffer and free the buf item when the buffer is unpinned
548 	 * for the last time.
549 	 */
550 	if (bip->bli_flags & XFS_BLI_STALE) {
551 		trace_xfs_buf_item_unlock_stale(bip);
552 		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
553 		if (!aborted) {
554 			atomic_dec(&bip->bli_refcount);
555 			return;
556 		}
557 	}
558 
559 	trace_xfs_buf_item_unlock(bip);
560 
561 	/*
562 	 * If the buf item isn't tracking any data, free it, otherwise drop the
563 	 * reference we hold to it.
564 	 */
565 	if (xfs_bitmap_empty(bip->bli_format.blf_data_map,
566 			     bip->bli_format.blf_map_size))
567 		xfs_buf_item_relse(bp);
568 	else
569 		atomic_dec(&bip->bli_refcount);
570 
571 	if (!hold)
572 		xfs_buf_relse(bp);
573 }
574 
575 /*
576  * This is called to find out where the oldest active copy of the
577  * buf log item in the on disk log resides now that the last log
578  * write of it completed at the given lsn.
579  * We always re-log all the dirty data in a buffer, so usually the
580  * latest copy in the on disk log is the only one that matters.  For
581  * those cases we simply return the given lsn.
582  *
583  * The one exception to this is for buffers full of newly allocated
584  * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
585  * flag set, indicating that only the di_next_unlinked fields from the
586  * inodes in the buffers will be replayed during recovery.  If the
587  * original newly allocated inode images have not yet been flushed
588  * when the buffer is so relogged, then we need to make sure that we
589  * keep the old images in the 'active' portion of the log.  We do this
590  * by returning the original lsn of that transaction here rather than
591  * the current one.
592  */
593 STATIC xfs_lsn_t
594 xfs_buf_item_committed(
595 	struct xfs_log_item	*lip,
596 	xfs_lsn_t		lsn)
597 {
598 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
599 
600 	trace_xfs_buf_item_committed(bip);
601 
602 	if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
603 		return lip->li_lsn;
604 	return lsn;
605 }
606 
607 /*
608  * The buffer is locked, but is not a delayed write buffer. This happens
609  * if we race with IO completion and hence we don't want to try to write it
610  * again. Just release the buffer.
611  */
612 STATIC void
613 xfs_buf_item_push(
614 	struct xfs_log_item	*lip)
615 {
616 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
617 	struct xfs_buf		*bp = bip->bli_buf;
618 
619 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
620 	ASSERT(!XFS_BUF_ISDELAYWRITE(bp));
621 
622 	trace_xfs_buf_item_push(bip);
623 
624 	xfs_buf_relse(bp);
625 }
626 
627 /*
628  * The buffer is locked and is a delayed write buffer. Promote the buffer
629  * in the delayed write queue as the caller knows that they must invoke
630  * the xfsbufd to get this buffer written. We have to unlock the buffer
631  * to allow the xfsbufd to write it, too.
632  */
633 STATIC void
634 xfs_buf_item_pushbuf(
635 	struct xfs_log_item	*lip)
636 {
637 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
638 	struct xfs_buf		*bp = bip->bli_buf;
639 
640 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
641 	ASSERT(XFS_BUF_ISDELAYWRITE(bp));
642 
643 	trace_xfs_buf_item_pushbuf(bip);
644 
645 	xfs_buf_delwri_promote(bp);
646 	xfs_buf_relse(bp);
647 }
648 
649 STATIC void
650 xfs_buf_item_committing(
651 	struct xfs_log_item	*lip,
652 	xfs_lsn_t		commit_lsn)
653 {
654 }
655 
656 /*
657  * This is the ops vector shared by all buf log items.
658  */
659 static struct xfs_item_ops xfs_buf_item_ops = {
660 	.iop_size	= xfs_buf_item_size,
661 	.iop_format	= xfs_buf_item_format,
662 	.iop_pin	= xfs_buf_item_pin,
663 	.iop_unpin	= xfs_buf_item_unpin,
664 	.iop_trylock	= xfs_buf_item_trylock,
665 	.iop_unlock	= xfs_buf_item_unlock,
666 	.iop_committed	= xfs_buf_item_committed,
667 	.iop_push	= xfs_buf_item_push,
668 	.iop_pushbuf	= xfs_buf_item_pushbuf,
669 	.iop_committing = xfs_buf_item_committing
670 };
671 
672 
673 /*
674  * Allocate a new buf log item to go with the given buffer.
675  * Set the buffer's b_fsprivate field to point to the new
676  * buf log item.  If there are other item's attached to the
677  * buffer (see xfs_buf_attach_iodone() below), then put the
678  * buf log item at the front.
679  */
680 void
681 xfs_buf_item_init(
682 	xfs_buf_t	*bp,
683 	xfs_mount_t	*mp)
684 {
685 	xfs_log_item_t		*lip = bp->b_fspriv;
686 	xfs_buf_log_item_t	*bip;
687 	int			chunks;
688 	int			map_size;
689 
690 	/*
691 	 * Check to see if there is already a buf log item for
692 	 * this buffer.  If there is, it is guaranteed to be
693 	 * the first.  If we do already have one, there is
694 	 * nothing to do here so return.
695 	 */
696 	ASSERT(bp->b_target->bt_mount == mp);
697 	if (lip != NULL && lip->li_type == XFS_LI_BUF)
698 		return;
699 
700 	/*
701 	 * chunks is the number of XFS_BLF_CHUNK size pieces
702 	 * the buffer can be divided into. Make sure not to
703 	 * truncate any pieces.  map_size is the size of the
704 	 * bitmap needed to describe the chunks of the buffer.
705 	 */
706 	chunks = (int)((XFS_BUF_COUNT(bp) + (XFS_BLF_CHUNK - 1)) >> XFS_BLF_SHIFT);
707 	map_size = (int)((chunks + NBWORD) >> BIT_TO_WORD_SHIFT);
708 
709 	bip = (xfs_buf_log_item_t*)kmem_zone_zalloc(xfs_buf_item_zone,
710 						    KM_SLEEP);
711 	xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
712 	bip->bli_buf = bp;
713 	xfs_buf_hold(bp);
714 	bip->bli_format.blf_type = XFS_LI_BUF;
715 	bip->bli_format.blf_blkno = (__int64_t)XFS_BUF_ADDR(bp);
716 	bip->bli_format.blf_len = (ushort)BTOBB(XFS_BUF_COUNT(bp));
717 	bip->bli_format.blf_map_size = map_size;
718 
719 #ifdef XFS_TRANS_DEBUG
720 	/*
721 	 * Allocate the arrays for tracking what needs to be logged
722 	 * and what our callers request to be logged.  bli_orig
723 	 * holds a copy of the original, clean buffer for comparison
724 	 * against, and bli_logged keeps a 1 bit flag per byte in
725 	 * the buffer to indicate which bytes the callers have asked
726 	 * to have logged.
727 	 */
728 	bip->bli_orig = (char *)kmem_alloc(XFS_BUF_COUNT(bp), KM_SLEEP);
729 	memcpy(bip->bli_orig, XFS_BUF_PTR(bp), XFS_BUF_COUNT(bp));
730 	bip->bli_logged = (char *)kmem_zalloc(XFS_BUF_COUNT(bp) / NBBY, KM_SLEEP);
731 #endif
732 
733 	/*
734 	 * Put the buf item into the list of items attached to the
735 	 * buffer at the front.
736 	 */
737 	if (bp->b_fspriv)
738 		bip->bli_item.li_bio_list = bp->b_fspriv;
739 	bp->b_fspriv = bip;
740 }
741 
742 
743 /*
744  * Mark bytes first through last inclusive as dirty in the buf
745  * item's bitmap.
746  */
747 void
748 xfs_buf_item_log(
749 	xfs_buf_log_item_t	*bip,
750 	uint			first,
751 	uint			last)
752 {
753 	uint		first_bit;
754 	uint		last_bit;
755 	uint		bits_to_set;
756 	uint		bits_set;
757 	uint		word_num;
758 	uint		*wordp;
759 	uint		bit;
760 	uint		end_bit;
761 	uint		mask;
762 
763 	/*
764 	 * Mark the item as having some dirty data for
765 	 * quick reference in xfs_buf_item_dirty.
766 	 */
767 	bip->bli_flags |= XFS_BLI_DIRTY;
768 
769 	/*
770 	 * Convert byte offsets to bit numbers.
771 	 */
772 	first_bit = first >> XFS_BLF_SHIFT;
773 	last_bit = last >> XFS_BLF_SHIFT;
774 
775 	/*
776 	 * Calculate the total number of bits to be set.
777 	 */
778 	bits_to_set = last_bit - first_bit + 1;
779 
780 	/*
781 	 * Get a pointer to the first word in the bitmap
782 	 * to set a bit in.
783 	 */
784 	word_num = first_bit >> BIT_TO_WORD_SHIFT;
785 	wordp = &(bip->bli_format.blf_data_map[word_num]);
786 
787 	/*
788 	 * Calculate the starting bit in the first word.
789 	 */
790 	bit = first_bit & (uint)(NBWORD - 1);
791 
792 	/*
793 	 * First set any bits in the first word of our range.
794 	 * If it starts at bit 0 of the word, it will be
795 	 * set below rather than here.  That is what the variable
796 	 * bit tells us. The variable bits_set tracks the number
797 	 * of bits that have been set so far.  End_bit is the number
798 	 * of the last bit to be set in this word plus one.
799 	 */
800 	if (bit) {
801 		end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
802 		mask = ((1 << (end_bit - bit)) - 1) << bit;
803 		*wordp |= mask;
804 		wordp++;
805 		bits_set = end_bit - bit;
806 	} else {
807 		bits_set = 0;
808 	}
809 
810 	/*
811 	 * Now set bits a whole word at a time that are between
812 	 * first_bit and last_bit.
813 	 */
814 	while ((bits_to_set - bits_set) >= NBWORD) {
815 		*wordp |= 0xffffffff;
816 		bits_set += NBWORD;
817 		wordp++;
818 	}
819 
820 	/*
821 	 * Finally, set any bits left to be set in one last partial word.
822 	 */
823 	end_bit = bits_to_set - bits_set;
824 	if (end_bit) {
825 		mask = (1 << end_bit) - 1;
826 		*wordp |= mask;
827 	}
828 
829 	xfs_buf_item_log_debug(bip, first, last);
830 }
831 
832 
833 /*
834  * Return 1 if the buffer has some data that has been logged (at any
835  * point, not just the current transaction) and 0 if not.
836  */
837 uint
838 xfs_buf_item_dirty(
839 	xfs_buf_log_item_t	*bip)
840 {
841 	return (bip->bli_flags & XFS_BLI_DIRTY);
842 }
843 
844 STATIC void
845 xfs_buf_item_free(
846 	xfs_buf_log_item_t	*bip)
847 {
848 #ifdef XFS_TRANS_DEBUG
849 	kmem_free(bip->bli_orig);
850 	kmem_free(bip->bli_logged);
851 #endif /* XFS_TRANS_DEBUG */
852 
853 	kmem_zone_free(xfs_buf_item_zone, bip);
854 }
855 
856 /*
857  * This is called when the buf log item is no longer needed.  It should
858  * free the buf log item associated with the given buffer and clear
859  * the buffer's pointer to the buf log item.  If there are no more
860  * items in the list, clear the b_iodone field of the buffer (see
861  * xfs_buf_attach_iodone() below).
862  */
863 void
864 xfs_buf_item_relse(
865 	xfs_buf_t	*bp)
866 {
867 	xfs_buf_log_item_t	*bip;
868 
869 	trace_xfs_buf_item_relse(bp, _RET_IP_);
870 
871 	bip = bp->b_fspriv;
872 	bp->b_fspriv = bip->bli_item.li_bio_list;
873 	if (bp->b_fspriv == NULL)
874 		bp->b_iodone = NULL;
875 
876 	xfs_buf_rele(bp);
877 	xfs_buf_item_free(bip);
878 }
879 
880 
881 /*
882  * Add the given log item with its callback to the list of callbacks
883  * to be called when the buffer's I/O completes.  If it is not set
884  * already, set the buffer's b_iodone() routine to be
885  * xfs_buf_iodone_callbacks() and link the log item into the list of
886  * items rooted at b_fsprivate.  Items are always added as the second
887  * entry in the list if there is a first, because the buf item code
888  * assumes that the buf log item is first.
889  */
890 void
891 xfs_buf_attach_iodone(
892 	xfs_buf_t	*bp,
893 	void		(*cb)(xfs_buf_t *, xfs_log_item_t *),
894 	xfs_log_item_t	*lip)
895 {
896 	xfs_log_item_t	*head_lip;
897 
898 	ASSERT(XFS_BUF_ISBUSY(bp));
899 	ASSERT(xfs_buf_islocked(bp));
900 
901 	lip->li_cb = cb;
902 	head_lip = bp->b_fspriv;
903 	if (head_lip) {
904 		lip->li_bio_list = head_lip->li_bio_list;
905 		head_lip->li_bio_list = lip;
906 	} else {
907 		bp->b_fspriv = lip;
908 	}
909 
910 	ASSERT(bp->b_iodone == NULL ||
911 	       bp->b_iodone == xfs_buf_iodone_callbacks);
912 	bp->b_iodone = xfs_buf_iodone_callbacks;
913 }
914 
915 /*
916  * We can have many callbacks on a buffer. Running the callbacks individually
917  * can cause a lot of contention on the AIL lock, so we allow for a single
918  * callback to be able to scan the remaining lip->li_bio_list for other items
919  * of the same type and callback to be processed in the first call.
920  *
921  * As a result, the loop walking the callback list below will also modify the
922  * list. it removes the first item from the list and then runs the callback.
923  * The loop then restarts from the new head of the list. This allows the
924  * callback to scan and modify the list attached to the buffer and we don't
925  * have to care about maintaining a next item pointer.
926  */
927 STATIC void
928 xfs_buf_do_callbacks(
929 	struct xfs_buf		*bp)
930 {
931 	struct xfs_log_item	*lip;
932 
933 	while ((lip = bp->b_fspriv) != NULL) {
934 		bp->b_fspriv = lip->li_bio_list;
935 		ASSERT(lip->li_cb != NULL);
936 		/*
937 		 * Clear the next pointer so we don't have any
938 		 * confusion if the item is added to another buf.
939 		 * Don't touch the log item after calling its
940 		 * callback, because it could have freed itself.
941 		 */
942 		lip->li_bio_list = NULL;
943 		lip->li_cb(bp, lip);
944 	}
945 }
946 
947 /*
948  * This is the iodone() function for buffers which have had callbacks
949  * attached to them by xfs_buf_attach_iodone().  It should remove each
950  * log item from the buffer's list and call the callback of each in turn.
951  * When done, the buffer's fsprivate field is set to NULL and the buffer
952  * is unlocked with a call to iodone().
953  */
954 void
955 xfs_buf_iodone_callbacks(
956 	struct xfs_buf		*bp)
957 {
958 	struct xfs_log_item	*lip = bp->b_fspriv;
959 	struct xfs_mount	*mp = lip->li_mountp;
960 	static ulong		lasttime;
961 	static xfs_buftarg_t	*lasttarg;
962 
963 	if (likely(!XFS_BUF_GETERROR(bp)))
964 		goto do_callbacks;
965 
966 	/*
967 	 * If we've already decided to shutdown the filesystem because of
968 	 * I/O errors, there's no point in giving this a retry.
969 	 */
970 	if (XFS_FORCED_SHUTDOWN(mp)) {
971 		XFS_BUF_SUPER_STALE(bp);
972 		trace_xfs_buf_item_iodone(bp, _RET_IP_);
973 		goto do_callbacks;
974 	}
975 
976 	if (XFS_BUF_TARGET(bp) != lasttarg ||
977 	    time_after(jiffies, (lasttime + 5*HZ))) {
978 		lasttime = jiffies;
979 		xfs_alert(mp, "Device %s: metadata write error block 0x%llx",
980 			XFS_BUFTARG_NAME(XFS_BUF_TARGET(bp)),
981 		      (__uint64_t)XFS_BUF_ADDR(bp));
982 	}
983 	lasttarg = XFS_BUF_TARGET(bp);
984 
985 	/*
986 	 * If the write was asynchronous then no one will be looking for the
987 	 * error.  Clear the error state and write the buffer out again.
988 	 *
989 	 * During sync or umount we'll write all pending buffers again
990 	 * synchronous, which will catch these errors if they keep hanging
991 	 * around.
992 	 */
993 	if (XFS_BUF_ISASYNC(bp)) {
994 		XFS_BUF_ERROR(bp, 0); /* errno of 0 unsets the flag */
995 
996 		if (!XFS_BUF_ISSTALE(bp)) {
997 			XFS_BUF_DELAYWRITE(bp);
998 			XFS_BUF_DONE(bp);
999 			XFS_BUF_SET_START(bp);
1000 		}
1001 		ASSERT(bp->b_iodone != NULL);
1002 		trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1003 		xfs_buf_relse(bp);
1004 		return;
1005 	}
1006 
1007 	/*
1008 	 * If the write of the buffer was synchronous, we want to make
1009 	 * sure to return the error to the caller of xfs_bwrite().
1010 	 */
1011 	XFS_BUF_STALE(bp);
1012 	XFS_BUF_DONE(bp);
1013 	XFS_BUF_UNDELAYWRITE(bp);
1014 
1015 	trace_xfs_buf_error_relse(bp, _RET_IP_);
1016 	xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1017 
1018 do_callbacks:
1019 	xfs_buf_do_callbacks(bp);
1020 	bp->b_fspriv = NULL;
1021 	bp->b_iodone = NULL;
1022 	xfs_buf_ioend(bp, 0);
1023 }
1024 
1025 /*
1026  * This is the iodone() function for buffers which have been
1027  * logged.  It is called when they are eventually flushed out.
1028  * It should remove the buf item from the AIL, and free the buf item.
1029  * It is called by xfs_buf_iodone_callbacks() above which will take
1030  * care of cleaning up the buffer itself.
1031  */
1032 void
1033 xfs_buf_iodone(
1034 	struct xfs_buf		*bp,
1035 	struct xfs_log_item	*lip)
1036 {
1037 	struct xfs_ail		*ailp = lip->li_ailp;
1038 
1039 	ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1040 
1041 	xfs_buf_rele(bp);
1042 
1043 	/*
1044 	 * If we are forcibly shutting down, this may well be
1045 	 * off the AIL already. That's because we simulate the
1046 	 * log-committed callbacks to unpin these buffers. Or we may never
1047 	 * have put this item on AIL because of the transaction was
1048 	 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1049 	 *
1050 	 * Either way, AIL is useless if we're forcing a shutdown.
1051 	 */
1052 	spin_lock(&ailp->xa_lock);
1053 	xfs_trans_ail_delete(ailp, lip);
1054 	xfs_buf_item_free(BUF_ITEM(lip));
1055 }
1056