1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_format.h" 21 #include "xfs_log_format.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_bit.h" 24 #include "xfs_sb.h" 25 #include "xfs_mount.h" 26 #include "xfs_trans.h" 27 #include "xfs_buf_item.h" 28 #include "xfs_trans_priv.h" 29 #include "xfs_error.h" 30 #include "xfs_trace.h" 31 #include "xfs_log.h" 32 #include "xfs_inode.h" 33 34 35 kmem_zone_t *xfs_buf_item_zone; 36 37 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip) 38 { 39 return container_of(lip, struct xfs_buf_log_item, bli_item); 40 } 41 42 STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp); 43 44 static inline int 45 xfs_buf_log_format_size( 46 struct xfs_buf_log_format *blfp) 47 { 48 return offsetof(struct xfs_buf_log_format, blf_data_map) + 49 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0])); 50 } 51 52 /* 53 * This returns the number of log iovecs needed to log the 54 * given buf log item. 55 * 56 * It calculates this as 1 iovec for the buf log format structure 57 * and 1 for each stretch of non-contiguous chunks to be logged. 58 * Contiguous chunks are logged in a single iovec. 59 * 60 * If the XFS_BLI_STALE flag has been set, then log nothing. 61 */ 62 STATIC void 63 xfs_buf_item_size_segment( 64 struct xfs_buf_log_item *bip, 65 struct xfs_buf_log_format *blfp, 66 int *nvecs, 67 int *nbytes) 68 { 69 struct xfs_buf *bp = bip->bli_buf; 70 int next_bit; 71 int last_bit; 72 73 last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0); 74 if (last_bit == -1) 75 return; 76 77 /* 78 * initial count for a dirty buffer is 2 vectors - the format structure 79 * and the first dirty region. 80 */ 81 *nvecs += 2; 82 *nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK; 83 84 while (last_bit != -1) { 85 /* 86 * This takes the bit number to start looking from and 87 * returns the next set bit from there. It returns -1 88 * if there are no more bits set or the start bit is 89 * beyond the end of the bitmap. 90 */ 91 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 92 last_bit + 1); 93 /* 94 * If we run out of bits, leave the loop, 95 * else if we find a new set of bits bump the number of vecs, 96 * else keep scanning the current set of bits. 97 */ 98 if (next_bit == -1) { 99 break; 100 } else if (next_bit != last_bit + 1) { 101 last_bit = next_bit; 102 (*nvecs)++; 103 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) != 104 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) + 105 XFS_BLF_CHUNK)) { 106 last_bit = next_bit; 107 (*nvecs)++; 108 } else { 109 last_bit++; 110 } 111 *nbytes += XFS_BLF_CHUNK; 112 } 113 } 114 115 /* 116 * This returns the number of log iovecs needed to log the given buf log item. 117 * 118 * It calculates this as 1 iovec for the buf log format structure and 1 for each 119 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged 120 * in a single iovec. 121 * 122 * Discontiguous buffers need a format structure per region that that is being 123 * logged. This makes the changes in the buffer appear to log recovery as though 124 * they came from separate buffers, just like would occur if multiple buffers 125 * were used instead of a single discontiguous buffer. This enables 126 * discontiguous buffers to be in-memory constructs, completely transparent to 127 * what ends up on disk. 128 * 129 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log 130 * format structures. 131 */ 132 STATIC void 133 xfs_buf_item_size( 134 struct xfs_log_item *lip, 135 int *nvecs, 136 int *nbytes) 137 { 138 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 139 int i; 140 141 ASSERT(atomic_read(&bip->bli_refcount) > 0); 142 if (bip->bli_flags & XFS_BLI_STALE) { 143 /* 144 * The buffer is stale, so all we need to log 145 * is the buf log format structure with the 146 * cancel flag in it. 147 */ 148 trace_xfs_buf_item_size_stale(bip); 149 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 150 *nvecs += bip->bli_format_count; 151 for (i = 0; i < bip->bli_format_count; i++) { 152 *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]); 153 } 154 return; 155 } 156 157 ASSERT(bip->bli_flags & XFS_BLI_LOGGED); 158 159 if (bip->bli_flags & XFS_BLI_ORDERED) { 160 /* 161 * The buffer has been logged just to order it. 162 * It is not being included in the transaction 163 * commit, so no vectors are used at all. 164 */ 165 trace_xfs_buf_item_size_ordered(bip); 166 *nvecs = XFS_LOG_VEC_ORDERED; 167 return; 168 } 169 170 /* 171 * the vector count is based on the number of buffer vectors we have 172 * dirty bits in. This will only be greater than one when we have a 173 * compound buffer with more than one segment dirty. Hence for compound 174 * buffers we need to track which segment the dirty bits correspond to, 175 * and when we move from one segment to the next increment the vector 176 * count for the extra buf log format structure that will need to be 177 * written. 178 */ 179 for (i = 0; i < bip->bli_format_count; i++) { 180 xfs_buf_item_size_segment(bip, &bip->bli_formats[i], 181 nvecs, nbytes); 182 } 183 trace_xfs_buf_item_size(bip); 184 } 185 186 static inline void 187 xfs_buf_item_copy_iovec( 188 struct xfs_log_vec *lv, 189 struct xfs_log_iovec **vecp, 190 struct xfs_buf *bp, 191 uint offset, 192 int first_bit, 193 uint nbits) 194 { 195 offset += first_bit * XFS_BLF_CHUNK; 196 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK, 197 xfs_buf_offset(bp, offset), 198 nbits * XFS_BLF_CHUNK); 199 } 200 201 static inline bool 202 xfs_buf_item_straddle( 203 struct xfs_buf *bp, 204 uint offset, 205 int next_bit, 206 int last_bit) 207 { 208 return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) != 209 (xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) + 210 XFS_BLF_CHUNK); 211 } 212 213 static void 214 xfs_buf_item_format_segment( 215 struct xfs_buf_log_item *bip, 216 struct xfs_log_vec *lv, 217 struct xfs_log_iovec **vecp, 218 uint offset, 219 struct xfs_buf_log_format *blfp) 220 { 221 struct xfs_buf *bp = bip->bli_buf; 222 uint base_size; 223 int first_bit; 224 int last_bit; 225 int next_bit; 226 uint nbits; 227 228 /* copy the flags across from the base format item */ 229 blfp->blf_flags = bip->__bli_format.blf_flags; 230 231 /* 232 * Base size is the actual size of the ondisk structure - it reflects 233 * the actual size of the dirty bitmap rather than the size of the in 234 * memory structure. 235 */ 236 base_size = xfs_buf_log_format_size(blfp); 237 238 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0); 239 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) { 240 /* 241 * If the map is not be dirty in the transaction, mark 242 * the size as zero and do not advance the vector pointer. 243 */ 244 return; 245 } 246 247 blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size); 248 blfp->blf_size = 1; 249 250 if (bip->bli_flags & XFS_BLI_STALE) { 251 /* 252 * The buffer is stale, so all we need to log 253 * is the buf log format structure with the 254 * cancel flag in it. 255 */ 256 trace_xfs_buf_item_format_stale(bip); 257 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL); 258 return; 259 } 260 261 262 /* 263 * Fill in an iovec for each set of contiguous chunks. 264 */ 265 last_bit = first_bit; 266 nbits = 1; 267 for (;;) { 268 /* 269 * This takes the bit number to start looking from and 270 * returns the next set bit from there. It returns -1 271 * if there are no more bits set or the start bit is 272 * beyond the end of the bitmap. 273 */ 274 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 275 (uint)last_bit + 1); 276 /* 277 * If we run out of bits fill in the last iovec and get out of 278 * the loop. Else if we start a new set of bits then fill in 279 * the iovec for the series we were looking at and start 280 * counting the bits in the new one. Else we're still in the 281 * same set of bits so just keep counting and scanning. 282 */ 283 if (next_bit == -1) { 284 xfs_buf_item_copy_iovec(lv, vecp, bp, offset, 285 first_bit, nbits); 286 blfp->blf_size++; 287 break; 288 } else if (next_bit != last_bit + 1 || 289 xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) { 290 xfs_buf_item_copy_iovec(lv, vecp, bp, offset, 291 first_bit, nbits); 292 blfp->blf_size++; 293 first_bit = next_bit; 294 last_bit = next_bit; 295 nbits = 1; 296 } else { 297 last_bit++; 298 nbits++; 299 } 300 } 301 } 302 303 /* 304 * This is called to fill in the vector of log iovecs for the 305 * given log buf item. It fills the first entry with a buf log 306 * format structure, and the rest point to contiguous chunks 307 * within the buffer. 308 */ 309 STATIC void 310 xfs_buf_item_format( 311 struct xfs_log_item *lip, 312 struct xfs_log_vec *lv) 313 { 314 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 315 struct xfs_buf *bp = bip->bli_buf; 316 struct xfs_log_iovec *vecp = NULL; 317 uint offset = 0; 318 int i; 319 320 ASSERT(atomic_read(&bip->bli_refcount) > 0); 321 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || 322 (bip->bli_flags & XFS_BLI_STALE)); 323 ASSERT((bip->bli_flags & XFS_BLI_STALE) || 324 (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF 325 && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF)); 326 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) || 327 (bip->bli_flags & XFS_BLI_STALE)); 328 329 330 /* 331 * If it is an inode buffer, transfer the in-memory state to the 332 * format flags and clear the in-memory state. 333 * 334 * For buffer based inode allocation, we do not transfer 335 * this state if the inode buffer allocation has not yet been committed 336 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent 337 * correct replay of the inode allocation. 338 * 339 * For icreate item based inode allocation, the buffers aren't written 340 * to the journal during allocation, and hence we should always tag the 341 * buffer as an inode buffer so that the correct unlinked list replay 342 * occurs during recovery. 343 */ 344 if (bip->bli_flags & XFS_BLI_INODE_BUF) { 345 if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) || 346 !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && 347 xfs_log_item_in_current_chkpt(lip))) 348 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF; 349 bip->bli_flags &= ~XFS_BLI_INODE_BUF; 350 } 351 352 for (i = 0; i < bip->bli_format_count; i++) { 353 xfs_buf_item_format_segment(bip, lv, &vecp, offset, 354 &bip->bli_formats[i]); 355 offset += BBTOB(bp->b_maps[i].bm_len); 356 } 357 358 /* 359 * Check to make sure everything is consistent. 360 */ 361 trace_xfs_buf_item_format(bip); 362 } 363 364 /* 365 * This is called to pin the buffer associated with the buf log item in memory 366 * so it cannot be written out. 367 * 368 * We also always take a reference to the buffer log item here so that the bli 369 * is held while the item is pinned in memory. This means that we can 370 * unconditionally drop the reference count a transaction holds when the 371 * transaction is completed. 372 */ 373 STATIC void 374 xfs_buf_item_pin( 375 struct xfs_log_item *lip) 376 { 377 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 378 379 ASSERT(atomic_read(&bip->bli_refcount) > 0); 380 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || 381 (bip->bli_flags & XFS_BLI_ORDERED) || 382 (bip->bli_flags & XFS_BLI_STALE)); 383 384 trace_xfs_buf_item_pin(bip); 385 386 atomic_inc(&bip->bli_refcount); 387 atomic_inc(&bip->bli_buf->b_pin_count); 388 } 389 390 /* 391 * This is called to unpin the buffer associated with the buf log 392 * item which was previously pinned with a call to xfs_buf_item_pin(). 393 * 394 * Also drop the reference to the buf item for the current transaction. 395 * If the XFS_BLI_STALE flag is set and we are the last reference, 396 * then free up the buf log item and unlock the buffer. 397 * 398 * If the remove flag is set we are called from uncommit in the 399 * forced-shutdown path. If that is true and the reference count on 400 * the log item is going to drop to zero we need to free the item's 401 * descriptor in the transaction. 402 */ 403 STATIC void 404 xfs_buf_item_unpin( 405 struct xfs_log_item *lip, 406 int remove) 407 { 408 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 409 xfs_buf_t *bp = bip->bli_buf; 410 struct xfs_ail *ailp = lip->li_ailp; 411 int stale = bip->bli_flags & XFS_BLI_STALE; 412 int freed; 413 414 ASSERT(bp->b_fspriv == bip); 415 ASSERT(atomic_read(&bip->bli_refcount) > 0); 416 417 trace_xfs_buf_item_unpin(bip); 418 419 freed = atomic_dec_and_test(&bip->bli_refcount); 420 421 if (atomic_dec_and_test(&bp->b_pin_count)) 422 wake_up_all(&bp->b_waiters); 423 424 if (freed && stale) { 425 ASSERT(bip->bli_flags & XFS_BLI_STALE); 426 ASSERT(xfs_buf_islocked(bp)); 427 ASSERT(bp->b_flags & XBF_STALE); 428 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 429 430 trace_xfs_buf_item_unpin_stale(bip); 431 432 if (remove) { 433 /* 434 * If we are in a transaction context, we have to 435 * remove the log item from the transaction as we are 436 * about to release our reference to the buffer. If we 437 * don't, the unlock that occurs later in 438 * xfs_trans_uncommit() will try to reference the 439 * buffer which we no longer have a hold on. 440 */ 441 if (lip->li_desc) 442 xfs_trans_del_item(lip); 443 444 /* 445 * Since the transaction no longer refers to the buffer, 446 * the buffer should no longer refer to the transaction. 447 */ 448 bp->b_transp = NULL; 449 } 450 451 /* 452 * If we get called here because of an IO error, we may 453 * or may not have the item on the AIL. xfs_trans_ail_delete() 454 * will take care of that situation. 455 * xfs_trans_ail_delete() drops the AIL lock. 456 */ 457 if (bip->bli_flags & XFS_BLI_STALE_INODE) { 458 xfs_buf_do_callbacks(bp); 459 bp->b_fspriv = NULL; 460 bp->b_iodone = NULL; 461 } else { 462 spin_lock(&ailp->xa_lock); 463 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR); 464 xfs_buf_item_relse(bp); 465 ASSERT(bp->b_fspriv == NULL); 466 } 467 xfs_buf_relse(bp); 468 } else if (freed && remove) { 469 /* 470 * There are currently two references to the buffer - the active 471 * LRU reference and the buf log item. What we are about to do 472 * here - simulate a failed IO completion - requires 3 473 * references. 474 * 475 * The LRU reference is removed by the xfs_buf_stale() call. The 476 * buf item reference is removed by the xfs_buf_iodone() 477 * callback that is run by xfs_buf_do_callbacks() during ioend 478 * processing (via the bp->b_iodone callback), and then finally 479 * the ioend processing will drop the IO reference if the buffer 480 * is marked XBF_ASYNC. 481 * 482 * Hence we need to take an additional reference here so that IO 483 * completion processing doesn't free the buffer prematurely. 484 */ 485 xfs_buf_lock(bp); 486 xfs_buf_hold(bp); 487 bp->b_flags |= XBF_ASYNC; 488 xfs_buf_ioerror(bp, -EIO); 489 bp->b_flags &= ~XBF_DONE; 490 xfs_buf_stale(bp); 491 xfs_buf_ioend(bp); 492 } 493 } 494 495 /* 496 * Buffer IO error rate limiting. Limit it to no more than 10 messages per 30 497 * seconds so as to not spam logs too much on repeated detection of the same 498 * buffer being bad.. 499 */ 500 501 static DEFINE_RATELIMIT_STATE(xfs_buf_write_fail_rl_state, 30 * HZ, 10); 502 503 STATIC uint 504 xfs_buf_item_push( 505 struct xfs_log_item *lip, 506 struct list_head *buffer_list) 507 { 508 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 509 struct xfs_buf *bp = bip->bli_buf; 510 uint rval = XFS_ITEM_SUCCESS; 511 512 if (xfs_buf_ispinned(bp)) 513 return XFS_ITEM_PINNED; 514 if (!xfs_buf_trylock(bp)) { 515 /* 516 * If we have just raced with a buffer being pinned and it has 517 * been marked stale, we could end up stalling until someone else 518 * issues a log force to unpin the stale buffer. Check for the 519 * race condition here so xfsaild recognizes the buffer is pinned 520 * and queues a log force to move it along. 521 */ 522 if (xfs_buf_ispinned(bp)) 523 return XFS_ITEM_PINNED; 524 return XFS_ITEM_LOCKED; 525 } 526 527 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 528 529 trace_xfs_buf_item_push(bip); 530 531 /* has a previous flush failed due to IO errors? */ 532 if ((bp->b_flags & XBF_WRITE_FAIL) && 533 ___ratelimit(&xfs_buf_write_fail_rl_state, "XFS: Failing async write")) { 534 xfs_warn(bp->b_target->bt_mount, 535 "Failing async write on buffer block 0x%llx. Retrying async write.", 536 (long long)bp->b_bn); 537 } 538 539 if (!xfs_buf_delwri_queue(bp, buffer_list)) 540 rval = XFS_ITEM_FLUSHING; 541 xfs_buf_unlock(bp); 542 return rval; 543 } 544 545 /* 546 * Release the buffer associated with the buf log item. If there is no dirty 547 * logged data associated with the buffer recorded in the buf log item, then 548 * free the buf log item and remove the reference to it in the buffer. 549 * 550 * This call ignores the recursion count. It is only called when the buffer 551 * should REALLY be unlocked, regardless of the recursion count. 552 * 553 * We unconditionally drop the transaction's reference to the log item. If the 554 * item was logged, then another reference was taken when it was pinned, so we 555 * can safely drop the transaction reference now. This also allows us to avoid 556 * potential races with the unpin code freeing the bli by not referencing the 557 * bli after we've dropped the reference count. 558 * 559 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item 560 * if necessary but do not unlock the buffer. This is for support of 561 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't 562 * free the item. 563 */ 564 STATIC void 565 xfs_buf_item_unlock( 566 struct xfs_log_item *lip) 567 { 568 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 569 struct xfs_buf *bp = bip->bli_buf; 570 bool aborted = !!(lip->li_flags & XFS_LI_ABORTED); 571 bool hold = !!(bip->bli_flags & XFS_BLI_HOLD); 572 bool dirty = !!(bip->bli_flags & XFS_BLI_DIRTY); 573 #if defined(DEBUG) || defined(XFS_WARN) 574 bool ordered = !!(bip->bli_flags & XFS_BLI_ORDERED); 575 #endif 576 577 /* Clear the buffer's association with this transaction. */ 578 bp->b_transp = NULL; 579 580 /* 581 * The per-transaction state has been copied above so clear it from the 582 * bli. 583 */ 584 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED); 585 586 /* 587 * If the buf item is marked stale, then don't do anything. We'll 588 * unlock the buffer and free the buf item when the buffer is unpinned 589 * for the last time. 590 */ 591 if (bip->bli_flags & XFS_BLI_STALE) { 592 trace_xfs_buf_item_unlock_stale(bip); 593 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 594 if (!aborted) { 595 atomic_dec(&bip->bli_refcount); 596 return; 597 } 598 } 599 600 trace_xfs_buf_item_unlock(bip); 601 602 /* 603 * If the buf item isn't tracking any data, free it, otherwise drop the 604 * reference we hold to it. If we are aborting the transaction, this may 605 * be the only reference to the buf item, so we free it anyway 606 * regardless of whether it is dirty or not. A dirty abort implies a 607 * shutdown, anyway. 608 * 609 * The bli dirty state should match whether the blf has logged segments 610 * except for ordered buffers, where only the bli should be dirty. 611 */ 612 ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) || 613 (ordered && dirty && !xfs_buf_item_dirty_format(bip))); 614 615 /* 616 * Clean buffers, by definition, cannot be in the AIL. However, aborted 617 * buffers may be in the AIL regardless of dirty state. An aborted 618 * transaction that invalidates a buffer already in the AIL may have 619 * marked it stale and cleared the dirty state, for example. 620 * 621 * Therefore if we are aborting a buffer and we've just taken the last 622 * reference away, we have to check if it is in the AIL before freeing 623 * it. We need to free it in this case, because an aborted transaction 624 * has already shut the filesystem down and this is the last chance we 625 * will have to do so. 626 */ 627 if (atomic_dec_and_test(&bip->bli_refcount)) { 628 if (aborted) { 629 ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp)); 630 xfs_trans_ail_remove(lip, SHUTDOWN_LOG_IO_ERROR); 631 xfs_buf_item_relse(bp); 632 } else if (!dirty) 633 xfs_buf_item_relse(bp); 634 } 635 636 if (!hold) 637 xfs_buf_relse(bp); 638 } 639 640 /* 641 * This is called to find out where the oldest active copy of the 642 * buf log item in the on disk log resides now that the last log 643 * write of it completed at the given lsn. 644 * We always re-log all the dirty data in a buffer, so usually the 645 * latest copy in the on disk log is the only one that matters. For 646 * those cases we simply return the given lsn. 647 * 648 * The one exception to this is for buffers full of newly allocated 649 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF 650 * flag set, indicating that only the di_next_unlinked fields from the 651 * inodes in the buffers will be replayed during recovery. If the 652 * original newly allocated inode images have not yet been flushed 653 * when the buffer is so relogged, then we need to make sure that we 654 * keep the old images in the 'active' portion of the log. We do this 655 * by returning the original lsn of that transaction here rather than 656 * the current one. 657 */ 658 STATIC xfs_lsn_t 659 xfs_buf_item_committed( 660 struct xfs_log_item *lip, 661 xfs_lsn_t lsn) 662 { 663 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 664 665 trace_xfs_buf_item_committed(bip); 666 667 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0) 668 return lip->li_lsn; 669 return lsn; 670 } 671 672 STATIC void 673 xfs_buf_item_committing( 674 struct xfs_log_item *lip, 675 xfs_lsn_t commit_lsn) 676 { 677 } 678 679 /* 680 * This is the ops vector shared by all buf log items. 681 */ 682 static const struct xfs_item_ops xfs_buf_item_ops = { 683 .iop_size = xfs_buf_item_size, 684 .iop_format = xfs_buf_item_format, 685 .iop_pin = xfs_buf_item_pin, 686 .iop_unpin = xfs_buf_item_unpin, 687 .iop_unlock = xfs_buf_item_unlock, 688 .iop_committed = xfs_buf_item_committed, 689 .iop_push = xfs_buf_item_push, 690 .iop_committing = xfs_buf_item_committing 691 }; 692 693 STATIC int 694 xfs_buf_item_get_format( 695 struct xfs_buf_log_item *bip, 696 int count) 697 { 698 ASSERT(bip->bli_formats == NULL); 699 bip->bli_format_count = count; 700 701 if (count == 1) { 702 bip->bli_formats = &bip->__bli_format; 703 return 0; 704 } 705 706 bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format), 707 KM_SLEEP); 708 if (!bip->bli_formats) 709 return -ENOMEM; 710 return 0; 711 } 712 713 STATIC void 714 xfs_buf_item_free_format( 715 struct xfs_buf_log_item *bip) 716 { 717 if (bip->bli_formats != &bip->__bli_format) { 718 kmem_free(bip->bli_formats); 719 bip->bli_formats = NULL; 720 } 721 } 722 723 /* 724 * Allocate a new buf log item to go with the given buffer. 725 * Set the buffer's b_fsprivate field to point to the new 726 * buf log item. If there are other item's attached to the 727 * buffer (see xfs_buf_attach_iodone() below), then put the 728 * buf log item at the front. 729 */ 730 int 731 xfs_buf_item_init( 732 struct xfs_buf *bp, 733 struct xfs_mount *mp) 734 { 735 struct xfs_log_item *lip = bp->b_fspriv; 736 struct xfs_buf_log_item *bip; 737 int chunks; 738 int map_size; 739 int error; 740 int i; 741 742 /* 743 * Check to see if there is already a buf log item for 744 * this buffer. If there is, it is guaranteed to be 745 * the first. If we do already have one, there is 746 * nothing to do here so return. 747 */ 748 ASSERT(bp->b_target->bt_mount == mp); 749 if (lip != NULL && lip->li_type == XFS_LI_BUF) 750 return 0; 751 752 bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP); 753 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops); 754 bip->bli_buf = bp; 755 756 /* 757 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer 758 * can be divided into. Make sure not to truncate any pieces. 759 * map_size is the size of the bitmap needed to describe the 760 * chunks of the buffer. 761 * 762 * Discontiguous buffer support follows the layout of the underlying 763 * buffer. This makes the implementation as simple as possible. 764 */ 765 error = xfs_buf_item_get_format(bip, bp->b_map_count); 766 ASSERT(error == 0); 767 if (error) { /* to stop gcc throwing set-but-unused warnings */ 768 kmem_zone_free(xfs_buf_item_zone, bip); 769 return error; 770 } 771 772 773 for (i = 0; i < bip->bli_format_count; i++) { 774 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len), 775 XFS_BLF_CHUNK); 776 map_size = DIV_ROUND_UP(chunks, NBWORD); 777 778 bip->bli_formats[i].blf_type = XFS_LI_BUF; 779 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn; 780 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len; 781 bip->bli_formats[i].blf_map_size = map_size; 782 } 783 784 /* 785 * Put the buf item into the list of items attached to the 786 * buffer at the front. 787 */ 788 if (bp->b_fspriv) 789 bip->bli_item.li_bio_list = bp->b_fspriv; 790 bp->b_fspriv = bip; 791 xfs_buf_hold(bp); 792 return 0; 793 } 794 795 796 /* 797 * Mark bytes first through last inclusive as dirty in the buf 798 * item's bitmap. 799 */ 800 static void 801 xfs_buf_item_log_segment( 802 uint first, 803 uint last, 804 uint *map) 805 { 806 uint first_bit; 807 uint last_bit; 808 uint bits_to_set; 809 uint bits_set; 810 uint word_num; 811 uint *wordp; 812 uint bit; 813 uint end_bit; 814 uint mask; 815 816 /* 817 * Convert byte offsets to bit numbers. 818 */ 819 first_bit = first >> XFS_BLF_SHIFT; 820 last_bit = last >> XFS_BLF_SHIFT; 821 822 /* 823 * Calculate the total number of bits to be set. 824 */ 825 bits_to_set = last_bit - first_bit + 1; 826 827 /* 828 * Get a pointer to the first word in the bitmap 829 * to set a bit in. 830 */ 831 word_num = first_bit >> BIT_TO_WORD_SHIFT; 832 wordp = &map[word_num]; 833 834 /* 835 * Calculate the starting bit in the first word. 836 */ 837 bit = first_bit & (uint)(NBWORD - 1); 838 839 /* 840 * First set any bits in the first word of our range. 841 * If it starts at bit 0 of the word, it will be 842 * set below rather than here. That is what the variable 843 * bit tells us. The variable bits_set tracks the number 844 * of bits that have been set so far. End_bit is the number 845 * of the last bit to be set in this word plus one. 846 */ 847 if (bit) { 848 end_bit = MIN(bit + bits_to_set, (uint)NBWORD); 849 mask = ((1U << (end_bit - bit)) - 1) << bit; 850 *wordp |= mask; 851 wordp++; 852 bits_set = end_bit - bit; 853 } else { 854 bits_set = 0; 855 } 856 857 /* 858 * Now set bits a whole word at a time that are between 859 * first_bit and last_bit. 860 */ 861 while ((bits_to_set - bits_set) >= NBWORD) { 862 *wordp |= 0xffffffff; 863 bits_set += NBWORD; 864 wordp++; 865 } 866 867 /* 868 * Finally, set any bits left to be set in one last partial word. 869 */ 870 end_bit = bits_to_set - bits_set; 871 if (end_bit) { 872 mask = (1U << end_bit) - 1; 873 *wordp |= mask; 874 } 875 } 876 877 /* 878 * Mark bytes first through last inclusive as dirty in the buf 879 * item's bitmap. 880 */ 881 void 882 xfs_buf_item_log( 883 xfs_buf_log_item_t *bip, 884 uint first, 885 uint last) 886 { 887 int i; 888 uint start; 889 uint end; 890 struct xfs_buf *bp = bip->bli_buf; 891 892 /* 893 * walk each buffer segment and mark them dirty appropriately. 894 */ 895 start = 0; 896 for (i = 0; i < bip->bli_format_count; i++) { 897 if (start > last) 898 break; 899 end = start + BBTOB(bp->b_maps[i].bm_len) - 1; 900 901 /* skip to the map that includes the first byte to log */ 902 if (first > end) { 903 start += BBTOB(bp->b_maps[i].bm_len); 904 continue; 905 } 906 907 /* 908 * Trim the range to this segment and mark it in the bitmap. 909 * Note that we must convert buffer offsets to segment relative 910 * offsets (e.g., the first byte of each segment is byte 0 of 911 * that segment). 912 */ 913 if (first < start) 914 first = start; 915 if (end > last) 916 end = last; 917 xfs_buf_item_log_segment(first - start, end - start, 918 &bip->bli_formats[i].blf_data_map[0]); 919 920 start += BBTOB(bp->b_maps[i].bm_len); 921 } 922 } 923 924 925 /* 926 * Return true if the buffer has any ranges logged/dirtied by a transaction, 927 * false otherwise. 928 */ 929 bool 930 xfs_buf_item_dirty_format( 931 struct xfs_buf_log_item *bip) 932 { 933 int i; 934 935 for (i = 0; i < bip->bli_format_count; i++) { 936 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map, 937 bip->bli_formats[i].blf_map_size)) 938 return true; 939 } 940 941 return false; 942 } 943 944 STATIC void 945 xfs_buf_item_free( 946 xfs_buf_log_item_t *bip) 947 { 948 xfs_buf_item_free_format(bip); 949 kmem_free(bip->bli_item.li_lv_shadow); 950 kmem_zone_free(xfs_buf_item_zone, bip); 951 } 952 953 /* 954 * This is called when the buf log item is no longer needed. It should 955 * free the buf log item associated with the given buffer and clear 956 * the buffer's pointer to the buf log item. If there are no more 957 * items in the list, clear the b_iodone field of the buffer (see 958 * xfs_buf_attach_iodone() below). 959 */ 960 void 961 xfs_buf_item_relse( 962 xfs_buf_t *bp) 963 { 964 xfs_buf_log_item_t *bip = bp->b_fspriv; 965 966 trace_xfs_buf_item_relse(bp, _RET_IP_); 967 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL)); 968 969 bp->b_fspriv = bip->bli_item.li_bio_list; 970 if (bp->b_fspriv == NULL) 971 bp->b_iodone = NULL; 972 973 xfs_buf_rele(bp); 974 xfs_buf_item_free(bip); 975 } 976 977 978 /* 979 * Add the given log item with its callback to the list of callbacks 980 * to be called when the buffer's I/O completes. If it is not set 981 * already, set the buffer's b_iodone() routine to be 982 * xfs_buf_iodone_callbacks() and link the log item into the list of 983 * items rooted at b_fsprivate. Items are always added as the second 984 * entry in the list if there is a first, because the buf item code 985 * assumes that the buf log item is first. 986 */ 987 void 988 xfs_buf_attach_iodone( 989 xfs_buf_t *bp, 990 void (*cb)(xfs_buf_t *, xfs_log_item_t *), 991 xfs_log_item_t *lip) 992 { 993 xfs_log_item_t *head_lip; 994 995 ASSERT(xfs_buf_islocked(bp)); 996 997 lip->li_cb = cb; 998 head_lip = bp->b_fspriv; 999 if (head_lip) { 1000 lip->li_bio_list = head_lip->li_bio_list; 1001 head_lip->li_bio_list = lip; 1002 } else { 1003 bp->b_fspriv = lip; 1004 } 1005 1006 ASSERT(bp->b_iodone == NULL || 1007 bp->b_iodone == xfs_buf_iodone_callbacks); 1008 bp->b_iodone = xfs_buf_iodone_callbacks; 1009 } 1010 1011 /* 1012 * We can have many callbacks on a buffer. Running the callbacks individually 1013 * can cause a lot of contention on the AIL lock, so we allow for a single 1014 * callback to be able to scan the remaining lip->li_bio_list for other items 1015 * of the same type and callback to be processed in the first call. 1016 * 1017 * As a result, the loop walking the callback list below will also modify the 1018 * list. it removes the first item from the list and then runs the callback. 1019 * The loop then restarts from the new head of the list. This allows the 1020 * callback to scan and modify the list attached to the buffer and we don't 1021 * have to care about maintaining a next item pointer. 1022 */ 1023 STATIC void 1024 xfs_buf_do_callbacks( 1025 struct xfs_buf *bp) 1026 { 1027 struct xfs_log_item *lip; 1028 1029 while ((lip = bp->b_fspriv) != NULL) { 1030 bp->b_fspriv = lip->li_bio_list; 1031 ASSERT(lip->li_cb != NULL); 1032 /* 1033 * Clear the next pointer so we don't have any 1034 * confusion if the item is added to another buf. 1035 * Don't touch the log item after calling its 1036 * callback, because it could have freed itself. 1037 */ 1038 lip->li_bio_list = NULL; 1039 lip->li_cb(bp, lip); 1040 } 1041 } 1042 1043 /* 1044 * Invoke the error state callback for each log item affected by the failed I/O. 1045 * 1046 * If a metadata buffer write fails with a non-permanent error, the buffer is 1047 * eventually resubmitted and so the completion callbacks are not run. The error 1048 * state may need to be propagated to the log items attached to the buffer, 1049 * however, so the next AIL push of the item knows hot to handle it correctly. 1050 */ 1051 STATIC void 1052 xfs_buf_do_callbacks_fail( 1053 struct xfs_buf *bp) 1054 { 1055 struct xfs_log_item *next; 1056 struct xfs_log_item *lip = bp->b_fspriv; 1057 struct xfs_ail *ailp = lip->li_ailp; 1058 1059 spin_lock(&ailp->xa_lock); 1060 for (; lip; lip = next) { 1061 next = lip->li_bio_list; 1062 if (lip->li_ops->iop_error) 1063 lip->li_ops->iop_error(lip, bp); 1064 } 1065 spin_unlock(&ailp->xa_lock); 1066 } 1067 1068 static bool 1069 xfs_buf_iodone_callback_error( 1070 struct xfs_buf *bp) 1071 { 1072 struct xfs_log_item *lip = bp->b_fspriv; 1073 struct xfs_mount *mp = lip->li_mountp; 1074 static ulong lasttime; 1075 static xfs_buftarg_t *lasttarg; 1076 struct xfs_error_cfg *cfg; 1077 1078 /* 1079 * If we've already decided to shutdown the filesystem because of 1080 * I/O errors, there's no point in giving this a retry. 1081 */ 1082 if (XFS_FORCED_SHUTDOWN(mp)) 1083 goto out_stale; 1084 1085 if (bp->b_target != lasttarg || 1086 time_after(jiffies, (lasttime + 5*HZ))) { 1087 lasttime = jiffies; 1088 xfs_buf_ioerror_alert(bp, __func__); 1089 } 1090 lasttarg = bp->b_target; 1091 1092 /* synchronous writes will have callers process the error */ 1093 if (!(bp->b_flags & XBF_ASYNC)) 1094 goto out_stale; 1095 1096 trace_xfs_buf_item_iodone_async(bp, _RET_IP_); 1097 ASSERT(bp->b_iodone != NULL); 1098 1099 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error); 1100 1101 /* 1102 * If the write was asynchronous then no one will be looking for the 1103 * error. If this is the first failure of this type, clear the error 1104 * state and write the buffer out again. This means we always retry an 1105 * async write failure at least once, but we also need to set the buffer 1106 * up to behave correctly now for repeated failures. 1107 */ 1108 if (!(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL)) || 1109 bp->b_last_error != bp->b_error) { 1110 bp->b_flags |= (XBF_WRITE | XBF_DONE | XBF_WRITE_FAIL); 1111 bp->b_last_error = bp->b_error; 1112 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER && 1113 !bp->b_first_retry_time) 1114 bp->b_first_retry_time = jiffies; 1115 1116 xfs_buf_ioerror(bp, 0); 1117 xfs_buf_submit(bp); 1118 return true; 1119 } 1120 1121 /* 1122 * Repeated failure on an async write. Take action according to the 1123 * error configuration we have been set up to use. 1124 */ 1125 1126 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER && 1127 ++bp->b_retries > cfg->max_retries) 1128 goto permanent_error; 1129 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER && 1130 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time)) 1131 goto permanent_error; 1132 1133 /* At unmount we may treat errors differently */ 1134 if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount) 1135 goto permanent_error; 1136 1137 /* 1138 * Still a transient error, run IO completion failure callbacks and let 1139 * the higher layers retry the buffer. 1140 */ 1141 xfs_buf_do_callbacks_fail(bp); 1142 xfs_buf_ioerror(bp, 0); 1143 xfs_buf_relse(bp); 1144 return true; 1145 1146 /* 1147 * Permanent error - we need to trigger a shutdown if we haven't already 1148 * to indicate that inconsistency will result from this action. 1149 */ 1150 permanent_error: 1151 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1152 out_stale: 1153 xfs_buf_stale(bp); 1154 bp->b_flags |= XBF_DONE; 1155 trace_xfs_buf_error_relse(bp, _RET_IP_); 1156 return false; 1157 } 1158 1159 /* 1160 * This is the iodone() function for buffers which have had callbacks attached 1161 * to them by xfs_buf_attach_iodone(). We need to iterate the items on the 1162 * callback list, mark the buffer as having no more callbacks and then push the 1163 * buffer through IO completion processing. 1164 */ 1165 void 1166 xfs_buf_iodone_callbacks( 1167 struct xfs_buf *bp) 1168 { 1169 /* 1170 * If there is an error, process it. Some errors require us 1171 * to run callbacks after failure processing is done so we 1172 * detect that and take appropriate action. 1173 */ 1174 if (bp->b_error && xfs_buf_iodone_callback_error(bp)) 1175 return; 1176 1177 /* 1178 * Successful IO or permanent error. Either way, we can clear the 1179 * retry state here in preparation for the next error that may occur. 1180 */ 1181 bp->b_last_error = 0; 1182 bp->b_retries = 0; 1183 bp->b_first_retry_time = 0; 1184 1185 xfs_buf_do_callbacks(bp); 1186 bp->b_fspriv = NULL; 1187 bp->b_iodone = NULL; 1188 xfs_buf_ioend(bp); 1189 } 1190 1191 /* 1192 * This is the iodone() function for buffers which have been 1193 * logged. It is called when they are eventually flushed out. 1194 * It should remove the buf item from the AIL, and free the buf item. 1195 * It is called by xfs_buf_iodone_callbacks() above which will take 1196 * care of cleaning up the buffer itself. 1197 */ 1198 void 1199 xfs_buf_iodone( 1200 struct xfs_buf *bp, 1201 struct xfs_log_item *lip) 1202 { 1203 struct xfs_ail *ailp = lip->li_ailp; 1204 1205 ASSERT(BUF_ITEM(lip)->bli_buf == bp); 1206 1207 xfs_buf_rele(bp); 1208 1209 /* 1210 * If we are forcibly shutting down, this may well be 1211 * off the AIL already. That's because we simulate the 1212 * log-committed callbacks to unpin these buffers. Or we may never 1213 * have put this item on AIL because of the transaction was 1214 * aborted forcibly. xfs_trans_ail_delete() takes care of these. 1215 * 1216 * Either way, AIL is useless if we're forcing a shutdown. 1217 */ 1218 spin_lock(&ailp->xa_lock); 1219 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE); 1220 xfs_buf_item_free(BUF_ITEM(lip)); 1221 } 1222 1223 /* 1224 * Requeue a failed buffer for writeback 1225 * 1226 * Return true if the buffer has been re-queued properly, false otherwise 1227 */ 1228 bool 1229 xfs_buf_resubmit_failed_buffers( 1230 struct xfs_buf *bp, 1231 struct xfs_log_item *lip, 1232 struct list_head *buffer_list) 1233 { 1234 struct xfs_log_item *next; 1235 1236 /* 1237 * Clear XFS_LI_FAILED flag from all items before resubmit 1238 * 1239 * XFS_LI_FAILED set/clear is protected by xa_lock, caller this 1240 * function already have it acquired 1241 */ 1242 for (; lip; lip = next) { 1243 next = lip->li_bio_list; 1244 xfs_clear_li_failed(lip); 1245 } 1246 1247 /* Add this buffer back to the delayed write list */ 1248 return xfs_buf_delwri_queue(bp, buffer_list); 1249 } 1250