xref: /openbmc/linux/fs/xfs/xfs_buf_item.c (revision 413d6ed3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_inode.h"
18 #include "xfs_inode_item.h"
19 #include "xfs_quota.h"
20 #include "xfs_dquot_item.h"
21 #include "xfs_dquot.h"
22 #include "xfs_trace.h"
23 #include "xfs_log.h"
24 
25 
26 kmem_zone_t	*xfs_buf_item_zone;
27 
28 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
29 {
30 	return container_of(lip, struct xfs_buf_log_item, bli_item);
31 }
32 
33 /* Is this log iovec plausibly large enough to contain the buffer log format? */
34 bool
35 xfs_buf_log_check_iovec(
36 	struct xfs_log_iovec		*iovec)
37 {
38 	struct xfs_buf_log_format	*blfp = iovec->i_addr;
39 	char				*bmp_end;
40 	char				*item_end;
41 
42 	if (offsetof(struct xfs_buf_log_format, blf_data_map) > iovec->i_len)
43 		return false;
44 
45 	item_end = (char *)iovec->i_addr + iovec->i_len;
46 	bmp_end = (char *)&blfp->blf_data_map[blfp->blf_map_size];
47 	return bmp_end <= item_end;
48 }
49 
50 static inline int
51 xfs_buf_log_format_size(
52 	struct xfs_buf_log_format *blfp)
53 {
54 	return offsetof(struct xfs_buf_log_format, blf_data_map) +
55 			(blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
56 }
57 
58 static inline bool
59 xfs_buf_item_straddle(
60 	struct xfs_buf		*bp,
61 	uint			offset,
62 	int			first_bit,
63 	int			nbits)
64 {
65 	void			*first, *last;
66 
67 	first = xfs_buf_offset(bp, offset + (first_bit << XFS_BLF_SHIFT));
68 	last = xfs_buf_offset(bp,
69 			offset + ((first_bit + nbits) << XFS_BLF_SHIFT));
70 
71 	if (last - first != nbits * XFS_BLF_CHUNK)
72 		return true;
73 	return false;
74 }
75 
76 /*
77  * This returns the number of log iovecs needed to log the
78  * given buf log item.
79  *
80  * It calculates this as 1 iovec for the buf log format structure
81  * and 1 for each stretch of non-contiguous chunks to be logged.
82  * Contiguous chunks are logged in a single iovec.
83  *
84  * If the XFS_BLI_STALE flag has been set, then log nothing.
85  */
86 STATIC void
87 xfs_buf_item_size_segment(
88 	struct xfs_buf_log_item		*bip,
89 	struct xfs_buf_log_format	*blfp,
90 	uint				offset,
91 	int				*nvecs,
92 	int				*nbytes)
93 {
94 	struct xfs_buf			*bp = bip->bli_buf;
95 	int				first_bit;
96 	int				nbits;
97 	int				next_bit;
98 	int				last_bit;
99 
100 	first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
101 	if (first_bit == -1)
102 		return;
103 
104 	(*nvecs)++;
105 	*nbytes += xfs_buf_log_format_size(blfp);
106 
107 	do {
108 		nbits = xfs_contig_bits(blfp->blf_data_map,
109 					blfp->blf_map_size, first_bit);
110 		ASSERT(nbits > 0);
111 
112 		/*
113 		 * Straddling a page is rare because we don't log contiguous
114 		 * chunks of unmapped buffers anywhere.
115 		 */
116 		if (nbits > 1 &&
117 		    xfs_buf_item_straddle(bp, offset, first_bit, nbits))
118 			goto slow_scan;
119 
120 		(*nvecs)++;
121 		*nbytes += nbits * XFS_BLF_CHUNK;
122 
123 		/*
124 		 * This takes the bit number to start looking from and
125 		 * returns the next set bit from there.  It returns -1
126 		 * if there are no more bits set or the start bit is
127 		 * beyond the end of the bitmap.
128 		 */
129 		first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
130 					(uint)first_bit + nbits + 1);
131 	} while (first_bit != -1);
132 
133 	return;
134 
135 slow_scan:
136 	/* Count the first bit we jumped out of the above loop from */
137 	(*nvecs)++;
138 	*nbytes += XFS_BLF_CHUNK;
139 	last_bit = first_bit;
140 	while (last_bit != -1) {
141 		/*
142 		 * This takes the bit number to start looking from and
143 		 * returns the next set bit from there.  It returns -1
144 		 * if there are no more bits set or the start bit is
145 		 * beyond the end of the bitmap.
146 		 */
147 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
148 					last_bit + 1);
149 		/*
150 		 * If we run out of bits, leave the loop,
151 		 * else if we find a new set of bits bump the number of vecs,
152 		 * else keep scanning the current set of bits.
153 		 */
154 		if (next_bit == -1) {
155 			break;
156 		} else if (next_bit != last_bit + 1 ||
157 		           xfs_buf_item_straddle(bp, offset, first_bit, nbits)) {
158 			last_bit = next_bit;
159 			first_bit = next_bit;
160 			(*nvecs)++;
161 			nbits = 1;
162 		} else {
163 			last_bit++;
164 			nbits++;
165 		}
166 		*nbytes += XFS_BLF_CHUNK;
167 	}
168 }
169 
170 /*
171  * This returns the number of log iovecs needed to log the given buf log item.
172  *
173  * It calculates this as 1 iovec for the buf log format structure and 1 for each
174  * stretch of non-contiguous chunks to be logged.  Contiguous chunks are logged
175  * in a single iovec.
176  *
177  * Discontiguous buffers need a format structure per region that is being
178  * logged. This makes the changes in the buffer appear to log recovery as though
179  * they came from separate buffers, just like would occur if multiple buffers
180  * were used instead of a single discontiguous buffer. This enables
181  * discontiguous buffers to be in-memory constructs, completely transparent to
182  * what ends up on disk.
183  *
184  * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
185  * format structures.
186  */
187 STATIC void
188 xfs_buf_item_size(
189 	struct xfs_log_item	*lip,
190 	int			*nvecs,
191 	int			*nbytes)
192 {
193 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
194 	struct xfs_buf		*bp = bip->bli_buf;
195 	int			i;
196 	int			bytes;
197 	uint			offset = 0;
198 
199 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
200 	if (bip->bli_flags & XFS_BLI_STALE) {
201 		/*
202 		 * The buffer is stale, so all we need to log
203 		 * is the buf log format structure with the
204 		 * cancel flag in it.
205 		 */
206 		trace_xfs_buf_item_size_stale(bip);
207 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
208 		*nvecs += bip->bli_format_count;
209 		for (i = 0; i < bip->bli_format_count; i++) {
210 			*nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
211 		}
212 		return;
213 	}
214 
215 	ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
216 
217 	if (bip->bli_flags & XFS_BLI_ORDERED) {
218 		/*
219 		 * The buffer has been logged just to order it.
220 		 * It is not being included in the transaction
221 		 * commit, so no vectors are used at all.
222 		 */
223 		trace_xfs_buf_item_size_ordered(bip);
224 		*nvecs = XFS_LOG_VEC_ORDERED;
225 		return;
226 	}
227 
228 	/*
229 	 * The vector count is based on the number of buffer vectors we have
230 	 * dirty bits in. This will only be greater than one when we have a
231 	 * compound buffer with more than one segment dirty. Hence for compound
232 	 * buffers we need to track which segment the dirty bits correspond to,
233 	 * and when we move from one segment to the next increment the vector
234 	 * count for the extra buf log format structure that will need to be
235 	 * written.
236 	 */
237 	bytes = 0;
238 	for (i = 0; i < bip->bli_format_count; i++) {
239 		xfs_buf_item_size_segment(bip, &bip->bli_formats[i], offset,
240 					  nvecs, &bytes);
241 		offset += BBTOB(bp->b_maps[i].bm_len);
242 	}
243 
244 	/*
245 	 * Round up the buffer size required to minimise the number of memory
246 	 * allocations that need to be done as this item grows when relogged by
247 	 * repeated modifications.
248 	 */
249 	*nbytes = round_up(bytes, 512);
250 	trace_xfs_buf_item_size(bip);
251 }
252 
253 static inline void
254 xfs_buf_item_copy_iovec(
255 	struct xfs_log_vec	*lv,
256 	struct xfs_log_iovec	**vecp,
257 	struct xfs_buf		*bp,
258 	uint			offset,
259 	int			first_bit,
260 	uint			nbits)
261 {
262 	offset += first_bit * XFS_BLF_CHUNK;
263 	xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
264 			xfs_buf_offset(bp, offset),
265 			nbits * XFS_BLF_CHUNK);
266 }
267 
268 static void
269 xfs_buf_item_format_segment(
270 	struct xfs_buf_log_item	*bip,
271 	struct xfs_log_vec	*lv,
272 	struct xfs_log_iovec	**vecp,
273 	uint			offset,
274 	struct xfs_buf_log_format *blfp)
275 {
276 	struct xfs_buf		*bp = bip->bli_buf;
277 	uint			base_size;
278 	int			first_bit;
279 	int			last_bit;
280 	int			next_bit;
281 	uint			nbits;
282 
283 	/* copy the flags across from the base format item */
284 	blfp->blf_flags = bip->__bli_format.blf_flags;
285 
286 	/*
287 	 * Base size is the actual size of the ondisk structure - it reflects
288 	 * the actual size of the dirty bitmap rather than the size of the in
289 	 * memory structure.
290 	 */
291 	base_size = xfs_buf_log_format_size(blfp);
292 
293 	first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
294 	if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
295 		/*
296 		 * If the map is not be dirty in the transaction, mark
297 		 * the size as zero and do not advance the vector pointer.
298 		 */
299 		return;
300 	}
301 
302 	blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
303 	blfp->blf_size = 1;
304 
305 	if (bip->bli_flags & XFS_BLI_STALE) {
306 		/*
307 		 * The buffer is stale, so all we need to log
308 		 * is the buf log format structure with the
309 		 * cancel flag in it.
310 		 */
311 		trace_xfs_buf_item_format_stale(bip);
312 		ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
313 		return;
314 	}
315 
316 
317 	/*
318 	 * Fill in an iovec for each set of contiguous chunks.
319 	 */
320 	do {
321 		ASSERT(first_bit >= 0);
322 		nbits = xfs_contig_bits(blfp->blf_data_map,
323 					blfp->blf_map_size, first_bit);
324 		ASSERT(nbits > 0);
325 
326 		/*
327 		 * Straddling a page is rare because we don't log contiguous
328 		 * chunks of unmapped buffers anywhere.
329 		 */
330 		if (nbits > 1 &&
331 		    xfs_buf_item_straddle(bp, offset, first_bit, nbits))
332 			goto slow_scan;
333 
334 		xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
335 					first_bit, nbits);
336 		blfp->blf_size++;
337 
338 		/*
339 		 * This takes the bit number to start looking from and
340 		 * returns the next set bit from there.  It returns -1
341 		 * if there are no more bits set or the start bit is
342 		 * beyond the end of the bitmap.
343 		 */
344 		first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
345 					(uint)first_bit + nbits + 1);
346 	} while (first_bit != -1);
347 
348 	return;
349 
350 slow_scan:
351 	ASSERT(bp->b_addr == NULL);
352 	last_bit = first_bit;
353 	nbits = 1;
354 	for (;;) {
355 		/*
356 		 * This takes the bit number to start looking from and
357 		 * returns the next set bit from there.  It returns -1
358 		 * if there are no more bits set or the start bit is
359 		 * beyond the end of the bitmap.
360 		 */
361 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
362 					(uint)last_bit + 1);
363 		/*
364 		 * If we run out of bits fill in the last iovec and get out of
365 		 * the loop.  Else if we start a new set of bits then fill in
366 		 * the iovec for the series we were looking at and start
367 		 * counting the bits in the new one.  Else we're still in the
368 		 * same set of bits so just keep counting and scanning.
369 		 */
370 		if (next_bit == -1) {
371 			xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
372 						first_bit, nbits);
373 			blfp->blf_size++;
374 			break;
375 		} else if (next_bit != last_bit + 1 ||
376 		           xfs_buf_item_straddle(bp, offset, first_bit, nbits)) {
377 			xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
378 						first_bit, nbits);
379 			blfp->blf_size++;
380 			first_bit = next_bit;
381 			last_bit = next_bit;
382 			nbits = 1;
383 		} else {
384 			last_bit++;
385 			nbits++;
386 		}
387 	}
388 }
389 
390 /*
391  * This is called to fill in the vector of log iovecs for the
392  * given log buf item.  It fills the first entry with a buf log
393  * format structure, and the rest point to contiguous chunks
394  * within the buffer.
395  */
396 STATIC void
397 xfs_buf_item_format(
398 	struct xfs_log_item	*lip,
399 	struct xfs_log_vec	*lv)
400 {
401 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
402 	struct xfs_buf		*bp = bip->bli_buf;
403 	struct xfs_log_iovec	*vecp = NULL;
404 	uint			offset = 0;
405 	int			i;
406 
407 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
408 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
409 	       (bip->bli_flags & XFS_BLI_STALE));
410 	ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
411 	       (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
412 	        && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
413 	ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) ||
414 	       (bip->bli_flags & XFS_BLI_STALE));
415 
416 
417 	/*
418 	 * If it is an inode buffer, transfer the in-memory state to the
419 	 * format flags and clear the in-memory state.
420 	 *
421 	 * For buffer based inode allocation, we do not transfer
422 	 * this state if the inode buffer allocation has not yet been committed
423 	 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
424 	 * correct replay of the inode allocation.
425 	 *
426 	 * For icreate item based inode allocation, the buffers aren't written
427 	 * to the journal during allocation, and hence we should always tag the
428 	 * buffer as an inode buffer so that the correct unlinked list replay
429 	 * occurs during recovery.
430 	 */
431 	if (bip->bli_flags & XFS_BLI_INODE_BUF) {
432 		if (xfs_sb_version_has_v3inode(&lip->li_mountp->m_sb) ||
433 		    !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
434 		      xfs_log_item_in_current_chkpt(lip)))
435 			bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
436 		bip->bli_flags &= ~XFS_BLI_INODE_BUF;
437 	}
438 
439 	for (i = 0; i < bip->bli_format_count; i++) {
440 		xfs_buf_item_format_segment(bip, lv, &vecp, offset,
441 					    &bip->bli_formats[i]);
442 		offset += BBTOB(bp->b_maps[i].bm_len);
443 	}
444 
445 	/*
446 	 * Check to make sure everything is consistent.
447 	 */
448 	trace_xfs_buf_item_format(bip);
449 }
450 
451 /*
452  * This is called to pin the buffer associated with the buf log item in memory
453  * so it cannot be written out.
454  *
455  * We also always take a reference to the buffer log item here so that the bli
456  * is held while the item is pinned in memory. This means that we can
457  * unconditionally drop the reference count a transaction holds when the
458  * transaction is completed.
459  */
460 STATIC void
461 xfs_buf_item_pin(
462 	struct xfs_log_item	*lip)
463 {
464 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
465 
466 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
467 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
468 	       (bip->bli_flags & XFS_BLI_ORDERED) ||
469 	       (bip->bli_flags & XFS_BLI_STALE));
470 
471 	trace_xfs_buf_item_pin(bip);
472 
473 	atomic_inc(&bip->bli_refcount);
474 	atomic_inc(&bip->bli_buf->b_pin_count);
475 }
476 
477 /*
478  * This is called to unpin the buffer associated with the buf log
479  * item which was previously pinned with a call to xfs_buf_item_pin().
480  *
481  * Also drop the reference to the buf item for the current transaction.
482  * If the XFS_BLI_STALE flag is set and we are the last reference,
483  * then free up the buf log item and unlock the buffer.
484  *
485  * If the remove flag is set we are called from uncommit in the
486  * forced-shutdown path.  If that is true and the reference count on
487  * the log item is going to drop to zero we need to free the item's
488  * descriptor in the transaction.
489  */
490 STATIC void
491 xfs_buf_item_unpin(
492 	struct xfs_log_item	*lip,
493 	int			remove)
494 {
495 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
496 	struct xfs_buf		*bp = bip->bli_buf;
497 	int			stale = bip->bli_flags & XFS_BLI_STALE;
498 	int			freed;
499 
500 	ASSERT(bp->b_log_item == bip);
501 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
502 
503 	trace_xfs_buf_item_unpin(bip);
504 
505 	freed = atomic_dec_and_test(&bip->bli_refcount);
506 
507 	if (atomic_dec_and_test(&bp->b_pin_count))
508 		wake_up_all(&bp->b_waiters);
509 
510 	if (freed && stale) {
511 		ASSERT(bip->bli_flags & XFS_BLI_STALE);
512 		ASSERT(xfs_buf_islocked(bp));
513 		ASSERT(bp->b_flags & XBF_STALE);
514 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
515 
516 		trace_xfs_buf_item_unpin_stale(bip);
517 
518 		if (remove) {
519 			/*
520 			 * If we are in a transaction context, we have to
521 			 * remove the log item from the transaction as we are
522 			 * about to release our reference to the buffer.  If we
523 			 * don't, the unlock that occurs later in
524 			 * xfs_trans_uncommit() will try to reference the
525 			 * buffer which we no longer have a hold on.
526 			 */
527 			if (!list_empty(&lip->li_trans))
528 				xfs_trans_del_item(lip);
529 
530 			/*
531 			 * Since the transaction no longer refers to the buffer,
532 			 * the buffer should no longer refer to the transaction.
533 			 */
534 			bp->b_transp = NULL;
535 		}
536 
537 		/*
538 		 * If we get called here because of an IO error, we may or may
539 		 * not have the item on the AIL. xfs_trans_ail_delete() will
540 		 * take care of that situation. xfs_trans_ail_delete() drops
541 		 * the AIL lock.
542 		 */
543 		if (bip->bli_flags & XFS_BLI_STALE_INODE) {
544 			xfs_buf_item_done(bp);
545 			xfs_buf_inode_iodone(bp);
546 			ASSERT(list_empty(&bp->b_li_list));
547 		} else {
548 			xfs_trans_ail_delete(lip, SHUTDOWN_LOG_IO_ERROR);
549 			xfs_buf_item_relse(bp);
550 			ASSERT(bp->b_log_item == NULL);
551 		}
552 		xfs_buf_relse(bp);
553 	} else if (freed && remove) {
554 		/*
555 		 * The buffer must be locked and held by the caller to simulate
556 		 * an async I/O failure.
557 		 */
558 		xfs_buf_lock(bp);
559 		xfs_buf_hold(bp);
560 		bp->b_flags |= XBF_ASYNC;
561 		xfs_buf_ioend_fail(bp);
562 	}
563 }
564 
565 STATIC uint
566 xfs_buf_item_push(
567 	struct xfs_log_item	*lip,
568 	struct list_head	*buffer_list)
569 {
570 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
571 	struct xfs_buf		*bp = bip->bli_buf;
572 	uint			rval = XFS_ITEM_SUCCESS;
573 
574 	if (xfs_buf_ispinned(bp))
575 		return XFS_ITEM_PINNED;
576 	if (!xfs_buf_trylock(bp)) {
577 		/*
578 		 * If we have just raced with a buffer being pinned and it has
579 		 * been marked stale, we could end up stalling until someone else
580 		 * issues a log force to unpin the stale buffer. Check for the
581 		 * race condition here so xfsaild recognizes the buffer is pinned
582 		 * and queues a log force to move it along.
583 		 */
584 		if (xfs_buf_ispinned(bp))
585 			return XFS_ITEM_PINNED;
586 		return XFS_ITEM_LOCKED;
587 	}
588 
589 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
590 
591 	trace_xfs_buf_item_push(bip);
592 
593 	/* has a previous flush failed due to IO errors? */
594 	if (bp->b_flags & XBF_WRITE_FAIL) {
595 		xfs_buf_alert_ratelimited(bp, "XFS: Failing async write",
596 	    "Failing async write on buffer block 0x%llx. Retrying async write.",
597 					  (long long)bp->b_bn);
598 	}
599 
600 	if (!xfs_buf_delwri_queue(bp, buffer_list))
601 		rval = XFS_ITEM_FLUSHING;
602 	xfs_buf_unlock(bp);
603 	return rval;
604 }
605 
606 /*
607  * Drop the buffer log item refcount and take appropriate action. This helper
608  * determines whether the bli must be freed or not, since a decrement to zero
609  * does not necessarily mean the bli is unused.
610  *
611  * Return true if the bli is freed, false otherwise.
612  */
613 bool
614 xfs_buf_item_put(
615 	struct xfs_buf_log_item	*bip)
616 {
617 	struct xfs_log_item	*lip = &bip->bli_item;
618 	bool			aborted;
619 	bool			dirty;
620 
621 	/* drop the bli ref and return if it wasn't the last one */
622 	if (!atomic_dec_and_test(&bip->bli_refcount))
623 		return false;
624 
625 	/*
626 	 * We dropped the last ref and must free the item if clean or aborted.
627 	 * If the bli is dirty and non-aborted, the buffer was clean in the
628 	 * transaction but still awaiting writeback from previous changes. In
629 	 * that case, the bli is freed on buffer writeback completion.
630 	 */
631 	aborted = test_bit(XFS_LI_ABORTED, &lip->li_flags) ||
632 		  XFS_FORCED_SHUTDOWN(lip->li_mountp);
633 	dirty = bip->bli_flags & XFS_BLI_DIRTY;
634 	if (dirty && !aborted)
635 		return false;
636 
637 	/*
638 	 * The bli is aborted or clean. An aborted item may be in the AIL
639 	 * regardless of dirty state.  For example, consider an aborted
640 	 * transaction that invalidated a dirty bli and cleared the dirty
641 	 * state.
642 	 */
643 	if (aborted)
644 		xfs_trans_ail_delete(lip, 0);
645 	xfs_buf_item_relse(bip->bli_buf);
646 	return true;
647 }
648 
649 /*
650  * Release the buffer associated with the buf log item.  If there is no dirty
651  * logged data associated with the buffer recorded in the buf log item, then
652  * free the buf log item and remove the reference to it in the buffer.
653  *
654  * This call ignores the recursion count.  It is only called when the buffer
655  * should REALLY be unlocked, regardless of the recursion count.
656  *
657  * We unconditionally drop the transaction's reference to the log item. If the
658  * item was logged, then another reference was taken when it was pinned, so we
659  * can safely drop the transaction reference now.  This also allows us to avoid
660  * potential races with the unpin code freeing the bli by not referencing the
661  * bli after we've dropped the reference count.
662  *
663  * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
664  * if necessary but do not unlock the buffer.  This is for support of
665  * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
666  * free the item.
667  */
668 STATIC void
669 xfs_buf_item_release(
670 	struct xfs_log_item	*lip)
671 {
672 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
673 	struct xfs_buf		*bp = bip->bli_buf;
674 	bool			released;
675 	bool			hold = bip->bli_flags & XFS_BLI_HOLD;
676 	bool			stale = bip->bli_flags & XFS_BLI_STALE;
677 #if defined(DEBUG) || defined(XFS_WARN)
678 	bool			ordered = bip->bli_flags & XFS_BLI_ORDERED;
679 	bool			dirty = bip->bli_flags & XFS_BLI_DIRTY;
680 	bool			aborted = test_bit(XFS_LI_ABORTED,
681 						   &lip->li_flags);
682 #endif
683 
684 	trace_xfs_buf_item_release(bip);
685 
686 	/*
687 	 * The bli dirty state should match whether the blf has logged segments
688 	 * except for ordered buffers, where only the bli should be dirty.
689 	 */
690 	ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) ||
691 	       (ordered && dirty && !xfs_buf_item_dirty_format(bip)));
692 	ASSERT(!stale || (bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
693 
694 	/*
695 	 * Clear the buffer's association with this transaction and
696 	 * per-transaction state from the bli, which has been copied above.
697 	 */
698 	bp->b_transp = NULL;
699 	bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
700 
701 	/*
702 	 * Unref the item and unlock the buffer unless held or stale. Stale
703 	 * buffers remain locked until final unpin unless the bli is freed by
704 	 * the unref call. The latter implies shutdown because buffer
705 	 * invalidation dirties the bli and transaction.
706 	 */
707 	released = xfs_buf_item_put(bip);
708 	if (hold || (stale && !released))
709 		return;
710 	ASSERT(!stale || aborted);
711 	xfs_buf_relse(bp);
712 }
713 
714 STATIC void
715 xfs_buf_item_committing(
716 	struct xfs_log_item	*lip,
717 	xfs_lsn_t		commit_lsn)
718 {
719 	return xfs_buf_item_release(lip);
720 }
721 
722 /*
723  * This is called to find out where the oldest active copy of the
724  * buf log item in the on disk log resides now that the last log
725  * write of it completed at the given lsn.
726  * We always re-log all the dirty data in a buffer, so usually the
727  * latest copy in the on disk log is the only one that matters.  For
728  * those cases we simply return the given lsn.
729  *
730  * The one exception to this is for buffers full of newly allocated
731  * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
732  * flag set, indicating that only the di_next_unlinked fields from the
733  * inodes in the buffers will be replayed during recovery.  If the
734  * original newly allocated inode images have not yet been flushed
735  * when the buffer is so relogged, then we need to make sure that we
736  * keep the old images in the 'active' portion of the log.  We do this
737  * by returning the original lsn of that transaction here rather than
738  * the current one.
739  */
740 STATIC xfs_lsn_t
741 xfs_buf_item_committed(
742 	struct xfs_log_item	*lip,
743 	xfs_lsn_t		lsn)
744 {
745 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
746 
747 	trace_xfs_buf_item_committed(bip);
748 
749 	if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
750 		return lip->li_lsn;
751 	return lsn;
752 }
753 
754 static const struct xfs_item_ops xfs_buf_item_ops = {
755 	.iop_size	= xfs_buf_item_size,
756 	.iop_format	= xfs_buf_item_format,
757 	.iop_pin	= xfs_buf_item_pin,
758 	.iop_unpin	= xfs_buf_item_unpin,
759 	.iop_release	= xfs_buf_item_release,
760 	.iop_committing	= xfs_buf_item_committing,
761 	.iop_committed	= xfs_buf_item_committed,
762 	.iop_push	= xfs_buf_item_push,
763 };
764 
765 STATIC void
766 xfs_buf_item_get_format(
767 	struct xfs_buf_log_item	*bip,
768 	int			count)
769 {
770 	ASSERT(bip->bli_formats == NULL);
771 	bip->bli_format_count = count;
772 
773 	if (count == 1) {
774 		bip->bli_formats = &bip->__bli_format;
775 		return;
776 	}
777 
778 	bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
779 				0);
780 }
781 
782 STATIC void
783 xfs_buf_item_free_format(
784 	struct xfs_buf_log_item	*bip)
785 {
786 	if (bip->bli_formats != &bip->__bli_format) {
787 		kmem_free(bip->bli_formats);
788 		bip->bli_formats = NULL;
789 	}
790 }
791 
792 /*
793  * Allocate a new buf log item to go with the given buffer.
794  * Set the buffer's b_log_item field to point to the new
795  * buf log item.
796  */
797 int
798 xfs_buf_item_init(
799 	struct xfs_buf	*bp,
800 	struct xfs_mount *mp)
801 {
802 	struct xfs_buf_log_item	*bip = bp->b_log_item;
803 	int			chunks;
804 	int			map_size;
805 	int			i;
806 
807 	/*
808 	 * Check to see if there is already a buf log item for
809 	 * this buffer. If we do already have one, there is
810 	 * nothing to do here so return.
811 	 */
812 	ASSERT(bp->b_mount == mp);
813 	if (bip) {
814 		ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
815 		ASSERT(!bp->b_transp);
816 		ASSERT(bip->bli_buf == bp);
817 		return 0;
818 	}
819 
820 	bip = kmem_cache_zalloc(xfs_buf_item_zone, GFP_KERNEL | __GFP_NOFAIL);
821 	xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
822 	bip->bli_buf = bp;
823 
824 	/*
825 	 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
826 	 * can be divided into. Make sure not to truncate any pieces.
827 	 * map_size is the size of the bitmap needed to describe the
828 	 * chunks of the buffer.
829 	 *
830 	 * Discontiguous buffer support follows the layout of the underlying
831 	 * buffer. This makes the implementation as simple as possible.
832 	 */
833 	xfs_buf_item_get_format(bip, bp->b_map_count);
834 
835 	for (i = 0; i < bip->bli_format_count; i++) {
836 		chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
837 				      XFS_BLF_CHUNK);
838 		map_size = DIV_ROUND_UP(chunks, NBWORD);
839 
840 		if (map_size > XFS_BLF_DATAMAP_SIZE) {
841 			kmem_cache_free(xfs_buf_item_zone, bip);
842 			xfs_err(mp,
843 	"buffer item dirty bitmap (%u uints) too small to reflect %u bytes!",
844 					map_size,
845 					BBTOB(bp->b_maps[i].bm_len));
846 			return -EFSCORRUPTED;
847 		}
848 
849 		bip->bli_formats[i].blf_type = XFS_LI_BUF;
850 		bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
851 		bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
852 		bip->bli_formats[i].blf_map_size = map_size;
853 	}
854 
855 	bp->b_log_item = bip;
856 	xfs_buf_hold(bp);
857 	return 0;
858 }
859 
860 
861 /*
862  * Mark bytes first through last inclusive as dirty in the buf
863  * item's bitmap.
864  */
865 static void
866 xfs_buf_item_log_segment(
867 	uint			first,
868 	uint			last,
869 	uint			*map)
870 {
871 	uint		first_bit;
872 	uint		last_bit;
873 	uint		bits_to_set;
874 	uint		bits_set;
875 	uint		word_num;
876 	uint		*wordp;
877 	uint		bit;
878 	uint		end_bit;
879 	uint		mask;
880 
881 	ASSERT(first < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
882 	ASSERT(last < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
883 
884 	/*
885 	 * Convert byte offsets to bit numbers.
886 	 */
887 	first_bit = first >> XFS_BLF_SHIFT;
888 	last_bit = last >> XFS_BLF_SHIFT;
889 
890 	/*
891 	 * Calculate the total number of bits to be set.
892 	 */
893 	bits_to_set = last_bit - first_bit + 1;
894 
895 	/*
896 	 * Get a pointer to the first word in the bitmap
897 	 * to set a bit in.
898 	 */
899 	word_num = first_bit >> BIT_TO_WORD_SHIFT;
900 	wordp = &map[word_num];
901 
902 	/*
903 	 * Calculate the starting bit in the first word.
904 	 */
905 	bit = first_bit & (uint)(NBWORD - 1);
906 
907 	/*
908 	 * First set any bits in the first word of our range.
909 	 * If it starts at bit 0 of the word, it will be
910 	 * set below rather than here.  That is what the variable
911 	 * bit tells us. The variable bits_set tracks the number
912 	 * of bits that have been set so far.  End_bit is the number
913 	 * of the last bit to be set in this word plus one.
914 	 */
915 	if (bit) {
916 		end_bit = min(bit + bits_to_set, (uint)NBWORD);
917 		mask = ((1U << (end_bit - bit)) - 1) << bit;
918 		*wordp |= mask;
919 		wordp++;
920 		bits_set = end_bit - bit;
921 	} else {
922 		bits_set = 0;
923 	}
924 
925 	/*
926 	 * Now set bits a whole word at a time that are between
927 	 * first_bit and last_bit.
928 	 */
929 	while ((bits_to_set - bits_set) >= NBWORD) {
930 		*wordp = 0xffffffff;
931 		bits_set += NBWORD;
932 		wordp++;
933 	}
934 
935 	/*
936 	 * Finally, set any bits left to be set in one last partial word.
937 	 */
938 	end_bit = bits_to_set - bits_set;
939 	if (end_bit) {
940 		mask = (1U << end_bit) - 1;
941 		*wordp |= mask;
942 	}
943 }
944 
945 /*
946  * Mark bytes first through last inclusive as dirty in the buf
947  * item's bitmap.
948  */
949 void
950 xfs_buf_item_log(
951 	struct xfs_buf_log_item	*bip,
952 	uint			first,
953 	uint			last)
954 {
955 	int			i;
956 	uint			start;
957 	uint			end;
958 	struct xfs_buf		*bp = bip->bli_buf;
959 
960 	/*
961 	 * walk each buffer segment and mark them dirty appropriately.
962 	 */
963 	start = 0;
964 	for (i = 0; i < bip->bli_format_count; i++) {
965 		if (start > last)
966 			break;
967 		end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
968 
969 		/* skip to the map that includes the first byte to log */
970 		if (first > end) {
971 			start += BBTOB(bp->b_maps[i].bm_len);
972 			continue;
973 		}
974 
975 		/*
976 		 * Trim the range to this segment and mark it in the bitmap.
977 		 * Note that we must convert buffer offsets to segment relative
978 		 * offsets (e.g., the first byte of each segment is byte 0 of
979 		 * that segment).
980 		 */
981 		if (first < start)
982 			first = start;
983 		if (end > last)
984 			end = last;
985 		xfs_buf_item_log_segment(first - start, end - start,
986 					 &bip->bli_formats[i].blf_data_map[0]);
987 
988 		start += BBTOB(bp->b_maps[i].bm_len);
989 	}
990 }
991 
992 
993 /*
994  * Return true if the buffer has any ranges logged/dirtied by a transaction,
995  * false otherwise.
996  */
997 bool
998 xfs_buf_item_dirty_format(
999 	struct xfs_buf_log_item	*bip)
1000 {
1001 	int			i;
1002 
1003 	for (i = 0; i < bip->bli_format_count; i++) {
1004 		if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
1005 			     bip->bli_formats[i].blf_map_size))
1006 			return true;
1007 	}
1008 
1009 	return false;
1010 }
1011 
1012 STATIC void
1013 xfs_buf_item_free(
1014 	struct xfs_buf_log_item	*bip)
1015 {
1016 	xfs_buf_item_free_format(bip);
1017 	kmem_free(bip->bli_item.li_lv_shadow);
1018 	kmem_cache_free(xfs_buf_item_zone, bip);
1019 }
1020 
1021 /*
1022  * xfs_buf_item_relse() is called when the buf log item is no longer needed.
1023  */
1024 void
1025 xfs_buf_item_relse(
1026 	struct xfs_buf	*bp)
1027 {
1028 	struct xfs_buf_log_item	*bip = bp->b_log_item;
1029 
1030 	trace_xfs_buf_item_relse(bp, _RET_IP_);
1031 	ASSERT(!test_bit(XFS_LI_IN_AIL, &bip->bli_item.li_flags));
1032 
1033 	bp->b_log_item = NULL;
1034 	xfs_buf_rele(bp);
1035 	xfs_buf_item_free(bip);
1036 }
1037 
1038 void
1039 xfs_buf_item_done(
1040 	struct xfs_buf		*bp)
1041 {
1042 	/*
1043 	 * If we are forcibly shutting down, this may well be off the AIL
1044 	 * already. That's because we simulate the log-committed callbacks to
1045 	 * unpin these buffers. Or we may never have put this item on AIL
1046 	 * because of the transaction was aborted forcibly.
1047 	 * xfs_trans_ail_delete() takes care of these.
1048 	 *
1049 	 * Either way, AIL is useless if we're forcing a shutdown.
1050 	 *
1051 	 * Note that log recovery writes might have buffer items that are not on
1052 	 * the AIL even when the file system is not shut down.
1053 	 */
1054 	xfs_trans_ail_delete(&bp->b_log_item->bli_item,
1055 			     (bp->b_flags & _XBF_LOGRECOVERY) ? 0 :
1056 			     SHUTDOWN_CORRUPT_INCORE);
1057 	xfs_buf_item_relse(bp);
1058 }
1059