1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_mount.h" 14 #include "xfs_trans.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_buf_item.h" 17 #include "xfs_inode.h" 18 #include "xfs_inode_item.h" 19 #include "xfs_quota.h" 20 #include "xfs_dquot_item.h" 21 #include "xfs_dquot.h" 22 #include "xfs_trace.h" 23 #include "xfs_log.h" 24 #include "xfs_log_priv.h" 25 26 27 struct kmem_cache *xfs_buf_item_cache; 28 29 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip) 30 { 31 return container_of(lip, struct xfs_buf_log_item, bli_item); 32 } 33 34 /* Is this log iovec plausibly large enough to contain the buffer log format? */ 35 bool 36 xfs_buf_log_check_iovec( 37 struct xfs_log_iovec *iovec) 38 { 39 struct xfs_buf_log_format *blfp = iovec->i_addr; 40 char *bmp_end; 41 char *item_end; 42 43 if (offsetof(struct xfs_buf_log_format, blf_data_map) > iovec->i_len) 44 return false; 45 46 item_end = (char *)iovec->i_addr + iovec->i_len; 47 bmp_end = (char *)&blfp->blf_data_map[blfp->blf_map_size]; 48 return bmp_end <= item_end; 49 } 50 51 static inline int 52 xfs_buf_log_format_size( 53 struct xfs_buf_log_format *blfp) 54 { 55 return offsetof(struct xfs_buf_log_format, blf_data_map) + 56 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0])); 57 } 58 59 static inline bool 60 xfs_buf_item_straddle( 61 struct xfs_buf *bp, 62 uint offset, 63 int first_bit, 64 int nbits) 65 { 66 void *first, *last; 67 68 first = xfs_buf_offset(bp, offset + (first_bit << XFS_BLF_SHIFT)); 69 last = xfs_buf_offset(bp, 70 offset + ((first_bit + nbits) << XFS_BLF_SHIFT)); 71 72 if (last - first != nbits * XFS_BLF_CHUNK) 73 return true; 74 return false; 75 } 76 77 /* 78 * Return the number of log iovecs and space needed to log the given buf log 79 * item segment. 80 * 81 * It calculates this as 1 iovec for the buf log format structure and 1 for each 82 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged 83 * in a single iovec. 84 */ 85 STATIC void 86 xfs_buf_item_size_segment( 87 struct xfs_buf_log_item *bip, 88 struct xfs_buf_log_format *blfp, 89 uint offset, 90 int *nvecs, 91 int *nbytes) 92 { 93 struct xfs_buf *bp = bip->bli_buf; 94 int first_bit; 95 int nbits; 96 int next_bit; 97 int last_bit; 98 99 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0); 100 if (first_bit == -1) 101 return; 102 103 (*nvecs)++; 104 *nbytes += xfs_buf_log_format_size(blfp); 105 106 do { 107 nbits = xfs_contig_bits(blfp->blf_data_map, 108 blfp->blf_map_size, first_bit); 109 ASSERT(nbits > 0); 110 111 /* 112 * Straddling a page is rare because we don't log contiguous 113 * chunks of unmapped buffers anywhere. 114 */ 115 if (nbits > 1 && 116 xfs_buf_item_straddle(bp, offset, first_bit, nbits)) 117 goto slow_scan; 118 119 (*nvecs)++; 120 *nbytes += nbits * XFS_BLF_CHUNK; 121 122 /* 123 * This takes the bit number to start looking from and 124 * returns the next set bit from there. It returns -1 125 * if there are no more bits set or the start bit is 126 * beyond the end of the bitmap. 127 */ 128 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 129 (uint)first_bit + nbits + 1); 130 } while (first_bit != -1); 131 132 return; 133 134 slow_scan: 135 /* Count the first bit we jumped out of the above loop from */ 136 (*nvecs)++; 137 *nbytes += XFS_BLF_CHUNK; 138 last_bit = first_bit; 139 while (last_bit != -1) { 140 /* 141 * This takes the bit number to start looking from and 142 * returns the next set bit from there. It returns -1 143 * if there are no more bits set or the start bit is 144 * beyond the end of the bitmap. 145 */ 146 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 147 last_bit + 1); 148 /* 149 * If we run out of bits, leave the loop, 150 * else if we find a new set of bits bump the number of vecs, 151 * else keep scanning the current set of bits. 152 */ 153 if (next_bit == -1) { 154 break; 155 } else if (next_bit != last_bit + 1 || 156 xfs_buf_item_straddle(bp, offset, first_bit, nbits)) { 157 last_bit = next_bit; 158 first_bit = next_bit; 159 (*nvecs)++; 160 nbits = 1; 161 } else { 162 last_bit++; 163 nbits++; 164 } 165 *nbytes += XFS_BLF_CHUNK; 166 } 167 } 168 169 /* 170 * Return the number of log iovecs and space needed to log the given buf log 171 * item. 172 * 173 * Discontiguous buffers need a format structure per region that is being 174 * logged. This makes the changes in the buffer appear to log recovery as though 175 * they came from separate buffers, just like would occur if multiple buffers 176 * were used instead of a single discontiguous buffer. This enables 177 * discontiguous buffers to be in-memory constructs, completely transparent to 178 * what ends up on disk. 179 * 180 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log 181 * format structures. If the item has previously been logged and has dirty 182 * regions, we do not relog them in stale buffers. This has the effect of 183 * reducing the size of the relogged item by the amount of dirty data tracked 184 * by the log item. This can result in the committing transaction reducing the 185 * amount of space being consumed by the CIL. 186 */ 187 STATIC void 188 xfs_buf_item_size( 189 struct xfs_log_item *lip, 190 int *nvecs, 191 int *nbytes) 192 { 193 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 194 struct xfs_buf *bp = bip->bli_buf; 195 int i; 196 int bytes; 197 uint offset = 0; 198 199 ASSERT(atomic_read(&bip->bli_refcount) > 0); 200 if (bip->bli_flags & XFS_BLI_STALE) { 201 /* 202 * The buffer is stale, so all we need to log is the buf log 203 * format structure with the cancel flag in it as we are never 204 * going to replay the changes tracked in the log item. 205 */ 206 trace_xfs_buf_item_size_stale(bip); 207 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 208 *nvecs += bip->bli_format_count; 209 for (i = 0; i < bip->bli_format_count; i++) { 210 *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]); 211 } 212 return; 213 } 214 215 ASSERT(bip->bli_flags & XFS_BLI_LOGGED); 216 217 if (bip->bli_flags & XFS_BLI_ORDERED) { 218 /* 219 * The buffer has been logged just to order it. It is not being 220 * included in the transaction commit, so no vectors are used at 221 * all. 222 */ 223 trace_xfs_buf_item_size_ordered(bip); 224 *nvecs = XFS_LOG_VEC_ORDERED; 225 return; 226 } 227 228 /* 229 * The vector count is based on the number of buffer vectors we have 230 * dirty bits in. This will only be greater than one when we have a 231 * compound buffer with more than one segment dirty. Hence for compound 232 * buffers we need to track which segment the dirty bits correspond to, 233 * and when we move from one segment to the next increment the vector 234 * count for the extra buf log format structure that will need to be 235 * written. 236 */ 237 bytes = 0; 238 for (i = 0; i < bip->bli_format_count; i++) { 239 xfs_buf_item_size_segment(bip, &bip->bli_formats[i], offset, 240 nvecs, &bytes); 241 offset += BBTOB(bp->b_maps[i].bm_len); 242 } 243 244 /* 245 * Round up the buffer size required to minimise the number of memory 246 * allocations that need to be done as this item grows when relogged by 247 * repeated modifications. 248 */ 249 *nbytes = round_up(bytes, 512); 250 trace_xfs_buf_item_size(bip); 251 } 252 253 static inline void 254 xfs_buf_item_copy_iovec( 255 struct xfs_log_vec *lv, 256 struct xfs_log_iovec **vecp, 257 struct xfs_buf *bp, 258 uint offset, 259 int first_bit, 260 uint nbits) 261 { 262 offset += first_bit * XFS_BLF_CHUNK; 263 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK, 264 xfs_buf_offset(bp, offset), 265 nbits * XFS_BLF_CHUNK); 266 } 267 268 static void 269 xfs_buf_item_format_segment( 270 struct xfs_buf_log_item *bip, 271 struct xfs_log_vec *lv, 272 struct xfs_log_iovec **vecp, 273 uint offset, 274 struct xfs_buf_log_format *blfp) 275 { 276 struct xfs_buf *bp = bip->bli_buf; 277 uint base_size; 278 int first_bit; 279 int last_bit; 280 int next_bit; 281 uint nbits; 282 283 /* copy the flags across from the base format item */ 284 blfp->blf_flags = bip->__bli_format.blf_flags; 285 286 /* 287 * Base size is the actual size of the ondisk structure - it reflects 288 * the actual size of the dirty bitmap rather than the size of the in 289 * memory structure. 290 */ 291 base_size = xfs_buf_log_format_size(blfp); 292 293 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0); 294 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) { 295 /* 296 * If the map is not be dirty in the transaction, mark 297 * the size as zero and do not advance the vector pointer. 298 */ 299 return; 300 } 301 302 blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size); 303 blfp->blf_size = 1; 304 305 if (bip->bli_flags & XFS_BLI_STALE) { 306 /* 307 * The buffer is stale, so all we need to log 308 * is the buf log format structure with the 309 * cancel flag in it. 310 */ 311 trace_xfs_buf_item_format_stale(bip); 312 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL); 313 return; 314 } 315 316 317 /* 318 * Fill in an iovec for each set of contiguous chunks. 319 */ 320 do { 321 ASSERT(first_bit >= 0); 322 nbits = xfs_contig_bits(blfp->blf_data_map, 323 blfp->blf_map_size, first_bit); 324 ASSERT(nbits > 0); 325 326 /* 327 * Straddling a page is rare because we don't log contiguous 328 * chunks of unmapped buffers anywhere. 329 */ 330 if (nbits > 1 && 331 xfs_buf_item_straddle(bp, offset, first_bit, nbits)) 332 goto slow_scan; 333 334 xfs_buf_item_copy_iovec(lv, vecp, bp, offset, 335 first_bit, nbits); 336 blfp->blf_size++; 337 338 /* 339 * This takes the bit number to start looking from and 340 * returns the next set bit from there. It returns -1 341 * if there are no more bits set or the start bit is 342 * beyond the end of the bitmap. 343 */ 344 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 345 (uint)first_bit + nbits + 1); 346 } while (first_bit != -1); 347 348 return; 349 350 slow_scan: 351 ASSERT(bp->b_addr == NULL); 352 last_bit = first_bit; 353 nbits = 1; 354 for (;;) { 355 /* 356 * This takes the bit number to start looking from and 357 * returns the next set bit from there. It returns -1 358 * if there are no more bits set or the start bit is 359 * beyond the end of the bitmap. 360 */ 361 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 362 (uint)last_bit + 1); 363 /* 364 * If we run out of bits fill in the last iovec and get out of 365 * the loop. Else if we start a new set of bits then fill in 366 * the iovec for the series we were looking at and start 367 * counting the bits in the new one. Else we're still in the 368 * same set of bits so just keep counting and scanning. 369 */ 370 if (next_bit == -1) { 371 xfs_buf_item_copy_iovec(lv, vecp, bp, offset, 372 first_bit, nbits); 373 blfp->blf_size++; 374 break; 375 } else if (next_bit != last_bit + 1 || 376 xfs_buf_item_straddle(bp, offset, first_bit, nbits)) { 377 xfs_buf_item_copy_iovec(lv, vecp, bp, offset, 378 first_bit, nbits); 379 blfp->blf_size++; 380 first_bit = next_bit; 381 last_bit = next_bit; 382 nbits = 1; 383 } else { 384 last_bit++; 385 nbits++; 386 } 387 } 388 } 389 390 /* 391 * This is called to fill in the vector of log iovecs for the 392 * given log buf item. It fills the first entry with a buf log 393 * format structure, and the rest point to contiguous chunks 394 * within the buffer. 395 */ 396 STATIC void 397 xfs_buf_item_format( 398 struct xfs_log_item *lip, 399 struct xfs_log_vec *lv) 400 { 401 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 402 struct xfs_buf *bp = bip->bli_buf; 403 struct xfs_log_iovec *vecp = NULL; 404 uint offset = 0; 405 int i; 406 407 ASSERT(atomic_read(&bip->bli_refcount) > 0); 408 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || 409 (bip->bli_flags & XFS_BLI_STALE)); 410 ASSERT((bip->bli_flags & XFS_BLI_STALE) || 411 (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF 412 && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF)); 413 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) || 414 (bip->bli_flags & XFS_BLI_STALE)); 415 416 417 /* 418 * If it is an inode buffer, transfer the in-memory state to the 419 * format flags and clear the in-memory state. 420 * 421 * For buffer based inode allocation, we do not transfer 422 * this state if the inode buffer allocation has not yet been committed 423 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent 424 * correct replay of the inode allocation. 425 * 426 * For icreate item based inode allocation, the buffers aren't written 427 * to the journal during allocation, and hence we should always tag the 428 * buffer as an inode buffer so that the correct unlinked list replay 429 * occurs during recovery. 430 */ 431 if (bip->bli_flags & XFS_BLI_INODE_BUF) { 432 if (xfs_has_v3inodes(lip->li_log->l_mp) || 433 !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && 434 xfs_log_item_in_current_chkpt(lip))) 435 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF; 436 bip->bli_flags &= ~XFS_BLI_INODE_BUF; 437 } 438 439 for (i = 0; i < bip->bli_format_count; i++) { 440 xfs_buf_item_format_segment(bip, lv, &vecp, offset, 441 &bip->bli_formats[i]); 442 offset += BBTOB(bp->b_maps[i].bm_len); 443 } 444 445 /* 446 * Check to make sure everything is consistent. 447 */ 448 trace_xfs_buf_item_format(bip); 449 } 450 451 /* 452 * This is called to pin the buffer associated with the buf log item in memory 453 * so it cannot be written out. 454 * 455 * We take a reference to the buffer log item here so that the BLI life cycle 456 * extends at least until the buffer is unpinned via xfs_buf_item_unpin() and 457 * inserted into the AIL. 458 * 459 * We also need to take a reference to the buffer itself as the BLI unpin 460 * processing requires accessing the buffer after the BLI has dropped the final 461 * BLI reference. See xfs_buf_item_unpin() for an explanation. 462 * If unpins race to drop the final BLI reference and only the 463 * BLI owns a reference to the buffer, then the loser of the race can have the 464 * buffer fgreed from under it (e.g. on shutdown). Taking a buffer reference per 465 * pin count ensures the life cycle of the buffer extends for as 466 * long as we hold the buffer pin reference in xfs_buf_item_unpin(). 467 */ 468 STATIC void 469 xfs_buf_item_pin( 470 struct xfs_log_item *lip) 471 { 472 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 473 474 ASSERT(atomic_read(&bip->bli_refcount) > 0); 475 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || 476 (bip->bli_flags & XFS_BLI_ORDERED) || 477 (bip->bli_flags & XFS_BLI_STALE)); 478 479 trace_xfs_buf_item_pin(bip); 480 481 xfs_buf_hold(bip->bli_buf); 482 atomic_inc(&bip->bli_refcount); 483 atomic_inc(&bip->bli_buf->b_pin_count); 484 } 485 486 /* 487 * This is called to unpin the buffer associated with the buf log item which was 488 * previously pinned with a call to xfs_buf_item_pin(). We enter this function 489 * with a buffer pin count, a buffer reference and a BLI reference. 490 * 491 * We must drop the BLI reference before we unpin the buffer because the AIL 492 * doesn't acquire a BLI reference whenever it accesses it. Therefore if the 493 * refcount drops to zero, the bli could still be AIL resident and the buffer 494 * submitted for I/O at any point before we return. This can result in IO 495 * completion freeing the buffer while we are still trying to access it here. 496 * This race condition can also occur in shutdown situations where we abort and 497 * unpin buffers from contexts other that journal IO completion. 498 * 499 * Hence we have to hold a buffer reference per pin count to ensure that the 500 * buffer cannot be freed until we have finished processing the unpin operation. 501 * The reference is taken in xfs_buf_item_pin(), and we must hold it until we 502 * are done processing the buffer state. In the case of an abort (remove = 503 * true) then we re-use the current pin reference as the IO reference we hand 504 * off to IO failure handling. 505 */ 506 STATIC void 507 xfs_buf_item_unpin( 508 struct xfs_log_item *lip, 509 int remove) 510 { 511 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 512 struct xfs_buf *bp = bip->bli_buf; 513 int stale = bip->bli_flags & XFS_BLI_STALE; 514 int freed; 515 516 ASSERT(bp->b_log_item == bip); 517 ASSERT(atomic_read(&bip->bli_refcount) > 0); 518 519 trace_xfs_buf_item_unpin(bip); 520 521 freed = atomic_dec_and_test(&bip->bli_refcount); 522 if (atomic_dec_and_test(&bp->b_pin_count)) 523 wake_up_all(&bp->b_waiters); 524 525 /* 526 * Nothing to do but drop the buffer pin reference if the BLI is 527 * still active. 528 */ 529 if (!freed) { 530 xfs_buf_rele(bp); 531 return; 532 } 533 534 if (stale) { 535 ASSERT(bip->bli_flags & XFS_BLI_STALE); 536 ASSERT(xfs_buf_islocked(bp)); 537 ASSERT(bp->b_flags & XBF_STALE); 538 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 539 ASSERT(list_empty(&lip->li_trans)); 540 ASSERT(!bp->b_transp); 541 542 trace_xfs_buf_item_unpin_stale(bip); 543 544 /* 545 * The buffer has been locked and referenced since it was marked 546 * stale so we own both lock and reference exclusively here. We 547 * do not need the pin reference any more, so drop it now so 548 * that we only have one reference to drop once item completion 549 * processing is complete. 550 */ 551 xfs_buf_rele(bp); 552 553 /* 554 * If we get called here because of an IO error, we may or may 555 * not have the item on the AIL. xfs_trans_ail_delete() will 556 * take care of that situation. xfs_trans_ail_delete() drops 557 * the AIL lock. 558 */ 559 if (bip->bli_flags & XFS_BLI_STALE_INODE) { 560 xfs_buf_item_done(bp); 561 xfs_buf_inode_iodone(bp); 562 ASSERT(list_empty(&bp->b_li_list)); 563 } else { 564 xfs_trans_ail_delete(lip, SHUTDOWN_LOG_IO_ERROR); 565 xfs_buf_item_relse(bp); 566 ASSERT(bp->b_log_item == NULL); 567 } 568 xfs_buf_relse(bp); 569 return; 570 } 571 572 if (remove) { 573 /* 574 * We need to simulate an async IO failures here to ensure that 575 * the correct error completion is run on this buffer. This 576 * requires a reference to the buffer and for the buffer to be 577 * locked. We can safely pass ownership of the pin reference to 578 * the IO to ensure that nothing can free the buffer while we 579 * wait for the lock and then run the IO failure completion. 580 */ 581 xfs_buf_lock(bp); 582 bp->b_flags |= XBF_ASYNC; 583 xfs_buf_ioend_fail(bp); 584 return; 585 } 586 587 /* 588 * BLI has no more active references - it will be moved to the AIL to 589 * manage the remaining BLI/buffer life cycle. There is nothing left for 590 * us to do here so drop the pin reference to the buffer. 591 */ 592 xfs_buf_rele(bp); 593 } 594 595 STATIC uint 596 xfs_buf_item_push( 597 struct xfs_log_item *lip, 598 struct list_head *buffer_list) 599 { 600 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 601 struct xfs_buf *bp = bip->bli_buf; 602 uint rval = XFS_ITEM_SUCCESS; 603 604 if (xfs_buf_ispinned(bp)) 605 return XFS_ITEM_PINNED; 606 if (!xfs_buf_trylock(bp)) { 607 /* 608 * If we have just raced with a buffer being pinned and it has 609 * been marked stale, we could end up stalling until someone else 610 * issues a log force to unpin the stale buffer. Check for the 611 * race condition here so xfsaild recognizes the buffer is pinned 612 * and queues a log force to move it along. 613 */ 614 if (xfs_buf_ispinned(bp)) 615 return XFS_ITEM_PINNED; 616 return XFS_ITEM_LOCKED; 617 } 618 619 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 620 621 trace_xfs_buf_item_push(bip); 622 623 /* has a previous flush failed due to IO errors? */ 624 if (bp->b_flags & XBF_WRITE_FAIL) { 625 xfs_buf_alert_ratelimited(bp, "XFS: Failing async write", 626 "Failing async write on buffer block 0x%llx. Retrying async write.", 627 (long long)xfs_buf_daddr(bp)); 628 } 629 630 if (!xfs_buf_delwri_queue(bp, buffer_list)) 631 rval = XFS_ITEM_FLUSHING; 632 xfs_buf_unlock(bp); 633 return rval; 634 } 635 636 /* 637 * Drop the buffer log item refcount and take appropriate action. This helper 638 * determines whether the bli must be freed or not, since a decrement to zero 639 * does not necessarily mean the bli is unused. 640 * 641 * Return true if the bli is freed, false otherwise. 642 */ 643 bool 644 xfs_buf_item_put( 645 struct xfs_buf_log_item *bip) 646 { 647 struct xfs_log_item *lip = &bip->bli_item; 648 bool aborted; 649 bool dirty; 650 651 /* drop the bli ref and return if it wasn't the last one */ 652 if (!atomic_dec_and_test(&bip->bli_refcount)) 653 return false; 654 655 /* 656 * We dropped the last ref and must free the item if clean or aborted. 657 * If the bli is dirty and non-aborted, the buffer was clean in the 658 * transaction but still awaiting writeback from previous changes. In 659 * that case, the bli is freed on buffer writeback completion. 660 */ 661 aborted = test_bit(XFS_LI_ABORTED, &lip->li_flags) || 662 xlog_is_shutdown(lip->li_log); 663 dirty = bip->bli_flags & XFS_BLI_DIRTY; 664 if (dirty && !aborted) 665 return false; 666 667 /* 668 * The bli is aborted or clean. An aborted item may be in the AIL 669 * regardless of dirty state. For example, consider an aborted 670 * transaction that invalidated a dirty bli and cleared the dirty 671 * state. 672 */ 673 if (aborted) 674 xfs_trans_ail_delete(lip, 0); 675 xfs_buf_item_relse(bip->bli_buf); 676 return true; 677 } 678 679 /* 680 * Release the buffer associated with the buf log item. If there is no dirty 681 * logged data associated with the buffer recorded in the buf log item, then 682 * free the buf log item and remove the reference to it in the buffer. 683 * 684 * This call ignores the recursion count. It is only called when the buffer 685 * should REALLY be unlocked, regardless of the recursion count. 686 * 687 * We unconditionally drop the transaction's reference to the log item. If the 688 * item was logged, then another reference was taken when it was pinned, so we 689 * can safely drop the transaction reference now. This also allows us to avoid 690 * potential races with the unpin code freeing the bli by not referencing the 691 * bli after we've dropped the reference count. 692 * 693 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item 694 * if necessary but do not unlock the buffer. This is for support of 695 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't 696 * free the item. 697 */ 698 STATIC void 699 xfs_buf_item_release( 700 struct xfs_log_item *lip) 701 { 702 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 703 struct xfs_buf *bp = bip->bli_buf; 704 bool released; 705 bool hold = bip->bli_flags & XFS_BLI_HOLD; 706 bool stale = bip->bli_flags & XFS_BLI_STALE; 707 #if defined(DEBUG) || defined(XFS_WARN) 708 bool ordered = bip->bli_flags & XFS_BLI_ORDERED; 709 bool dirty = bip->bli_flags & XFS_BLI_DIRTY; 710 bool aborted = test_bit(XFS_LI_ABORTED, 711 &lip->li_flags); 712 #endif 713 714 trace_xfs_buf_item_release(bip); 715 716 /* 717 * The bli dirty state should match whether the blf has logged segments 718 * except for ordered buffers, where only the bli should be dirty. 719 */ 720 ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) || 721 (ordered && dirty && !xfs_buf_item_dirty_format(bip))); 722 ASSERT(!stale || (bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 723 724 /* 725 * Clear the buffer's association with this transaction and 726 * per-transaction state from the bli, which has been copied above. 727 */ 728 bp->b_transp = NULL; 729 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED); 730 731 /* 732 * Unref the item and unlock the buffer unless held or stale. Stale 733 * buffers remain locked until final unpin unless the bli is freed by 734 * the unref call. The latter implies shutdown because buffer 735 * invalidation dirties the bli and transaction. 736 */ 737 released = xfs_buf_item_put(bip); 738 if (hold || (stale && !released)) 739 return; 740 ASSERT(!stale || aborted); 741 xfs_buf_relse(bp); 742 } 743 744 STATIC void 745 xfs_buf_item_committing( 746 struct xfs_log_item *lip, 747 xfs_csn_t seq) 748 { 749 return xfs_buf_item_release(lip); 750 } 751 752 /* 753 * This is called to find out where the oldest active copy of the 754 * buf log item in the on disk log resides now that the last log 755 * write of it completed at the given lsn. 756 * We always re-log all the dirty data in a buffer, so usually the 757 * latest copy in the on disk log is the only one that matters. For 758 * those cases we simply return the given lsn. 759 * 760 * The one exception to this is for buffers full of newly allocated 761 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF 762 * flag set, indicating that only the di_next_unlinked fields from the 763 * inodes in the buffers will be replayed during recovery. If the 764 * original newly allocated inode images have not yet been flushed 765 * when the buffer is so relogged, then we need to make sure that we 766 * keep the old images in the 'active' portion of the log. We do this 767 * by returning the original lsn of that transaction here rather than 768 * the current one. 769 */ 770 STATIC xfs_lsn_t 771 xfs_buf_item_committed( 772 struct xfs_log_item *lip, 773 xfs_lsn_t lsn) 774 { 775 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 776 777 trace_xfs_buf_item_committed(bip); 778 779 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0) 780 return lip->li_lsn; 781 return lsn; 782 } 783 784 static const struct xfs_item_ops xfs_buf_item_ops = { 785 .iop_size = xfs_buf_item_size, 786 .iop_format = xfs_buf_item_format, 787 .iop_pin = xfs_buf_item_pin, 788 .iop_unpin = xfs_buf_item_unpin, 789 .iop_release = xfs_buf_item_release, 790 .iop_committing = xfs_buf_item_committing, 791 .iop_committed = xfs_buf_item_committed, 792 .iop_push = xfs_buf_item_push, 793 }; 794 795 STATIC void 796 xfs_buf_item_get_format( 797 struct xfs_buf_log_item *bip, 798 int count) 799 { 800 ASSERT(bip->bli_formats == NULL); 801 bip->bli_format_count = count; 802 803 if (count == 1) { 804 bip->bli_formats = &bip->__bli_format; 805 return; 806 } 807 808 bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format), 809 0); 810 } 811 812 STATIC void 813 xfs_buf_item_free_format( 814 struct xfs_buf_log_item *bip) 815 { 816 if (bip->bli_formats != &bip->__bli_format) { 817 kmem_free(bip->bli_formats); 818 bip->bli_formats = NULL; 819 } 820 } 821 822 /* 823 * Allocate a new buf log item to go with the given buffer. 824 * Set the buffer's b_log_item field to point to the new 825 * buf log item. 826 */ 827 int 828 xfs_buf_item_init( 829 struct xfs_buf *bp, 830 struct xfs_mount *mp) 831 { 832 struct xfs_buf_log_item *bip = bp->b_log_item; 833 int chunks; 834 int map_size; 835 int i; 836 837 /* 838 * Check to see if there is already a buf log item for 839 * this buffer. If we do already have one, there is 840 * nothing to do here so return. 841 */ 842 ASSERT(bp->b_mount == mp); 843 if (bip) { 844 ASSERT(bip->bli_item.li_type == XFS_LI_BUF); 845 ASSERT(!bp->b_transp); 846 ASSERT(bip->bli_buf == bp); 847 return 0; 848 } 849 850 bip = kmem_cache_zalloc(xfs_buf_item_cache, GFP_KERNEL | __GFP_NOFAIL); 851 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops); 852 bip->bli_buf = bp; 853 854 /* 855 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer 856 * can be divided into. Make sure not to truncate any pieces. 857 * map_size is the size of the bitmap needed to describe the 858 * chunks of the buffer. 859 * 860 * Discontiguous buffer support follows the layout of the underlying 861 * buffer. This makes the implementation as simple as possible. 862 */ 863 xfs_buf_item_get_format(bip, bp->b_map_count); 864 865 for (i = 0; i < bip->bli_format_count; i++) { 866 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len), 867 XFS_BLF_CHUNK); 868 map_size = DIV_ROUND_UP(chunks, NBWORD); 869 870 if (map_size > XFS_BLF_DATAMAP_SIZE) { 871 kmem_cache_free(xfs_buf_item_cache, bip); 872 xfs_err(mp, 873 "buffer item dirty bitmap (%u uints) too small to reflect %u bytes!", 874 map_size, 875 BBTOB(bp->b_maps[i].bm_len)); 876 return -EFSCORRUPTED; 877 } 878 879 bip->bli_formats[i].blf_type = XFS_LI_BUF; 880 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn; 881 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len; 882 bip->bli_formats[i].blf_map_size = map_size; 883 } 884 885 bp->b_log_item = bip; 886 xfs_buf_hold(bp); 887 return 0; 888 } 889 890 891 /* 892 * Mark bytes first through last inclusive as dirty in the buf 893 * item's bitmap. 894 */ 895 static void 896 xfs_buf_item_log_segment( 897 uint first, 898 uint last, 899 uint *map) 900 { 901 uint first_bit; 902 uint last_bit; 903 uint bits_to_set; 904 uint bits_set; 905 uint word_num; 906 uint *wordp; 907 uint bit; 908 uint end_bit; 909 uint mask; 910 911 ASSERT(first < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD); 912 ASSERT(last < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD); 913 914 /* 915 * Convert byte offsets to bit numbers. 916 */ 917 first_bit = first >> XFS_BLF_SHIFT; 918 last_bit = last >> XFS_BLF_SHIFT; 919 920 /* 921 * Calculate the total number of bits to be set. 922 */ 923 bits_to_set = last_bit - first_bit + 1; 924 925 /* 926 * Get a pointer to the first word in the bitmap 927 * to set a bit in. 928 */ 929 word_num = first_bit >> BIT_TO_WORD_SHIFT; 930 wordp = &map[word_num]; 931 932 /* 933 * Calculate the starting bit in the first word. 934 */ 935 bit = first_bit & (uint)(NBWORD - 1); 936 937 /* 938 * First set any bits in the first word of our range. 939 * If it starts at bit 0 of the word, it will be 940 * set below rather than here. That is what the variable 941 * bit tells us. The variable bits_set tracks the number 942 * of bits that have been set so far. End_bit is the number 943 * of the last bit to be set in this word plus one. 944 */ 945 if (bit) { 946 end_bit = min(bit + bits_to_set, (uint)NBWORD); 947 mask = ((1U << (end_bit - bit)) - 1) << bit; 948 *wordp |= mask; 949 wordp++; 950 bits_set = end_bit - bit; 951 } else { 952 bits_set = 0; 953 } 954 955 /* 956 * Now set bits a whole word at a time that are between 957 * first_bit and last_bit. 958 */ 959 while ((bits_to_set - bits_set) >= NBWORD) { 960 *wordp = 0xffffffff; 961 bits_set += NBWORD; 962 wordp++; 963 } 964 965 /* 966 * Finally, set any bits left to be set in one last partial word. 967 */ 968 end_bit = bits_to_set - bits_set; 969 if (end_bit) { 970 mask = (1U << end_bit) - 1; 971 *wordp |= mask; 972 } 973 } 974 975 /* 976 * Mark bytes first through last inclusive as dirty in the buf 977 * item's bitmap. 978 */ 979 void 980 xfs_buf_item_log( 981 struct xfs_buf_log_item *bip, 982 uint first, 983 uint last) 984 { 985 int i; 986 uint start; 987 uint end; 988 struct xfs_buf *bp = bip->bli_buf; 989 990 /* 991 * walk each buffer segment and mark them dirty appropriately. 992 */ 993 start = 0; 994 for (i = 0; i < bip->bli_format_count; i++) { 995 if (start > last) 996 break; 997 end = start + BBTOB(bp->b_maps[i].bm_len) - 1; 998 999 /* skip to the map that includes the first byte to log */ 1000 if (first > end) { 1001 start += BBTOB(bp->b_maps[i].bm_len); 1002 continue; 1003 } 1004 1005 /* 1006 * Trim the range to this segment and mark it in the bitmap. 1007 * Note that we must convert buffer offsets to segment relative 1008 * offsets (e.g., the first byte of each segment is byte 0 of 1009 * that segment). 1010 */ 1011 if (first < start) 1012 first = start; 1013 if (end > last) 1014 end = last; 1015 xfs_buf_item_log_segment(first - start, end - start, 1016 &bip->bli_formats[i].blf_data_map[0]); 1017 1018 start += BBTOB(bp->b_maps[i].bm_len); 1019 } 1020 } 1021 1022 1023 /* 1024 * Return true if the buffer has any ranges logged/dirtied by a transaction, 1025 * false otherwise. 1026 */ 1027 bool 1028 xfs_buf_item_dirty_format( 1029 struct xfs_buf_log_item *bip) 1030 { 1031 int i; 1032 1033 for (i = 0; i < bip->bli_format_count; i++) { 1034 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map, 1035 bip->bli_formats[i].blf_map_size)) 1036 return true; 1037 } 1038 1039 return false; 1040 } 1041 1042 STATIC void 1043 xfs_buf_item_free( 1044 struct xfs_buf_log_item *bip) 1045 { 1046 xfs_buf_item_free_format(bip); 1047 kmem_free(bip->bli_item.li_lv_shadow); 1048 kmem_cache_free(xfs_buf_item_cache, bip); 1049 } 1050 1051 /* 1052 * xfs_buf_item_relse() is called when the buf log item is no longer needed. 1053 */ 1054 void 1055 xfs_buf_item_relse( 1056 struct xfs_buf *bp) 1057 { 1058 struct xfs_buf_log_item *bip = bp->b_log_item; 1059 1060 trace_xfs_buf_item_relse(bp, _RET_IP_); 1061 ASSERT(!test_bit(XFS_LI_IN_AIL, &bip->bli_item.li_flags)); 1062 1063 if (atomic_read(&bip->bli_refcount)) 1064 return; 1065 bp->b_log_item = NULL; 1066 xfs_buf_rele(bp); 1067 xfs_buf_item_free(bip); 1068 } 1069 1070 void 1071 xfs_buf_item_done( 1072 struct xfs_buf *bp) 1073 { 1074 /* 1075 * If we are forcibly shutting down, this may well be off the AIL 1076 * already. That's because we simulate the log-committed callbacks to 1077 * unpin these buffers. Or we may never have put this item on AIL 1078 * because of the transaction was aborted forcibly. 1079 * xfs_trans_ail_delete() takes care of these. 1080 * 1081 * Either way, AIL is useless if we're forcing a shutdown. 1082 * 1083 * Note that log recovery writes might have buffer items that are not on 1084 * the AIL even when the file system is not shut down. 1085 */ 1086 xfs_trans_ail_delete(&bp->b_log_item->bli_item, 1087 (bp->b_flags & _XBF_LOGRECOVERY) ? 0 : 1088 SHUTDOWN_CORRUPT_INCORE); 1089 xfs_buf_item_relse(bp); 1090 } 1091