xref: /openbmc/linux/fs/xfs/xfs_buf_item.c (revision 31b90347)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_log_format.h"
21 #include "xfs_trans_resv.h"
22 #include "xfs_bit.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_trans.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_error.h"
30 #include "xfs_trace.h"
31 #include "xfs_log.h"
32 
33 
34 kmem_zone_t	*xfs_buf_item_zone;
35 
36 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
37 {
38 	return container_of(lip, struct xfs_buf_log_item, bli_item);
39 }
40 
41 STATIC void	xfs_buf_do_callbacks(struct xfs_buf *bp);
42 
43 static inline int
44 xfs_buf_log_format_size(
45 	struct xfs_buf_log_format *blfp)
46 {
47 	return offsetof(struct xfs_buf_log_format, blf_data_map) +
48 			(blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
49 }
50 
51 /*
52  * This returns the number of log iovecs needed to log the
53  * given buf log item.
54  *
55  * It calculates this as 1 iovec for the buf log format structure
56  * and 1 for each stretch of non-contiguous chunks to be logged.
57  * Contiguous chunks are logged in a single iovec.
58  *
59  * If the XFS_BLI_STALE flag has been set, then log nothing.
60  */
61 STATIC void
62 xfs_buf_item_size_segment(
63 	struct xfs_buf_log_item	*bip,
64 	struct xfs_buf_log_format *blfp,
65 	int			*nvecs,
66 	int			*nbytes)
67 {
68 	struct xfs_buf		*bp = bip->bli_buf;
69 	int			next_bit;
70 	int			last_bit;
71 
72 	last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
73 	if (last_bit == -1)
74 		return;
75 
76 	/*
77 	 * initial count for a dirty buffer is 2 vectors - the format structure
78 	 * and the first dirty region.
79 	 */
80 	*nvecs += 2;
81 	*nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
82 
83 	while (last_bit != -1) {
84 		/*
85 		 * This takes the bit number to start looking from and
86 		 * returns the next set bit from there.  It returns -1
87 		 * if there are no more bits set or the start bit is
88 		 * beyond the end of the bitmap.
89 		 */
90 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
91 					last_bit + 1);
92 		/*
93 		 * If we run out of bits, leave the loop,
94 		 * else if we find a new set of bits bump the number of vecs,
95 		 * else keep scanning the current set of bits.
96 		 */
97 		if (next_bit == -1) {
98 			break;
99 		} else if (next_bit != last_bit + 1) {
100 			last_bit = next_bit;
101 			(*nvecs)++;
102 		} else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
103 			   (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
104 			    XFS_BLF_CHUNK)) {
105 			last_bit = next_bit;
106 			(*nvecs)++;
107 		} else {
108 			last_bit++;
109 		}
110 		*nbytes += XFS_BLF_CHUNK;
111 	}
112 }
113 
114 /*
115  * This returns the number of log iovecs needed to log the given buf log item.
116  *
117  * It calculates this as 1 iovec for the buf log format structure and 1 for each
118  * stretch of non-contiguous chunks to be logged.  Contiguous chunks are logged
119  * in a single iovec.
120  *
121  * Discontiguous buffers need a format structure per region that that is being
122  * logged. This makes the changes in the buffer appear to log recovery as though
123  * they came from separate buffers, just like would occur if multiple buffers
124  * were used instead of a single discontiguous buffer. This enables
125  * discontiguous buffers to be in-memory constructs, completely transparent to
126  * what ends up on disk.
127  *
128  * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
129  * format structures.
130  */
131 STATIC void
132 xfs_buf_item_size(
133 	struct xfs_log_item	*lip,
134 	int			*nvecs,
135 	int			*nbytes)
136 {
137 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
138 	int			i;
139 
140 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
141 	if (bip->bli_flags & XFS_BLI_STALE) {
142 		/*
143 		 * The buffer is stale, so all we need to log
144 		 * is the buf log format structure with the
145 		 * cancel flag in it.
146 		 */
147 		trace_xfs_buf_item_size_stale(bip);
148 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
149 		*nvecs += bip->bli_format_count;
150 		for (i = 0; i < bip->bli_format_count; i++) {
151 			*nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
152 		}
153 		return;
154 	}
155 
156 	ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
157 
158 	if (bip->bli_flags & XFS_BLI_ORDERED) {
159 		/*
160 		 * The buffer has been logged just to order it.
161 		 * It is not being included in the transaction
162 		 * commit, so no vectors are used at all.
163 		 */
164 		trace_xfs_buf_item_size_ordered(bip);
165 		*nvecs = XFS_LOG_VEC_ORDERED;
166 		return;
167 	}
168 
169 	/*
170 	 * the vector count is based on the number of buffer vectors we have
171 	 * dirty bits in. This will only be greater than one when we have a
172 	 * compound buffer with more than one segment dirty. Hence for compound
173 	 * buffers we need to track which segment the dirty bits correspond to,
174 	 * and when we move from one segment to the next increment the vector
175 	 * count for the extra buf log format structure that will need to be
176 	 * written.
177 	 */
178 	for (i = 0; i < bip->bli_format_count; i++) {
179 		xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
180 					  nvecs, nbytes);
181 	}
182 	trace_xfs_buf_item_size(bip);
183 }
184 
185 static struct xfs_log_iovec *
186 xfs_buf_item_format_segment(
187 	struct xfs_buf_log_item	*bip,
188 	struct xfs_log_iovec	*vecp,
189 	uint			offset,
190 	struct xfs_buf_log_format *blfp)
191 {
192 	struct xfs_buf	*bp = bip->bli_buf;
193 	uint		base_size;
194 	uint		nvecs;
195 	int		first_bit;
196 	int		last_bit;
197 	int		next_bit;
198 	uint		nbits;
199 	uint		buffer_offset;
200 
201 	/* copy the flags across from the base format item */
202 	blfp->blf_flags = bip->__bli_format.blf_flags;
203 
204 	/*
205 	 * Base size is the actual size of the ondisk structure - it reflects
206 	 * the actual size of the dirty bitmap rather than the size of the in
207 	 * memory structure.
208 	 */
209 	base_size = xfs_buf_log_format_size(blfp);
210 
211 	nvecs = 0;
212 	first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
213 	if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
214 		/*
215 		 * If the map is not be dirty in the transaction, mark
216 		 * the size as zero and do not advance the vector pointer.
217 		 */
218 		goto out;
219 	}
220 
221 	vecp->i_addr = blfp;
222 	vecp->i_len = base_size;
223 	vecp->i_type = XLOG_REG_TYPE_BFORMAT;
224 	vecp++;
225 	nvecs = 1;
226 
227 	if (bip->bli_flags & XFS_BLI_STALE) {
228 		/*
229 		 * The buffer is stale, so all we need to log
230 		 * is the buf log format structure with the
231 		 * cancel flag in it.
232 		 */
233 		trace_xfs_buf_item_format_stale(bip);
234 		ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
235 		goto out;
236 	}
237 
238 
239 	/*
240 	 * Fill in an iovec for each set of contiguous chunks.
241 	 */
242 
243 	last_bit = first_bit;
244 	nbits = 1;
245 	for (;;) {
246 		/*
247 		 * This takes the bit number to start looking from and
248 		 * returns the next set bit from there.  It returns -1
249 		 * if there are no more bits set or the start bit is
250 		 * beyond the end of the bitmap.
251 		 */
252 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
253 					(uint)last_bit + 1);
254 		/*
255 		 * If we run out of bits fill in the last iovec and get
256 		 * out of the loop.
257 		 * Else if we start a new set of bits then fill in the
258 		 * iovec for the series we were looking at and start
259 		 * counting the bits in the new one.
260 		 * Else we're still in the same set of bits so just
261 		 * keep counting and scanning.
262 		 */
263 		if (next_bit == -1) {
264 			buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
265 			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
266 			vecp->i_len = nbits * XFS_BLF_CHUNK;
267 			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
268 			nvecs++;
269 			break;
270 		} else if (next_bit != last_bit + 1) {
271 			buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
272 			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
273 			vecp->i_len = nbits * XFS_BLF_CHUNK;
274 			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
275 			nvecs++;
276 			vecp++;
277 			first_bit = next_bit;
278 			last_bit = next_bit;
279 			nbits = 1;
280 		} else if (xfs_buf_offset(bp, offset +
281 					      (next_bit << XFS_BLF_SHIFT)) !=
282 			   (xfs_buf_offset(bp, offset +
283 					       (last_bit << XFS_BLF_SHIFT)) +
284 			    XFS_BLF_CHUNK)) {
285 			buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
286 			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
287 			vecp->i_len = nbits * XFS_BLF_CHUNK;
288 			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
289 			nvecs++;
290 			vecp++;
291 			first_bit = next_bit;
292 			last_bit = next_bit;
293 			nbits = 1;
294 		} else {
295 			last_bit++;
296 			nbits++;
297 		}
298 	}
299 out:
300 	blfp->blf_size = nvecs;
301 	return vecp;
302 }
303 
304 /*
305  * This is called to fill in the vector of log iovecs for the
306  * given log buf item.  It fills the first entry with a buf log
307  * format structure, and the rest point to contiguous chunks
308  * within the buffer.
309  */
310 STATIC void
311 xfs_buf_item_format(
312 	struct xfs_log_item	*lip,
313 	struct xfs_log_iovec	*vecp)
314 {
315 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
316 	struct xfs_buf		*bp = bip->bli_buf;
317 	uint			offset = 0;
318 	int			i;
319 
320 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
321 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
322 	       (bip->bli_flags & XFS_BLI_STALE));
323 
324 	/*
325 	 * If it is an inode buffer, transfer the in-memory state to the
326 	 * format flags and clear the in-memory state.
327 	 *
328 	 * For buffer based inode allocation, we do not transfer
329 	 * this state if the inode buffer allocation has not yet been committed
330 	 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
331 	 * correct replay of the inode allocation.
332 	 *
333 	 * For icreate item based inode allocation, the buffers aren't written
334 	 * to the journal during allocation, and hence we should always tag the
335 	 * buffer as an inode buffer so that the correct unlinked list replay
336 	 * occurs during recovery.
337 	 */
338 	if (bip->bli_flags & XFS_BLI_INODE_BUF) {
339 		if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) ||
340 		    !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
341 		      xfs_log_item_in_current_chkpt(lip)))
342 			bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
343 		bip->bli_flags &= ~XFS_BLI_INODE_BUF;
344 	}
345 
346 	if ((bip->bli_flags & (XFS_BLI_ORDERED|XFS_BLI_STALE)) ==
347 							XFS_BLI_ORDERED) {
348 		/*
349 		 * The buffer has been logged just to order it.  It is not being
350 		 * included in the transaction commit, so don't format it.
351 		 */
352 		trace_xfs_buf_item_format_ordered(bip);
353 		return;
354 	}
355 
356 	for (i = 0; i < bip->bli_format_count; i++) {
357 		vecp = xfs_buf_item_format_segment(bip, vecp, offset,
358 						&bip->bli_formats[i]);
359 		offset += bp->b_maps[i].bm_len;
360 	}
361 
362 	/*
363 	 * Check to make sure everything is consistent.
364 	 */
365 	trace_xfs_buf_item_format(bip);
366 }
367 
368 /*
369  * This is called to pin the buffer associated with the buf log item in memory
370  * so it cannot be written out.
371  *
372  * We also always take a reference to the buffer log item here so that the bli
373  * is held while the item is pinned in memory. This means that we can
374  * unconditionally drop the reference count a transaction holds when the
375  * transaction is completed.
376  */
377 STATIC void
378 xfs_buf_item_pin(
379 	struct xfs_log_item	*lip)
380 {
381 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
382 
383 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
384 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
385 	       (bip->bli_flags & XFS_BLI_ORDERED) ||
386 	       (bip->bli_flags & XFS_BLI_STALE));
387 
388 	trace_xfs_buf_item_pin(bip);
389 
390 	atomic_inc(&bip->bli_refcount);
391 	atomic_inc(&bip->bli_buf->b_pin_count);
392 }
393 
394 /*
395  * This is called to unpin the buffer associated with the buf log
396  * item which was previously pinned with a call to xfs_buf_item_pin().
397  *
398  * Also drop the reference to the buf item for the current transaction.
399  * If the XFS_BLI_STALE flag is set and we are the last reference,
400  * then free up the buf log item and unlock the buffer.
401  *
402  * If the remove flag is set we are called from uncommit in the
403  * forced-shutdown path.  If that is true and the reference count on
404  * the log item is going to drop to zero we need to free the item's
405  * descriptor in the transaction.
406  */
407 STATIC void
408 xfs_buf_item_unpin(
409 	struct xfs_log_item	*lip,
410 	int			remove)
411 {
412 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
413 	xfs_buf_t	*bp = bip->bli_buf;
414 	struct xfs_ail	*ailp = lip->li_ailp;
415 	int		stale = bip->bli_flags & XFS_BLI_STALE;
416 	int		freed;
417 
418 	ASSERT(bp->b_fspriv == bip);
419 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
420 
421 	trace_xfs_buf_item_unpin(bip);
422 
423 	freed = atomic_dec_and_test(&bip->bli_refcount);
424 
425 	if (atomic_dec_and_test(&bp->b_pin_count))
426 		wake_up_all(&bp->b_waiters);
427 
428 	if (freed && stale) {
429 		ASSERT(bip->bli_flags & XFS_BLI_STALE);
430 		ASSERT(xfs_buf_islocked(bp));
431 		ASSERT(XFS_BUF_ISSTALE(bp));
432 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
433 
434 		trace_xfs_buf_item_unpin_stale(bip);
435 
436 		if (remove) {
437 			/*
438 			 * If we are in a transaction context, we have to
439 			 * remove the log item from the transaction as we are
440 			 * about to release our reference to the buffer.  If we
441 			 * don't, the unlock that occurs later in
442 			 * xfs_trans_uncommit() will try to reference the
443 			 * buffer which we no longer have a hold on.
444 			 */
445 			if (lip->li_desc)
446 				xfs_trans_del_item(lip);
447 
448 			/*
449 			 * Since the transaction no longer refers to the buffer,
450 			 * the buffer should no longer refer to the transaction.
451 			 */
452 			bp->b_transp = NULL;
453 		}
454 
455 		/*
456 		 * If we get called here because of an IO error, we may
457 		 * or may not have the item on the AIL. xfs_trans_ail_delete()
458 		 * will take care of that situation.
459 		 * xfs_trans_ail_delete() drops the AIL lock.
460 		 */
461 		if (bip->bli_flags & XFS_BLI_STALE_INODE) {
462 			xfs_buf_do_callbacks(bp);
463 			bp->b_fspriv = NULL;
464 			bp->b_iodone = NULL;
465 		} else {
466 			spin_lock(&ailp->xa_lock);
467 			xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
468 			xfs_buf_item_relse(bp);
469 			ASSERT(bp->b_fspriv == NULL);
470 		}
471 		xfs_buf_relse(bp);
472 	} else if (freed && remove) {
473 		/*
474 		 * There are currently two references to the buffer - the active
475 		 * LRU reference and the buf log item. What we are about to do
476 		 * here - simulate a failed IO completion - requires 3
477 		 * references.
478 		 *
479 		 * The LRU reference is removed by the xfs_buf_stale() call. The
480 		 * buf item reference is removed by the xfs_buf_iodone()
481 		 * callback that is run by xfs_buf_do_callbacks() during ioend
482 		 * processing (via the bp->b_iodone callback), and then finally
483 		 * the ioend processing will drop the IO reference if the buffer
484 		 * is marked XBF_ASYNC.
485 		 *
486 		 * Hence we need to take an additional reference here so that IO
487 		 * completion processing doesn't free the buffer prematurely.
488 		 */
489 		xfs_buf_lock(bp);
490 		xfs_buf_hold(bp);
491 		bp->b_flags |= XBF_ASYNC;
492 		xfs_buf_ioerror(bp, EIO);
493 		XFS_BUF_UNDONE(bp);
494 		xfs_buf_stale(bp);
495 		xfs_buf_ioend(bp, 0);
496 	}
497 }
498 
499 /*
500  * Buffer IO error rate limiting. Limit it to no more than 10 messages per 30
501  * seconds so as to not spam logs too much on repeated detection of the same
502  * buffer being bad..
503  */
504 
505 DEFINE_RATELIMIT_STATE(xfs_buf_write_fail_rl_state, 30 * HZ, 10);
506 
507 STATIC uint
508 xfs_buf_item_push(
509 	struct xfs_log_item	*lip,
510 	struct list_head	*buffer_list)
511 {
512 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
513 	struct xfs_buf		*bp = bip->bli_buf;
514 	uint			rval = XFS_ITEM_SUCCESS;
515 
516 	if (xfs_buf_ispinned(bp))
517 		return XFS_ITEM_PINNED;
518 	if (!xfs_buf_trylock(bp)) {
519 		/*
520 		 * If we have just raced with a buffer being pinned and it has
521 		 * been marked stale, we could end up stalling until someone else
522 		 * issues a log force to unpin the stale buffer. Check for the
523 		 * race condition here so xfsaild recognizes the buffer is pinned
524 		 * and queues a log force to move it along.
525 		 */
526 		if (xfs_buf_ispinned(bp))
527 			return XFS_ITEM_PINNED;
528 		return XFS_ITEM_LOCKED;
529 	}
530 
531 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
532 
533 	trace_xfs_buf_item_push(bip);
534 
535 	/* has a previous flush failed due to IO errors? */
536 	if ((bp->b_flags & XBF_WRITE_FAIL) &&
537 	    ___ratelimit(&xfs_buf_write_fail_rl_state, "XFS:")) {
538 		xfs_warn(bp->b_target->bt_mount,
539 "Detected failing async write on buffer block 0x%llx. Retrying async write.\n",
540 			 (long long)bp->b_bn);
541 	}
542 
543 	if (!xfs_buf_delwri_queue(bp, buffer_list))
544 		rval = XFS_ITEM_FLUSHING;
545 	xfs_buf_unlock(bp);
546 	return rval;
547 }
548 
549 /*
550  * Release the buffer associated with the buf log item.  If there is no dirty
551  * logged data associated with the buffer recorded in the buf log item, then
552  * free the buf log item and remove the reference to it in the buffer.
553  *
554  * This call ignores the recursion count.  It is only called when the buffer
555  * should REALLY be unlocked, regardless of the recursion count.
556  *
557  * We unconditionally drop the transaction's reference to the log item. If the
558  * item was logged, then another reference was taken when it was pinned, so we
559  * can safely drop the transaction reference now.  This also allows us to avoid
560  * potential races with the unpin code freeing the bli by not referencing the
561  * bli after we've dropped the reference count.
562  *
563  * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
564  * if necessary but do not unlock the buffer.  This is for support of
565  * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
566  * free the item.
567  */
568 STATIC void
569 xfs_buf_item_unlock(
570 	struct xfs_log_item	*lip)
571 {
572 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
573 	struct xfs_buf		*bp = bip->bli_buf;
574 	bool			clean;
575 	bool			aborted;
576 	int			flags;
577 
578 	/* Clear the buffer's association with this transaction. */
579 	bp->b_transp = NULL;
580 
581 	/*
582 	 * If this is a transaction abort, don't return early.  Instead, allow
583 	 * the brelse to happen.  Normally it would be done for stale
584 	 * (cancelled) buffers at unpin time, but we'll never go through the
585 	 * pin/unpin cycle if we abort inside commit.
586 	 */
587 	aborted = (lip->li_flags & XFS_LI_ABORTED) ? true : false;
588 	/*
589 	 * Before possibly freeing the buf item, copy the per-transaction state
590 	 * so we can reference it safely later after clearing it from the
591 	 * buffer log item.
592 	 */
593 	flags = bip->bli_flags;
594 	bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
595 
596 	/*
597 	 * If the buf item is marked stale, then don't do anything.  We'll
598 	 * unlock the buffer and free the buf item when the buffer is unpinned
599 	 * for the last time.
600 	 */
601 	if (flags & XFS_BLI_STALE) {
602 		trace_xfs_buf_item_unlock_stale(bip);
603 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
604 		if (!aborted) {
605 			atomic_dec(&bip->bli_refcount);
606 			return;
607 		}
608 	}
609 
610 	trace_xfs_buf_item_unlock(bip);
611 
612 	/*
613 	 * If the buf item isn't tracking any data, free it, otherwise drop the
614 	 * reference we hold to it. If we are aborting the transaction, this may
615 	 * be the only reference to the buf item, so we free it anyway
616 	 * regardless of whether it is dirty or not. A dirty abort implies a
617 	 * shutdown, anyway.
618 	 *
619 	 * Ordered buffers are dirty but may have no recorded changes, so ensure
620 	 * we only release clean items here.
621 	 */
622 	clean = (flags & XFS_BLI_DIRTY) ? false : true;
623 	if (clean) {
624 		int i;
625 		for (i = 0; i < bip->bli_format_count; i++) {
626 			if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
627 				     bip->bli_formats[i].blf_map_size)) {
628 				clean = false;
629 				break;
630 			}
631 		}
632 	}
633 
634 	/*
635 	 * Clean buffers, by definition, cannot be in the AIL. However, aborted
636 	 * buffers may be dirty and hence in the AIL. Therefore if we are
637 	 * aborting a buffer and we've just taken the last refernce away, we
638 	 * have to check if it is in the AIL before freeing it. We need to free
639 	 * it in this case, because an aborted transaction has already shut the
640 	 * filesystem down and this is the last chance we will have to do so.
641 	 */
642 	if (atomic_dec_and_test(&bip->bli_refcount)) {
643 		if (clean)
644 			xfs_buf_item_relse(bp);
645 		else if (aborted) {
646 			ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp));
647 			if (lip->li_flags & XFS_LI_IN_AIL) {
648 				spin_lock(&lip->li_ailp->xa_lock);
649 				xfs_trans_ail_delete(lip->li_ailp, lip,
650 						     SHUTDOWN_LOG_IO_ERROR);
651 			}
652 			xfs_buf_item_relse(bp);
653 		}
654 	}
655 
656 	if (!(flags & XFS_BLI_HOLD))
657 		xfs_buf_relse(bp);
658 }
659 
660 /*
661  * This is called to find out where the oldest active copy of the
662  * buf log item in the on disk log resides now that the last log
663  * write of it completed at the given lsn.
664  * We always re-log all the dirty data in a buffer, so usually the
665  * latest copy in the on disk log is the only one that matters.  For
666  * those cases we simply return the given lsn.
667  *
668  * The one exception to this is for buffers full of newly allocated
669  * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
670  * flag set, indicating that only the di_next_unlinked fields from the
671  * inodes in the buffers will be replayed during recovery.  If the
672  * original newly allocated inode images have not yet been flushed
673  * when the buffer is so relogged, then we need to make sure that we
674  * keep the old images in the 'active' portion of the log.  We do this
675  * by returning the original lsn of that transaction here rather than
676  * the current one.
677  */
678 STATIC xfs_lsn_t
679 xfs_buf_item_committed(
680 	struct xfs_log_item	*lip,
681 	xfs_lsn_t		lsn)
682 {
683 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
684 
685 	trace_xfs_buf_item_committed(bip);
686 
687 	if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
688 		return lip->li_lsn;
689 	return lsn;
690 }
691 
692 STATIC void
693 xfs_buf_item_committing(
694 	struct xfs_log_item	*lip,
695 	xfs_lsn_t		commit_lsn)
696 {
697 }
698 
699 /*
700  * This is the ops vector shared by all buf log items.
701  */
702 static const struct xfs_item_ops xfs_buf_item_ops = {
703 	.iop_size	= xfs_buf_item_size,
704 	.iop_format	= xfs_buf_item_format,
705 	.iop_pin	= xfs_buf_item_pin,
706 	.iop_unpin	= xfs_buf_item_unpin,
707 	.iop_unlock	= xfs_buf_item_unlock,
708 	.iop_committed	= xfs_buf_item_committed,
709 	.iop_push	= xfs_buf_item_push,
710 	.iop_committing = xfs_buf_item_committing
711 };
712 
713 STATIC int
714 xfs_buf_item_get_format(
715 	struct xfs_buf_log_item	*bip,
716 	int			count)
717 {
718 	ASSERT(bip->bli_formats == NULL);
719 	bip->bli_format_count = count;
720 
721 	if (count == 1) {
722 		bip->bli_formats = &bip->__bli_format;
723 		return 0;
724 	}
725 
726 	bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
727 				KM_SLEEP);
728 	if (!bip->bli_formats)
729 		return ENOMEM;
730 	return 0;
731 }
732 
733 STATIC void
734 xfs_buf_item_free_format(
735 	struct xfs_buf_log_item	*bip)
736 {
737 	if (bip->bli_formats != &bip->__bli_format) {
738 		kmem_free(bip->bli_formats);
739 		bip->bli_formats = NULL;
740 	}
741 }
742 
743 /*
744  * Allocate a new buf log item to go with the given buffer.
745  * Set the buffer's b_fsprivate field to point to the new
746  * buf log item.  If there are other item's attached to the
747  * buffer (see xfs_buf_attach_iodone() below), then put the
748  * buf log item at the front.
749  */
750 void
751 xfs_buf_item_init(
752 	xfs_buf_t	*bp,
753 	xfs_mount_t	*mp)
754 {
755 	xfs_log_item_t		*lip = bp->b_fspriv;
756 	xfs_buf_log_item_t	*bip;
757 	int			chunks;
758 	int			map_size;
759 	int			error;
760 	int			i;
761 
762 	/*
763 	 * Check to see if there is already a buf log item for
764 	 * this buffer.  If there is, it is guaranteed to be
765 	 * the first.  If we do already have one, there is
766 	 * nothing to do here so return.
767 	 */
768 	ASSERT(bp->b_target->bt_mount == mp);
769 	if (lip != NULL && lip->li_type == XFS_LI_BUF)
770 		return;
771 
772 	bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
773 	xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
774 	bip->bli_buf = bp;
775 	xfs_buf_hold(bp);
776 
777 	/*
778 	 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
779 	 * can be divided into. Make sure not to truncate any pieces.
780 	 * map_size is the size of the bitmap needed to describe the
781 	 * chunks of the buffer.
782 	 *
783 	 * Discontiguous buffer support follows the layout of the underlying
784 	 * buffer. This makes the implementation as simple as possible.
785 	 */
786 	error = xfs_buf_item_get_format(bip, bp->b_map_count);
787 	ASSERT(error == 0);
788 
789 	for (i = 0; i < bip->bli_format_count; i++) {
790 		chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
791 				      XFS_BLF_CHUNK);
792 		map_size = DIV_ROUND_UP(chunks, NBWORD);
793 
794 		bip->bli_formats[i].blf_type = XFS_LI_BUF;
795 		bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
796 		bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
797 		bip->bli_formats[i].blf_map_size = map_size;
798 	}
799 
800 #ifdef XFS_TRANS_DEBUG
801 	/*
802 	 * Allocate the arrays for tracking what needs to be logged
803 	 * and what our callers request to be logged.  bli_orig
804 	 * holds a copy of the original, clean buffer for comparison
805 	 * against, and bli_logged keeps a 1 bit flag per byte in
806 	 * the buffer to indicate which bytes the callers have asked
807 	 * to have logged.
808 	 */
809 	bip->bli_orig = kmem_alloc(BBTOB(bp->b_length), KM_SLEEP);
810 	memcpy(bip->bli_orig, bp->b_addr, BBTOB(bp->b_length));
811 	bip->bli_logged = kmem_zalloc(BBTOB(bp->b_length) / NBBY, KM_SLEEP);
812 #endif
813 
814 	/*
815 	 * Put the buf item into the list of items attached to the
816 	 * buffer at the front.
817 	 */
818 	if (bp->b_fspriv)
819 		bip->bli_item.li_bio_list = bp->b_fspriv;
820 	bp->b_fspriv = bip;
821 }
822 
823 
824 /*
825  * Mark bytes first through last inclusive as dirty in the buf
826  * item's bitmap.
827  */
828 static void
829 xfs_buf_item_log_segment(
830 	struct xfs_buf_log_item	*bip,
831 	uint			first,
832 	uint			last,
833 	uint			*map)
834 {
835 	uint		first_bit;
836 	uint		last_bit;
837 	uint		bits_to_set;
838 	uint		bits_set;
839 	uint		word_num;
840 	uint		*wordp;
841 	uint		bit;
842 	uint		end_bit;
843 	uint		mask;
844 
845 	/*
846 	 * Convert byte offsets to bit numbers.
847 	 */
848 	first_bit = first >> XFS_BLF_SHIFT;
849 	last_bit = last >> XFS_BLF_SHIFT;
850 
851 	/*
852 	 * Calculate the total number of bits to be set.
853 	 */
854 	bits_to_set = last_bit - first_bit + 1;
855 
856 	/*
857 	 * Get a pointer to the first word in the bitmap
858 	 * to set a bit in.
859 	 */
860 	word_num = first_bit >> BIT_TO_WORD_SHIFT;
861 	wordp = &map[word_num];
862 
863 	/*
864 	 * Calculate the starting bit in the first word.
865 	 */
866 	bit = first_bit & (uint)(NBWORD - 1);
867 
868 	/*
869 	 * First set any bits in the first word of our range.
870 	 * If it starts at bit 0 of the word, it will be
871 	 * set below rather than here.  That is what the variable
872 	 * bit tells us. The variable bits_set tracks the number
873 	 * of bits that have been set so far.  End_bit is the number
874 	 * of the last bit to be set in this word plus one.
875 	 */
876 	if (bit) {
877 		end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
878 		mask = ((1 << (end_bit - bit)) - 1) << bit;
879 		*wordp |= mask;
880 		wordp++;
881 		bits_set = end_bit - bit;
882 	} else {
883 		bits_set = 0;
884 	}
885 
886 	/*
887 	 * Now set bits a whole word at a time that are between
888 	 * first_bit and last_bit.
889 	 */
890 	while ((bits_to_set - bits_set) >= NBWORD) {
891 		*wordp |= 0xffffffff;
892 		bits_set += NBWORD;
893 		wordp++;
894 	}
895 
896 	/*
897 	 * Finally, set any bits left to be set in one last partial word.
898 	 */
899 	end_bit = bits_to_set - bits_set;
900 	if (end_bit) {
901 		mask = (1 << end_bit) - 1;
902 		*wordp |= mask;
903 	}
904 }
905 
906 /*
907  * Mark bytes first through last inclusive as dirty in the buf
908  * item's bitmap.
909  */
910 void
911 xfs_buf_item_log(
912 	xfs_buf_log_item_t	*bip,
913 	uint			first,
914 	uint			last)
915 {
916 	int			i;
917 	uint			start;
918 	uint			end;
919 	struct xfs_buf		*bp = bip->bli_buf;
920 
921 	/*
922 	 * walk each buffer segment and mark them dirty appropriately.
923 	 */
924 	start = 0;
925 	for (i = 0; i < bip->bli_format_count; i++) {
926 		if (start > last)
927 			break;
928 		end = start + BBTOB(bp->b_maps[i].bm_len);
929 		if (first > end) {
930 			start += BBTOB(bp->b_maps[i].bm_len);
931 			continue;
932 		}
933 		if (first < start)
934 			first = start;
935 		if (end > last)
936 			end = last;
937 
938 		xfs_buf_item_log_segment(bip, first, end,
939 					 &bip->bli_formats[i].blf_data_map[0]);
940 
941 		start += bp->b_maps[i].bm_len;
942 	}
943 }
944 
945 
946 /*
947  * Return 1 if the buffer has been logged or ordered in a transaction (at any
948  * point, not just the current transaction) and 0 if not.
949  */
950 uint
951 xfs_buf_item_dirty(
952 	xfs_buf_log_item_t	*bip)
953 {
954 	return (bip->bli_flags & XFS_BLI_DIRTY);
955 }
956 
957 STATIC void
958 xfs_buf_item_free(
959 	xfs_buf_log_item_t	*bip)
960 {
961 #ifdef XFS_TRANS_DEBUG
962 	kmem_free(bip->bli_orig);
963 	kmem_free(bip->bli_logged);
964 #endif /* XFS_TRANS_DEBUG */
965 
966 	xfs_buf_item_free_format(bip);
967 	kmem_zone_free(xfs_buf_item_zone, bip);
968 }
969 
970 /*
971  * This is called when the buf log item is no longer needed.  It should
972  * free the buf log item associated with the given buffer and clear
973  * the buffer's pointer to the buf log item.  If there are no more
974  * items in the list, clear the b_iodone field of the buffer (see
975  * xfs_buf_attach_iodone() below).
976  */
977 void
978 xfs_buf_item_relse(
979 	xfs_buf_t	*bp)
980 {
981 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
982 
983 	trace_xfs_buf_item_relse(bp, _RET_IP_);
984 	ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
985 
986 	bp->b_fspriv = bip->bli_item.li_bio_list;
987 	if (bp->b_fspriv == NULL)
988 		bp->b_iodone = NULL;
989 
990 	xfs_buf_rele(bp);
991 	xfs_buf_item_free(bip);
992 }
993 
994 
995 /*
996  * Add the given log item with its callback to the list of callbacks
997  * to be called when the buffer's I/O completes.  If it is not set
998  * already, set the buffer's b_iodone() routine to be
999  * xfs_buf_iodone_callbacks() and link the log item into the list of
1000  * items rooted at b_fsprivate.  Items are always added as the second
1001  * entry in the list if there is a first, because the buf item code
1002  * assumes that the buf log item is first.
1003  */
1004 void
1005 xfs_buf_attach_iodone(
1006 	xfs_buf_t	*bp,
1007 	void		(*cb)(xfs_buf_t *, xfs_log_item_t *),
1008 	xfs_log_item_t	*lip)
1009 {
1010 	xfs_log_item_t	*head_lip;
1011 
1012 	ASSERT(xfs_buf_islocked(bp));
1013 
1014 	lip->li_cb = cb;
1015 	head_lip = bp->b_fspriv;
1016 	if (head_lip) {
1017 		lip->li_bio_list = head_lip->li_bio_list;
1018 		head_lip->li_bio_list = lip;
1019 	} else {
1020 		bp->b_fspriv = lip;
1021 	}
1022 
1023 	ASSERT(bp->b_iodone == NULL ||
1024 	       bp->b_iodone == xfs_buf_iodone_callbacks);
1025 	bp->b_iodone = xfs_buf_iodone_callbacks;
1026 }
1027 
1028 /*
1029  * We can have many callbacks on a buffer. Running the callbacks individually
1030  * can cause a lot of contention on the AIL lock, so we allow for a single
1031  * callback to be able to scan the remaining lip->li_bio_list for other items
1032  * of the same type and callback to be processed in the first call.
1033  *
1034  * As a result, the loop walking the callback list below will also modify the
1035  * list. it removes the first item from the list and then runs the callback.
1036  * The loop then restarts from the new head of the list. This allows the
1037  * callback to scan and modify the list attached to the buffer and we don't
1038  * have to care about maintaining a next item pointer.
1039  */
1040 STATIC void
1041 xfs_buf_do_callbacks(
1042 	struct xfs_buf		*bp)
1043 {
1044 	struct xfs_log_item	*lip;
1045 
1046 	while ((lip = bp->b_fspriv) != NULL) {
1047 		bp->b_fspriv = lip->li_bio_list;
1048 		ASSERT(lip->li_cb != NULL);
1049 		/*
1050 		 * Clear the next pointer so we don't have any
1051 		 * confusion if the item is added to another buf.
1052 		 * Don't touch the log item after calling its
1053 		 * callback, because it could have freed itself.
1054 		 */
1055 		lip->li_bio_list = NULL;
1056 		lip->li_cb(bp, lip);
1057 	}
1058 }
1059 
1060 /*
1061  * This is the iodone() function for buffers which have had callbacks
1062  * attached to them by xfs_buf_attach_iodone().  It should remove each
1063  * log item from the buffer's list and call the callback of each in turn.
1064  * When done, the buffer's fsprivate field is set to NULL and the buffer
1065  * is unlocked with a call to iodone().
1066  */
1067 void
1068 xfs_buf_iodone_callbacks(
1069 	struct xfs_buf		*bp)
1070 {
1071 	struct xfs_log_item	*lip = bp->b_fspriv;
1072 	struct xfs_mount	*mp = lip->li_mountp;
1073 	static ulong		lasttime;
1074 	static xfs_buftarg_t	*lasttarg;
1075 
1076 	if (likely(!xfs_buf_geterror(bp)))
1077 		goto do_callbacks;
1078 
1079 	/*
1080 	 * If we've already decided to shutdown the filesystem because of
1081 	 * I/O errors, there's no point in giving this a retry.
1082 	 */
1083 	if (XFS_FORCED_SHUTDOWN(mp)) {
1084 		xfs_buf_stale(bp);
1085 		XFS_BUF_DONE(bp);
1086 		trace_xfs_buf_item_iodone(bp, _RET_IP_);
1087 		goto do_callbacks;
1088 	}
1089 
1090 	if (bp->b_target != lasttarg ||
1091 	    time_after(jiffies, (lasttime + 5*HZ))) {
1092 		lasttime = jiffies;
1093 		xfs_buf_ioerror_alert(bp, __func__);
1094 	}
1095 	lasttarg = bp->b_target;
1096 
1097 	/*
1098 	 * If the write was asynchronous then no one will be looking for the
1099 	 * error.  Clear the error state and write the buffer out again.
1100 	 *
1101 	 * XXX: This helps against transient write errors, but we need to find
1102 	 * a way to shut the filesystem down if the writes keep failing.
1103 	 *
1104 	 * In practice we'll shut the filesystem down soon as non-transient
1105 	 * erorrs tend to affect the whole device and a failing log write
1106 	 * will make us give up.  But we really ought to do better here.
1107 	 */
1108 	if (XFS_BUF_ISASYNC(bp)) {
1109 		ASSERT(bp->b_iodone != NULL);
1110 
1111 		trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1112 
1113 		xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */
1114 
1115 		if (!(bp->b_flags & (XBF_STALE|XBF_WRITE_FAIL))) {
1116 			bp->b_flags |= XBF_WRITE | XBF_ASYNC |
1117 				       XBF_DONE | XBF_WRITE_FAIL;
1118 			xfs_buf_iorequest(bp);
1119 		} else {
1120 			xfs_buf_relse(bp);
1121 		}
1122 
1123 		return;
1124 	}
1125 
1126 	/*
1127 	 * If the write of the buffer was synchronous, we want to make
1128 	 * sure to return the error to the caller of xfs_bwrite().
1129 	 */
1130 	xfs_buf_stale(bp);
1131 	XFS_BUF_DONE(bp);
1132 
1133 	trace_xfs_buf_error_relse(bp, _RET_IP_);
1134 
1135 do_callbacks:
1136 	xfs_buf_do_callbacks(bp);
1137 	bp->b_fspriv = NULL;
1138 	bp->b_iodone = NULL;
1139 	xfs_buf_ioend(bp, 0);
1140 }
1141 
1142 /*
1143  * This is the iodone() function for buffers which have been
1144  * logged.  It is called when they are eventually flushed out.
1145  * It should remove the buf item from the AIL, and free the buf item.
1146  * It is called by xfs_buf_iodone_callbacks() above which will take
1147  * care of cleaning up the buffer itself.
1148  */
1149 void
1150 xfs_buf_iodone(
1151 	struct xfs_buf		*bp,
1152 	struct xfs_log_item	*lip)
1153 {
1154 	struct xfs_ail		*ailp = lip->li_ailp;
1155 
1156 	ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1157 
1158 	xfs_buf_rele(bp);
1159 
1160 	/*
1161 	 * If we are forcibly shutting down, this may well be
1162 	 * off the AIL already. That's because we simulate the
1163 	 * log-committed callbacks to unpin these buffers. Or we may never
1164 	 * have put this item on AIL because of the transaction was
1165 	 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1166 	 *
1167 	 * Either way, AIL is useless if we're forcing a shutdown.
1168 	 */
1169 	spin_lock(&ailp->xa_lock);
1170 	xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
1171 	xfs_buf_item_free(BUF_ITEM(lip));
1172 }
1173