xref: /openbmc/linux/fs/xfs/xfs_buf_item.c (revision 2d972b6a)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_bit.h"
24 #include "xfs_sb.h"
25 #include "xfs_mount.h"
26 #include "xfs_trans.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_error.h"
30 #include "xfs_trace.h"
31 #include "xfs_log.h"
32 #include "xfs_inode.h"
33 
34 
35 kmem_zone_t	*xfs_buf_item_zone;
36 
37 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
38 {
39 	return container_of(lip, struct xfs_buf_log_item, bli_item);
40 }
41 
42 STATIC void	xfs_buf_do_callbacks(struct xfs_buf *bp);
43 
44 static inline int
45 xfs_buf_log_format_size(
46 	struct xfs_buf_log_format *blfp)
47 {
48 	return offsetof(struct xfs_buf_log_format, blf_data_map) +
49 			(blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
50 }
51 
52 /*
53  * This returns the number of log iovecs needed to log the
54  * given buf log item.
55  *
56  * It calculates this as 1 iovec for the buf log format structure
57  * and 1 for each stretch of non-contiguous chunks to be logged.
58  * Contiguous chunks are logged in a single iovec.
59  *
60  * If the XFS_BLI_STALE flag has been set, then log nothing.
61  */
62 STATIC void
63 xfs_buf_item_size_segment(
64 	struct xfs_buf_log_item		*bip,
65 	struct xfs_buf_log_format	*blfp,
66 	int				*nvecs,
67 	int				*nbytes)
68 {
69 	struct xfs_buf			*bp = bip->bli_buf;
70 	int				next_bit;
71 	int				last_bit;
72 
73 	last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
74 	if (last_bit == -1)
75 		return;
76 
77 	/*
78 	 * initial count for a dirty buffer is 2 vectors - the format structure
79 	 * and the first dirty region.
80 	 */
81 	*nvecs += 2;
82 	*nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
83 
84 	while (last_bit != -1) {
85 		/*
86 		 * This takes the bit number to start looking from and
87 		 * returns the next set bit from there.  It returns -1
88 		 * if there are no more bits set or the start bit is
89 		 * beyond the end of the bitmap.
90 		 */
91 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
92 					last_bit + 1);
93 		/*
94 		 * If we run out of bits, leave the loop,
95 		 * else if we find a new set of bits bump the number of vecs,
96 		 * else keep scanning the current set of bits.
97 		 */
98 		if (next_bit == -1) {
99 			break;
100 		} else if (next_bit != last_bit + 1) {
101 			last_bit = next_bit;
102 			(*nvecs)++;
103 		} else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
104 			   (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
105 			    XFS_BLF_CHUNK)) {
106 			last_bit = next_bit;
107 			(*nvecs)++;
108 		} else {
109 			last_bit++;
110 		}
111 		*nbytes += XFS_BLF_CHUNK;
112 	}
113 }
114 
115 /*
116  * This returns the number of log iovecs needed to log the given buf log item.
117  *
118  * It calculates this as 1 iovec for the buf log format structure and 1 for each
119  * stretch of non-contiguous chunks to be logged.  Contiguous chunks are logged
120  * in a single iovec.
121  *
122  * Discontiguous buffers need a format structure per region that that is being
123  * logged. This makes the changes in the buffer appear to log recovery as though
124  * they came from separate buffers, just like would occur if multiple buffers
125  * were used instead of a single discontiguous buffer. This enables
126  * discontiguous buffers to be in-memory constructs, completely transparent to
127  * what ends up on disk.
128  *
129  * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
130  * format structures.
131  */
132 STATIC void
133 xfs_buf_item_size(
134 	struct xfs_log_item	*lip,
135 	int			*nvecs,
136 	int			*nbytes)
137 {
138 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
139 	int			i;
140 
141 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
142 	if (bip->bli_flags & XFS_BLI_STALE) {
143 		/*
144 		 * The buffer is stale, so all we need to log
145 		 * is the buf log format structure with the
146 		 * cancel flag in it.
147 		 */
148 		trace_xfs_buf_item_size_stale(bip);
149 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
150 		*nvecs += bip->bli_format_count;
151 		for (i = 0; i < bip->bli_format_count; i++) {
152 			*nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
153 		}
154 		return;
155 	}
156 
157 	ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
158 
159 	if (bip->bli_flags & XFS_BLI_ORDERED) {
160 		/*
161 		 * The buffer has been logged just to order it.
162 		 * It is not being included in the transaction
163 		 * commit, so no vectors are used at all.
164 		 */
165 		trace_xfs_buf_item_size_ordered(bip);
166 		*nvecs = XFS_LOG_VEC_ORDERED;
167 		return;
168 	}
169 
170 	/*
171 	 * the vector count is based on the number of buffer vectors we have
172 	 * dirty bits in. This will only be greater than one when we have a
173 	 * compound buffer with more than one segment dirty. Hence for compound
174 	 * buffers we need to track which segment the dirty bits correspond to,
175 	 * and when we move from one segment to the next increment the vector
176 	 * count for the extra buf log format structure that will need to be
177 	 * written.
178 	 */
179 	for (i = 0; i < bip->bli_format_count; i++) {
180 		xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
181 					  nvecs, nbytes);
182 	}
183 	trace_xfs_buf_item_size(bip);
184 }
185 
186 static inline void
187 xfs_buf_item_copy_iovec(
188 	struct xfs_log_vec	*lv,
189 	struct xfs_log_iovec	**vecp,
190 	struct xfs_buf		*bp,
191 	uint			offset,
192 	int			first_bit,
193 	uint			nbits)
194 {
195 	offset += first_bit * XFS_BLF_CHUNK;
196 	xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
197 			xfs_buf_offset(bp, offset),
198 			nbits * XFS_BLF_CHUNK);
199 }
200 
201 static inline bool
202 xfs_buf_item_straddle(
203 	struct xfs_buf		*bp,
204 	uint			offset,
205 	int			next_bit,
206 	int			last_bit)
207 {
208 	return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) !=
209 		(xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) +
210 		 XFS_BLF_CHUNK);
211 }
212 
213 static void
214 xfs_buf_item_format_segment(
215 	struct xfs_buf_log_item	*bip,
216 	struct xfs_log_vec	*lv,
217 	struct xfs_log_iovec	**vecp,
218 	uint			offset,
219 	struct xfs_buf_log_format *blfp)
220 {
221 	struct xfs_buf		*bp = bip->bli_buf;
222 	uint			base_size;
223 	int			first_bit;
224 	int			last_bit;
225 	int			next_bit;
226 	uint			nbits;
227 
228 	/* copy the flags across from the base format item */
229 	blfp->blf_flags = bip->__bli_format.blf_flags;
230 
231 	/*
232 	 * Base size is the actual size of the ondisk structure - it reflects
233 	 * the actual size of the dirty bitmap rather than the size of the in
234 	 * memory structure.
235 	 */
236 	base_size = xfs_buf_log_format_size(blfp);
237 
238 	first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
239 	if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
240 		/*
241 		 * If the map is not be dirty in the transaction, mark
242 		 * the size as zero and do not advance the vector pointer.
243 		 */
244 		return;
245 	}
246 
247 	blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
248 	blfp->blf_size = 1;
249 
250 	if (bip->bli_flags & XFS_BLI_STALE) {
251 		/*
252 		 * The buffer is stale, so all we need to log
253 		 * is the buf log format structure with the
254 		 * cancel flag in it.
255 		 */
256 		trace_xfs_buf_item_format_stale(bip);
257 		ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
258 		return;
259 	}
260 
261 
262 	/*
263 	 * Fill in an iovec for each set of contiguous chunks.
264 	 */
265 	last_bit = first_bit;
266 	nbits = 1;
267 	for (;;) {
268 		/*
269 		 * This takes the bit number to start looking from and
270 		 * returns the next set bit from there.  It returns -1
271 		 * if there are no more bits set or the start bit is
272 		 * beyond the end of the bitmap.
273 		 */
274 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
275 					(uint)last_bit + 1);
276 		/*
277 		 * If we run out of bits fill in the last iovec and get out of
278 		 * the loop.  Else if we start a new set of bits then fill in
279 		 * the iovec for the series we were looking at and start
280 		 * counting the bits in the new one.  Else we're still in the
281 		 * same set of bits so just keep counting and scanning.
282 		 */
283 		if (next_bit == -1) {
284 			xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
285 						first_bit, nbits);
286 			blfp->blf_size++;
287 			break;
288 		} else if (next_bit != last_bit + 1 ||
289 		           xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) {
290 			xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
291 						first_bit, nbits);
292 			blfp->blf_size++;
293 			first_bit = next_bit;
294 			last_bit = next_bit;
295 			nbits = 1;
296 		} else {
297 			last_bit++;
298 			nbits++;
299 		}
300 	}
301 }
302 
303 /*
304  * This is called to fill in the vector of log iovecs for the
305  * given log buf item.  It fills the first entry with a buf log
306  * format structure, and the rest point to contiguous chunks
307  * within the buffer.
308  */
309 STATIC void
310 xfs_buf_item_format(
311 	struct xfs_log_item	*lip,
312 	struct xfs_log_vec	*lv)
313 {
314 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
315 	struct xfs_buf		*bp = bip->bli_buf;
316 	struct xfs_log_iovec	*vecp = NULL;
317 	uint			offset = 0;
318 	int			i;
319 
320 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
321 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
322 	       (bip->bli_flags & XFS_BLI_STALE));
323 	ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
324 	       (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
325 	        && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
326 	ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) ||
327 	       (bip->bli_flags & XFS_BLI_STALE));
328 
329 
330 	/*
331 	 * If it is an inode buffer, transfer the in-memory state to the
332 	 * format flags and clear the in-memory state.
333 	 *
334 	 * For buffer based inode allocation, we do not transfer
335 	 * this state if the inode buffer allocation has not yet been committed
336 	 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
337 	 * correct replay of the inode allocation.
338 	 *
339 	 * For icreate item based inode allocation, the buffers aren't written
340 	 * to the journal during allocation, and hence we should always tag the
341 	 * buffer as an inode buffer so that the correct unlinked list replay
342 	 * occurs during recovery.
343 	 */
344 	if (bip->bli_flags & XFS_BLI_INODE_BUF) {
345 		if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) ||
346 		    !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
347 		      xfs_log_item_in_current_chkpt(lip)))
348 			bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
349 		bip->bli_flags &= ~XFS_BLI_INODE_BUF;
350 	}
351 
352 	for (i = 0; i < bip->bli_format_count; i++) {
353 		xfs_buf_item_format_segment(bip, lv, &vecp, offset,
354 					    &bip->bli_formats[i]);
355 		offset += BBTOB(bp->b_maps[i].bm_len);
356 	}
357 
358 	/*
359 	 * Check to make sure everything is consistent.
360 	 */
361 	trace_xfs_buf_item_format(bip);
362 }
363 
364 /*
365  * This is called to pin the buffer associated with the buf log item in memory
366  * so it cannot be written out.
367  *
368  * We also always take a reference to the buffer log item here so that the bli
369  * is held while the item is pinned in memory. This means that we can
370  * unconditionally drop the reference count a transaction holds when the
371  * transaction is completed.
372  */
373 STATIC void
374 xfs_buf_item_pin(
375 	struct xfs_log_item	*lip)
376 {
377 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
378 
379 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
380 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
381 	       (bip->bli_flags & XFS_BLI_ORDERED) ||
382 	       (bip->bli_flags & XFS_BLI_STALE));
383 
384 	trace_xfs_buf_item_pin(bip);
385 
386 	atomic_inc(&bip->bli_refcount);
387 	atomic_inc(&bip->bli_buf->b_pin_count);
388 }
389 
390 /*
391  * This is called to unpin the buffer associated with the buf log
392  * item which was previously pinned with a call to xfs_buf_item_pin().
393  *
394  * Also drop the reference to the buf item for the current transaction.
395  * If the XFS_BLI_STALE flag is set and we are the last reference,
396  * then free up the buf log item and unlock the buffer.
397  *
398  * If the remove flag is set we are called from uncommit in the
399  * forced-shutdown path.  If that is true and the reference count on
400  * the log item is going to drop to zero we need to free the item's
401  * descriptor in the transaction.
402  */
403 STATIC void
404 xfs_buf_item_unpin(
405 	struct xfs_log_item	*lip,
406 	int			remove)
407 {
408 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
409 	xfs_buf_t		*bp = bip->bli_buf;
410 	struct xfs_ail		*ailp = lip->li_ailp;
411 	int			stale = bip->bli_flags & XFS_BLI_STALE;
412 	int			freed;
413 
414 	ASSERT(bp->b_log_item == bip);
415 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
416 
417 	trace_xfs_buf_item_unpin(bip);
418 
419 	freed = atomic_dec_and_test(&bip->bli_refcount);
420 
421 	if (atomic_dec_and_test(&bp->b_pin_count))
422 		wake_up_all(&bp->b_waiters);
423 
424 	if (freed && stale) {
425 		ASSERT(bip->bli_flags & XFS_BLI_STALE);
426 		ASSERT(xfs_buf_islocked(bp));
427 		ASSERT(bp->b_flags & XBF_STALE);
428 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
429 
430 		trace_xfs_buf_item_unpin_stale(bip);
431 
432 		if (remove) {
433 			/*
434 			 * If we are in a transaction context, we have to
435 			 * remove the log item from the transaction as we are
436 			 * about to release our reference to the buffer.  If we
437 			 * don't, the unlock that occurs later in
438 			 * xfs_trans_uncommit() will try to reference the
439 			 * buffer which we no longer have a hold on.
440 			 */
441 			if (lip->li_desc)
442 				xfs_trans_del_item(lip);
443 
444 			/*
445 			 * Since the transaction no longer refers to the buffer,
446 			 * the buffer should no longer refer to the transaction.
447 			 */
448 			bp->b_transp = NULL;
449 		}
450 
451 		/*
452 		 * If we get called here because of an IO error, we may
453 		 * or may not have the item on the AIL. xfs_trans_ail_delete()
454 		 * will take care of that situation.
455 		 * xfs_trans_ail_delete() drops the AIL lock.
456 		 */
457 		if (bip->bli_flags & XFS_BLI_STALE_INODE) {
458 			xfs_buf_do_callbacks(bp);
459 			bp->b_log_item = NULL;
460 			list_del_init(&bp->b_li_list);
461 			bp->b_iodone = NULL;
462 		} else {
463 			spin_lock(&ailp->ail_lock);
464 			xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
465 			xfs_buf_item_relse(bp);
466 			ASSERT(bp->b_log_item == NULL);
467 		}
468 		xfs_buf_relse(bp);
469 	} else if (freed && remove) {
470 		/*
471 		 * There are currently two references to the buffer - the active
472 		 * LRU reference and the buf log item. What we are about to do
473 		 * here - simulate a failed IO completion - requires 3
474 		 * references.
475 		 *
476 		 * The LRU reference is removed by the xfs_buf_stale() call. The
477 		 * buf item reference is removed by the xfs_buf_iodone()
478 		 * callback that is run by xfs_buf_do_callbacks() during ioend
479 		 * processing (via the bp->b_iodone callback), and then finally
480 		 * the ioend processing will drop the IO reference if the buffer
481 		 * is marked XBF_ASYNC.
482 		 *
483 		 * Hence we need to take an additional reference here so that IO
484 		 * completion processing doesn't free the buffer prematurely.
485 		 */
486 		xfs_buf_lock(bp);
487 		xfs_buf_hold(bp);
488 		bp->b_flags |= XBF_ASYNC;
489 		xfs_buf_ioerror(bp, -EIO);
490 		bp->b_flags &= ~XBF_DONE;
491 		xfs_buf_stale(bp);
492 		xfs_buf_ioend(bp);
493 	}
494 }
495 
496 /*
497  * Buffer IO error rate limiting. Limit it to no more than 10 messages per 30
498  * seconds so as to not spam logs too much on repeated detection of the same
499  * buffer being bad..
500  */
501 
502 static DEFINE_RATELIMIT_STATE(xfs_buf_write_fail_rl_state, 30 * HZ, 10);
503 
504 STATIC uint
505 xfs_buf_item_push(
506 	struct xfs_log_item	*lip,
507 	struct list_head	*buffer_list)
508 {
509 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
510 	struct xfs_buf		*bp = bip->bli_buf;
511 	uint			rval = XFS_ITEM_SUCCESS;
512 
513 	if (xfs_buf_ispinned(bp))
514 		return XFS_ITEM_PINNED;
515 	if (!xfs_buf_trylock(bp)) {
516 		/*
517 		 * If we have just raced with a buffer being pinned and it has
518 		 * been marked stale, we could end up stalling until someone else
519 		 * issues a log force to unpin the stale buffer. Check for the
520 		 * race condition here so xfsaild recognizes the buffer is pinned
521 		 * and queues a log force to move it along.
522 		 */
523 		if (xfs_buf_ispinned(bp))
524 			return XFS_ITEM_PINNED;
525 		return XFS_ITEM_LOCKED;
526 	}
527 
528 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
529 
530 	trace_xfs_buf_item_push(bip);
531 
532 	/* has a previous flush failed due to IO errors? */
533 	if ((bp->b_flags & XBF_WRITE_FAIL) &&
534 	    ___ratelimit(&xfs_buf_write_fail_rl_state, "XFS: Failing async write")) {
535 		xfs_warn(bp->b_target->bt_mount,
536 "Failing async write on buffer block 0x%llx. Retrying async write.",
537 			 (long long)bp->b_bn);
538 	}
539 
540 	if (!xfs_buf_delwri_queue(bp, buffer_list))
541 		rval = XFS_ITEM_FLUSHING;
542 	xfs_buf_unlock(bp);
543 	return rval;
544 }
545 
546 /*
547  * Release the buffer associated with the buf log item.  If there is no dirty
548  * logged data associated with the buffer recorded in the buf log item, then
549  * free the buf log item and remove the reference to it in the buffer.
550  *
551  * This call ignores the recursion count.  It is only called when the buffer
552  * should REALLY be unlocked, regardless of the recursion count.
553  *
554  * We unconditionally drop the transaction's reference to the log item. If the
555  * item was logged, then another reference was taken when it was pinned, so we
556  * can safely drop the transaction reference now.  This also allows us to avoid
557  * potential races with the unpin code freeing the bli by not referencing the
558  * bli after we've dropped the reference count.
559  *
560  * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
561  * if necessary but do not unlock the buffer.  This is for support of
562  * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
563  * free the item.
564  */
565 STATIC void
566 xfs_buf_item_unlock(
567 	struct xfs_log_item	*lip)
568 {
569 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
570 	struct xfs_buf		*bp = bip->bli_buf;
571 	bool			aborted = !!(lip->li_flags & XFS_LI_ABORTED);
572 	bool			hold = !!(bip->bli_flags & XFS_BLI_HOLD);
573 	bool			dirty = !!(bip->bli_flags & XFS_BLI_DIRTY);
574 #if defined(DEBUG) || defined(XFS_WARN)
575 	bool			ordered = !!(bip->bli_flags & XFS_BLI_ORDERED);
576 #endif
577 
578 	/* Clear the buffer's association with this transaction. */
579 	bp->b_transp = NULL;
580 
581 	/*
582 	 * The per-transaction state has been copied above so clear it from the
583 	 * bli.
584 	 */
585 	bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
586 
587 	/*
588 	 * If the buf item is marked stale, then don't do anything.  We'll
589 	 * unlock the buffer and free the buf item when the buffer is unpinned
590 	 * for the last time.
591 	 */
592 	if (bip->bli_flags & XFS_BLI_STALE) {
593 		trace_xfs_buf_item_unlock_stale(bip);
594 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
595 		if (!aborted) {
596 			atomic_dec(&bip->bli_refcount);
597 			return;
598 		}
599 	}
600 
601 	trace_xfs_buf_item_unlock(bip);
602 
603 	/*
604 	 * If the buf item isn't tracking any data, free it, otherwise drop the
605 	 * reference we hold to it. If we are aborting the transaction, this may
606 	 * be the only reference to the buf item, so we free it anyway
607 	 * regardless of whether it is dirty or not. A dirty abort implies a
608 	 * shutdown, anyway.
609 	 *
610 	 * The bli dirty state should match whether the blf has logged segments
611 	 * except for ordered buffers, where only the bli should be dirty.
612 	 */
613 	ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) ||
614 	       (ordered && dirty && !xfs_buf_item_dirty_format(bip)));
615 
616 	/*
617 	 * Clean buffers, by definition, cannot be in the AIL. However, aborted
618 	 * buffers may be in the AIL regardless of dirty state. An aborted
619 	 * transaction that invalidates a buffer already in the AIL may have
620 	 * marked it stale and cleared the dirty state, for example.
621 	 *
622 	 * Therefore if we are aborting a buffer and we've just taken the last
623 	 * reference away, we have to check if it is in the AIL before freeing
624 	 * it. We need to free it in this case, because an aborted transaction
625 	 * has already shut the filesystem down and this is the last chance we
626 	 * will have to do so.
627 	 */
628 	if (atomic_dec_and_test(&bip->bli_refcount)) {
629 		if (aborted) {
630 			ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp));
631 			xfs_trans_ail_remove(lip, SHUTDOWN_LOG_IO_ERROR);
632 			xfs_buf_item_relse(bp);
633 		} else if (!dirty)
634 			xfs_buf_item_relse(bp);
635 	}
636 
637 	if (!hold)
638 		xfs_buf_relse(bp);
639 }
640 
641 /*
642  * This is called to find out where the oldest active copy of the
643  * buf log item in the on disk log resides now that the last log
644  * write of it completed at the given lsn.
645  * We always re-log all the dirty data in a buffer, so usually the
646  * latest copy in the on disk log is the only one that matters.  For
647  * those cases we simply return the given lsn.
648  *
649  * The one exception to this is for buffers full of newly allocated
650  * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
651  * flag set, indicating that only the di_next_unlinked fields from the
652  * inodes in the buffers will be replayed during recovery.  If the
653  * original newly allocated inode images have not yet been flushed
654  * when the buffer is so relogged, then we need to make sure that we
655  * keep the old images in the 'active' portion of the log.  We do this
656  * by returning the original lsn of that transaction here rather than
657  * the current one.
658  */
659 STATIC xfs_lsn_t
660 xfs_buf_item_committed(
661 	struct xfs_log_item	*lip,
662 	xfs_lsn_t		lsn)
663 {
664 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
665 
666 	trace_xfs_buf_item_committed(bip);
667 
668 	if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
669 		return lip->li_lsn;
670 	return lsn;
671 }
672 
673 STATIC void
674 xfs_buf_item_committing(
675 	struct xfs_log_item	*lip,
676 	xfs_lsn_t		commit_lsn)
677 {
678 }
679 
680 /*
681  * This is the ops vector shared by all buf log items.
682  */
683 static const struct xfs_item_ops xfs_buf_item_ops = {
684 	.iop_size	= xfs_buf_item_size,
685 	.iop_format	= xfs_buf_item_format,
686 	.iop_pin	= xfs_buf_item_pin,
687 	.iop_unpin	= xfs_buf_item_unpin,
688 	.iop_unlock	= xfs_buf_item_unlock,
689 	.iop_committed	= xfs_buf_item_committed,
690 	.iop_push	= xfs_buf_item_push,
691 	.iop_committing = xfs_buf_item_committing
692 };
693 
694 STATIC int
695 xfs_buf_item_get_format(
696 	struct xfs_buf_log_item	*bip,
697 	int			count)
698 {
699 	ASSERT(bip->bli_formats == NULL);
700 	bip->bli_format_count = count;
701 
702 	if (count == 1) {
703 		bip->bli_formats = &bip->__bli_format;
704 		return 0;
705 	}
706 
707 	bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
708 				KM_SLEEP);
709 	if (!bip->bli_formats)
710 		return -ENOMEM;
711 	return 0;
712 }
713 
714 STATIC void
715 xfs_buf_item_free_format(
716 	struct xfs_buf_log_item	*bip)
717 {
718 	if (bip->bli_formats != &bip->__bli_format) {
719 		kmem_free(bip->bli_formats);
720 		bip->bli_formats = NULL;
721 	}
722 }
723 
724 /*
725  * Allocate a new buf log item to go with the given buffer.
726  * Set the buffer's b_log_item field to point to the new
727  * buf log item.
728  */
729 int
730 xfs_buf_item_init(
731 	struct xfs_buf	*bp,
732 	struct xfs_mount *mp)
733 {
734 	struct xfs_buf_log_item	*bip = bp->b_log_item;
735 	int			chunks;
736 	int			map_size;
737 	int			error;
738 	int			i;
739 
740 	/*
741 	 * Check to see if there is already a buf log item for
742 	 * this buffer. If we do already have one, there is
743 	 * nothing to do here so return.
744 	 */
745 	ASSERT(bp->b_target->bt_mount == mp);
746 	if (bip != NULL) {
747 		ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
748 		return 0;
749 	}
750 
751 	bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
752 	xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
753 	bip->bli_buf = bp;
754 
755 	/*
756 	 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
757 	 * can be divided into. Make sure not to truncate any pieces.
758 	 * map_size is the size of the bitmap needed to describe the
759 	 * chunks of the buffer.
760 	 *
761 	 * Discontiguous buffer support follows the layout of the underlying
762 	 * buffer. This makes the implementation as simple as possible.
763 	 */
764 	error = xfs_buf_item_get_format(bip, bp->b_map_count);
765 	ASSERT(error == 0);
766 	if (error) {	/* to stop gcc throwing set-but-unused warnings */
767 		kmem_zone_free(xfs_buf_item_zone, bip);
768 		return error;
769 	}
770 
771 
772 	for (i = 0; i < bip->bli_format_count; i++) {
773 		chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
774 				      XFS_BLF_CHUNK);
775 		map_size = DIV_ROUND_UP(chunks, NBWORD);
776 
777 		bip->bli_formats[i].blf_type = XFS_LI_BUF;
778 		bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
779 		bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
780 		bip->bli_formats[i].blf_map_size = map_size;
781 	}
782 
783 	bp->b_log_item = bip;
784 	xfs_buf_hold(bp);
785 	return 0;
786 }
787 
788 
789 /*
790  * Mark bytes first through last inclusive as dirty in the buf
791  * item's bitmap.
792  */
793 static void
794 xfs_buf_item_log_segment(
795 	uint			first,
796 	uint			last,
797 	uint			*map)
798 {
799 	uint		first_bit;
800 	uint		last_bit;
801 	uint		bits_to_set;
802 	uint		bits_set;
803 	uint		word_num;
804 	uint		*wordp;
805 	uint		bit;
806 	uint		end_bit;
807 	uint		mask;
808 
809 	/*
810 	 * Convert byte offsets to bit numbers.
811 	 */
812 	first_bit = first >> XFS_BLF_SHIFT;
813 	last_bit = last >> XFS_BLF_SHIFT;
814 
815 	/*
816 	 * Calculate the total number of bits to be set.
817 	 */
818 	bits_to_set = last_bit - first_bit + 1;
819 
820 	/*
821 	 * Get a pointer to the first word in the bitmap
822 	 * to set a bit in.
823 	 */
824 	word_num = first_bit >> BIT_TO_WORD_SHIFT;
825 	wordp = &map[word_num];
826 
827 	/*
828 	 * Calculate the starting bit in the first word.
829 	 */
830 	bit = first_bit & (uint)(NBWORD - 1);
831 
832 	/*
833 	 * First set any bits in the first word of our range.
834 	 * If it starts at bit 0 of the word, it will be
835 	 * set below rather than here.  That is what the variable
836 	 * bit tells us. The variable bits_set tracks the number
837 	 * of bits that have been set so far.  End_bit is the number
838 	 * of the last bit to be set in this word plus one.
839 	 */
840 	if (bit) {
841 		end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
842 		mask = ((1U << (end_bit - bit)) - 1) << bit;
843 		*wordp |= mask;
844 		wordp++;
845 		bits_set = end_bit - bit;
846 	} else {
847 		bits_set = 0;
848 	}
849 
850 	/*
851 	 * Now set bits a whole word at a time that are between
852 	 * first_bit and last_bit.
853 	 */
854 	while ((bits_to_set - bits_set) >= NBWORD) {
855 		*wordp |= 0xffffffff;
856 		bits_set += NBWORD;
857 		wordp++;
858 	}
859 
860 	/*
861 	 * Finally, set any bits left to be set in one last partial word.
862 	 */
863 	end_bit = bits_to_set - bits_set;
864 	if (end_bit) {
865 		mask = (1U << end_bit) - 1;
866 		*wordp |= mask;
867 	}
868 }
869 
870 /*
871  * Mark bytes first through last inclusive as dirty in the buf
872  * item's bitmap.
873  */
874 void
875 xfs_buf_item_log(
876 	struct xfs_buf_log_item	*bip,
877 	uint			first,
878 	uint			last)
879 {
880 	int			i;
881 	uint			start;
882 	uint			end;
883 	struct xfs_buf		*bp = bip->bli_buf;
884 
885 	/*
886 	 * walk each buffer segment and mark them dirty appropriately.
887 	 */
888 	start = 0;
889 	for (i = 0; i < bip->bli_format_count; i++) {
890 		if (start > last)
891 			break;
892 		end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
893 
894 		/* skip to the map that includes the first byte to log */
895 		if (first > end) {
896 			start += BBTOB(bp->b_maps[i].bm_len);
897 			continue;
898 		}
899 
900 		/*
901 		 * Trim the range to this segment and mark it in the bitmap.
902 		 * Note that we must convert buffer offsets to segment relative
903 		 * offsets (e.g., the first byte of each segment is byte 0 of
904 		 * that segment).
905 		 */
906 		if (first < start)
907 			first = start;
908 		if (end > last)
909 			end = last;
910 		xfs_buf_item_log_segment(first - start, end - start,
911 					 &bip->bli_formats[i].blf_data_map[0]);
912 
913 		start += BBTOB(bp->b_maps[i].bm_len);
914 	}
915 }
916 
917 
918 /*
919  * Return true if the buffer has any ranges logged/dirtied by a transaction,
920  * false otherwise.
921  */
922 bool
923 xfs_buf_item_dirty_format(
924 	struct xfs_buf_log_item	*bip)
925 {
926 	int			i;
927 
928 	for (i = 0; i < bip->bli_format_count; i++) {
929 		if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
930 			     bip->bli_formats[i].blf_map_size))
931 			return true;
932 	}
933 
934 	return false;
935 }
936 
937 STATIC void
938 xfs_buf_item_free(
939 	struct xfs_buf_log_item	*bip)
940 {
941 	xfs_buf_item_free_format(bip);
942 	kmem_free(bip->bli_item.li_lv_shadow);
943 	kmem_zone_free(xfs_buf_item_zone, bip);
944 }
945 
946 /*
947  * This is called when the buf log item is no longer needed.  It should
948  * free the buf log item associated with the given buffer and clear
949  * the buffer's pointer to the buf log item.  If there are no more
950  * items in the list, clear the b_iodone field of the buffer (see
951  * xfs_buf_attach_iodone() below).
952  */
953 void
954 xfs_buf_item_relse(
955 	xfs_buf_t	*bp)
956 {
957 	struct xfs_buf_log_item	*bip = bp->b_log_item;
958 
959 	trace_xfs_buf_item_relse(bp, _RET_IP_);
960 	ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
961 
962 	bp->b_log_item = NULL;
963 	if (list_empty(&bp->b_li_list))
964 		bp->b_iodone = NULL;
965 
966 	xfs_buf_rele(bp);
967 	xfs_buf_item_free(bip);
968 }
969 
970 
971 /*
972  * Add the given log item with its callback to the list of callbacks
973  * to be called when the buffer's I/O completes.  If it is not set
974  * already, set the buffer's b_iodone() routine to be
975  * xfs_buf_iodone_callbacks() and link the log item into the list of
976  * items rooted at b_li_list.
977  */
978 void
979 xfs_buf_attach_iodone(
980 	xfs_buf_t	*bp,
981 	void		(*cb)(xfs_buf_t *, xfs_log_item_t *),
982 	xfs_log_item_t	*lip)
983 {
984 	ASSERT(xfs_buf_islocked(bp));
985 
986 	lip->li_cb = cb;
987 	list_add_tail(&lip->li_bio_list, &bp->b_li_list);
988 
989 	ASSERT(bp->b_iodone == NULL ||
990 	       bp->b_iodone == xfs_buf_iodone_callbacks);
991 	bp->b_iodone = xfs_buf_iodone_callbacks;
992 }
993 
994 /*
995  * We can have many callbacks on a buffer. Running the callbacks individually
996  * can cause a lot of contention on the AIL lock, so we allow for a single
997  * callback to be able to scan the remaining items in bp->b_li_list for other
998  * items of the same type and callback to be processed in the first call.
999  *
1000  * As a result, the loop walking the callback list below will also modify the
1001  * list. it removes the first item from the list and then runs the callback.
1002  * The loop then restarts from the new first item int the list. This allows the
1003  * callback to scan and modify the list attached to the buffer and we don't
1004  * have to care about maintaining a next item pointer.
1005  */
1006 STATIC void
1007 xfs_buf_do_callbacks(
1008 	struct xfs_buf		*bp)
1009 {
1010 	struct xfs_buf_log_item *blip = bp->b_log_item;
1011 	struct xfs_log_item	*lip;
1012 
1013 	/* If there is a buf_log_item attached, run its callback */
1014 	if (blip) {
1015 		lip = &blip->bli_item;
1016 		lip->li_cb(bp, lip);
1017 	}
1018 
1019 	while (!list_empty(&bp->b_li_list)) {
1020 		lip = list_first_entry(&bp->b_li_list, struct xfs_log_item,
1021 				       li_bio_list);
1022 
1023 		/*
1024 		 * Remove the item from the list, so we don't have any
1025 		 * confusion if the item is added to another buf.
1026 		 * Don't touch the log item after calling its
1027 		 * callback, because it could have freed itself.
1028 		 */
1029 		list_del_init(&lip->li_bio_list);
1030 		lip->li_cb(bp, lip);
1031 	}
1032 }
1033 
1034 /*
1035  * Invoke the error state callback for each log item affected by the failed I/O.
1036  *
1037  * If a metadata buffer write fails with a non-permanent error, the buffer is
1038  * eventually resubmitted and so the completion callbacks are not run. The error
1039  * state may need to be propagated to the log items attached to the buffer,
1040  * however, so the next AIL push of the item knows hot to handle it correctly.
1041  */
1042 STATIC void
1043 xfs_buf_do_callbacks_fail(
1044 	struct xfs_buf		*bp)
1045 {
1046 	struct xfs_log_item	*lip;
1047 	struct xfs_ail		*ailp;
1048 
1049 	/*
1050 	 * Buffer log item errors are handled directly by xfs_buf_item_push()
1051 	 * and xfs_buf_iodone_callback_error, and they have no IO error
1052 	 * callbacks. Check only for items in b_li_list.
1053 	 */
1054 	if (list_empty(&bp->b_li_list))
1055 		return;
1056 
1057 	lip = list_first_entry(&bp->b_li_list, struct xfs_log_item,
1058 			li_bio_list);
1059 	ailp = lip->li_ailp;
1060 	spin_lock(&ailp->ail_lock);
1061 	list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
1062 		if (lip->li_ops->iop_error)
1063 			lip->li_ops->iop_error(lip, bp);
1064 	}
1065 	spin_unlock(&ailp->ail_lock);
1066 }
1067 
1068 static bool
1069 xfs_buf_iodone_callback_error(
1070 	struct xfs_buf		*bp)
1071 {
1072 	struct xfs_buf_log_item	*bip = bp->b_log_item;
1073 	struct xfs_log_item	*lip;
1074 	struct xfs_mount	*mp;
1075 	static ulong		lasttime;
1076 	static xfs_buftarg_t	*lasttarg;
1077 	struct xfs_error_cfg	*cfg;
1078 
1079 	/*
1080 	 * The failed buffer might not have a buf_log_item attached or the
1081 	 * log_item list might be empty. Get the mp from the available
1082 	 * xfs_log_item
1083 	 */
1084 	lip = list_first_entry_or_null(&bp->b_li_list, struct xfs_log_item,
1085 				       li_bio_list);
1086 	mp = lip ? lip->li_mountp : bip->bli_item.li_mountp;
1087 
1088 	/*
1089 	 * If we've already decided to shutdown the filesystem because of
1090 	 * I/O errors, there's no point in giving this a retry.
1091 	 */
1092 	if (XFS_FORCED_SHUTDOWN(mp))
1093 		goto out_stale;
1094 
1095 	if (bp->b_target != lasttarg ||
1096 	    time_after(jiffies, (lasttime + 5*HZ))) {
1097 		lasttime = jiffies;
1098 		xfs_buf_ioerror_alert(bp, __func__);
1099 	}
1100 	lasttarg = bp->b_target;
1101 
1102 	/* synchronous writes will have callers process the error */
1103 	if (!(bp->b_flags & XBF_ASYNC))
1104 		goto out_stale;
1105 
1106 	trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1107 	ASSERT(bp->b_iodone != NULL);
1108 
1109 	cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1110 
1111 	/*
1112 	 * If the write was asynchronous then no one will be looking for the
1113 	 * error.  If this is the first failure of this type, clear the error
1114 	 * state and write the buffer out again. This means we always retry an
1115 	 * async write failure at least once, but we also need to set the buffer
1116 	 * up to behave correctly now for repeated failures.
1117 	 */
1118 	if (!(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL)) ||
1119 	     bp->b_last_error != bp->b_error) {
1120 		bp->b_flags |= (XBF_WRITE | XBF_DONE | XBF_WRITE_FAIL);
1121 		bp->b_last_error = bp->b_error;
1122 		if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1123 		    !bp->b_first_retry_time)
1124 			bp->b_first_retry_time = jiffies;
1125 
1126 		xfs_buf_ioerror(bp, 0);
1127 		xfs_buf_submit(bp);
1128 		return true;
1129 	}
1130 
1131 	/*
1132 	 * Repeated failure on an async write. Take action according to the
1133 	 * error configuration we have been set up to use.
1134 	 */
1135 
1136 	if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1137 	    ++bp->b_retries > cfg->max_retries)
1138 			goto permanent_error;
1139 	if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1140 	    time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1141 			goto permanent_error;
1142 
1143 	/* At unmount we may treat errors differently */
1144 	if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount)
1145 		goto permanent_error;
1146 
1147 	/*
1148 	 * Still a transient error, run IO completion failure callbacks and let
1149 	 * the higher layers retry the buffer.
1150 	 */
1151 	xfs_buf_do_callbacks_fail(bp);
1152 	xfs_buf_ioerror(bp, 0);
1153 	xfs_buf_relse(bp);
1154 	return true;
1155 
1156 	/*
1157 	 * Permanent error - we need to trigger a shutdown if we haven't already
1158 	 * to indicate that inconsistency will result from this action.
1159 	 */
1160 permanent_error:
1161 	xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1162 out_stale:
1163 	xfs_buf_stale(bp);
1164 	bp->b_flags |= XBF_DONE;
1165 	trace_xfs_buf_error_relse(bp, _RET_IP_);
1166 	return false;
1167 }
1168 
1169 /*
1170  * This is the iodone() function for buffers which have had callbacks attached
1171  * to them by xfs_buf_attach_iodone(). We need to iterate the items on the
1172  * callback list, mark the buffer as having no more callbacks and then push the
1173  * buffer through IO completion processing.
1174  */
1175 void
1176 xfs_buf_iodone_callbacks(
1177 	struct xfs_buf		*bp)
1178 {
1179 	/*
1180 	 * If there is an error, process it. Some errors require us
1181 	 * to run callbacks after failure processing is done so we
1182 	 * detect that and take appropriate action.
1183 	 */
1184 	if (bp->b_error && xfs_buf_iodone_callback_error(bp))
1185 		return;
1186 
1187 	/*
1188 	 * Successful IO or permanent error. Either way, we can clear the
1189 	 * retry state here in preparation for the next error that may occur.
1190 	 */
1191 	bp->b_last_error = 0;
1192 	bp->b_retries = 0;
1193 	bp->b_first_retry_time = 0;
1194 
1195 	xfs_buf_do_callbacks(bp);
1196 	bp->b_log_item = NULL;
1197 	list_del_init(&bp->b_li_list);
1198 	bp->b_iodone = NULL;
1199 	xfs_buf_ioend(bp);
1200 }
1201 
1202 /*
1203  * This is the iodone() function for buffers which have been
1204  * logged.  It is called when they are eventually flushed out.
1205  * It should remove the buf item from the AIL, and free the buf item.
1206  * It is called by xfs_buf_iodone_callbacks() above which will take
1207  * care of cleaning up the buffer itself.
1208  */
1209 void
1210 xfs_buf_iodone(
1211 	struct xfs_buf		*bp,
1212 	struct xfs_log_item	*lip)
1213 {
1214 	struct xfs_ail		*ailp = lip->li_ailp;
1215 
1216 	ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1217 
1218 	xfs_buf_rele(bp);
1219 
1220 	/*
1221 	 * If we are forcibly shutting down, this may well be
1222 	 * off the AIL already. That's because we simulate the
1223 	 * log-committed callbacks to unpin these buffers. Or we may never
1224 	 * have put this item on AIL because of the transaction was
1225 	 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1226 	 *
1227 	 * Either way, AIL is useless if we're forcing a shutdown.
1228 	 */
1229 	spin_lock(&ailp->ail_lock);
1230 	xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
1231 	xfs_buf_item_free(BUF_ITEM(lip));
1232 }
1233 
1234 /*
1235  * Requeue a failed buffer for writeback
1236  *
1237  * Return true if the buffer has been re-queued properly, false otherwise
1238  */
1239 bool
1240 xfs_buf_resubmit_failed_buffers(
1241 	struct xfs_buf		*bp,
1242 	struct list_head	*buffer_list)
1243 {
1244 	struct xfs_log_item	*lip;
1245 
1246 	/*
1247 	 * Clear XFS_LI_FAILED flag from all items before resubmit
1248 	 *
1249 	 * XFS_LI_FAILED set/clear is protected by ail_lock, caller  this
1250 	 * function already have it acquired
1251 	 */
1252 	list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
1253 		xfs_clear_li_failed(lip);
1254 
1255 	/* Add this buffer back to the delayed write list */
1256 	return xfs_buf_delwri_queue(bp, buffer_list);
1257 }
1258