1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_mount.h" 14 #include "xfs_trans.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_buf_item.h" 17 #include "xfs_inode.h" 18 #include "xfs_inode_item.h" 19 #include "xfs_quota.h" 20 #include "xfs_dquot_item.h" 21 #include "xfs_dquot.h" 22 #include "xfs_trace.h" 23 #include "xfs_log.h" 24 #include "xfs_log_priv.h" 25 26 27 struct kmem_cache *xfs_buf_item_cache; 28 29 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip) 30 { 31 return container_of(lip, struct xfs_buf_log_item, bli_item); 32 } 33 34 /* Is this log iovec plausibly large enough to contain the buffer log format? */ 35 bool 36 xfs_buf_log_check_iovec( 37 struct xfs_log_iovec *iovec) 38 { 39 struct xfs_buf_log_format *blfp = iovec->i_addr; 40 char *bmp_end; 41 char *item_end; 42 43 if (offsetof(struct xfs_buf_log_format, blf_data_map) > iovec->i_len) 44 return false; 45 46 item_end = (char *)iovec->i_addr + iovec->i_len; 47 bmp_end = (char *)&blfp->blf_data_map[blfp->blf_map_size]; 48 return bmp_end <= item_end; 49 } 50 51 static inline int 52 xfs_buf_log_format_size( 53 struct xfs_buf_log_format *blfp) 54 { 55 return offsetof(struct xfs_buf_log_format, blf_data_map) + 56 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0])); 57 } 58 59 static inline bool 60 xfs_buf_item_straddle( 61 struct xfs_buf *bp, 62 uint offset, 63 int first_bit, 64 int nbits) 65 { 66 void *first, *last; 67 68 first = xfs_buf_offset(bp, offset + (first_bit << XFS_BLF_SHIFT)); 69 last = xfs_buf_offset(bp, 70 offset + ((first_bit + nbits) << XFS_BLF_SHIFT)); 71 72 if (last - first != nbits * XFS_BLF_CHUNK) 73 return true; 74 return false; 75 } 76 77 /* 78 * Return the number of log iovecs and space needed to log the given buf log 79 * item segment. 80 * 81 * It calculates this as 1 iovec for the buf log format structure and 1 for each 82 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged 83 * in a single iovec. 84 */ 85 STATIC void 86 xfs_buf_item_size_segment( 87 struct xfs_buf_log_item *bip, 88 struct xfs_buf_log_format *blfp, 89 uint offset, 90 int *nvecs, 91 int *nbytes) 92 { 93 struct xfs_buf *bp = bip->bli_buf; 94 int first_bit; 95 int nbits; 96 int next_bit; 97 int last_bit; 98 99 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0); 100 if (first_bit == -1) 101 return; 102 103 (*nvecs)++; 104 *nbytes += xfs_buf_log_format_size(blfp); 105 106 do { 107 nbits = xfs_contig_bits(blfp->blf_data_map, 108 blfp->blf_map_size, first_bit); 109 ASSERT(nbits > 0); 110 111 /* 112 * Straddling a page is rare because we don't log contiguous 113 * chunks of unmapped buffers anywhere. 114 */ 115 if (nbits > 1 && 116 xfs_buf_item_straddle(bp, offset, first_bit, nbits)) 117 goto slow_scan; 118 119 (*nvecs)++; 120 *nbytes += nbits * XFS_BLF_CHUNK; 121 122 /* 123 * This takes the bit number to start looking from and 124 * returns the next set bit from there. It returns -1 125 * if there are no more bits set or the start bit is 126 * beyond the end of the bitmap. 127 */ 128 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 129 (uint)first_bit + nbits + 1); 130 } while (first_bit != -1); 131 132 return; 133 134 slow_scan: 135 /* Count the first bit we jumped out of the above loop from */ 136 (*nvecs)++; 137 *nbytes += XFS_BLF_CHUNK; 138 last_bit = first_bit; 139 while (last_bit != -1) { 140 /* 141 * This takes the bit number to start looking from and 142 * returns the next set bit from there. It returns -1 143 * if there are no more bits set or the start bit is 144 * beyond the end of the bitmap. 145 */ 146 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 147 last_bit + 1); 148 /* 149 * If we run out of bits, leave the loop, 150 * else if we find a new set of bits bump the number of vecs, 151 * else keep scanning the current set of bits. 152 */ 153 if (next_bit == -1) { 154 break; 155 } else if (next_bit != last_bit + 1 || 156 xfs_buf_item_straddle(bp, offset, first_bit, nbits)) { 157 last_bit = next_bit; 158 first_bit = next_bit; 159 (*nvecs)++; 160 nbits = 1; 161 } else { 162 last_bit++; 163 nbits++; 164 } 165 *nbytes += XFS_BLF_CHUNK; 166 } 167 } 168 169 /* 170 * Return the number of log iovecs and space needed to log the given buf log 171 * item. 172 * 173 * Discontiguous buffers need a format structure per region that is being 174 * logged. This makes the changes in the buffer appear to log recovery as though 175 * they came from separate buffers, just like would occur if multiple buffers 176 * were used instead of a single discontiguous buffer. This enables 177 * discontiguous buffers to be in-memory constructs, completely transparent to 178 * what ends up on disk. 179 * 180 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log 181 * format structures. If the item has previously been logged and has dirty 182 * regions, we do not relog them in stale buffers. This has the effect of 183 * reducing the size of the relogged item by the amount of dirty data tracked 184 * by the log item. This can result in the committing transaction reducing the 185 * amount of space being consumed by the CIL. 186 */ 187 STATIC void 188 xfs_buf_item_size( 189 struct xfs_log_item *lip, 190 int *nvecs, 191 int *nbytes) 192 { 193 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 194 struct xfs_buf *bp = bip->bli_buf; 195 int i; 196 int bytes; 197 uint offset = 0; 198 199 ASSERT(atomic_read(&bip->bli_refcount) > 0); 200 if (bip->bli_flags & XFS_BLI_STALE) { 201 /* 202 * The buffer is stale, so all we need to log is the buf log 203 * format structure with the cancel flag in it as we are never 204 * going to replay the changes tracked in the log item. 205 */ 206 trace_xfs_buf_item_size_stale(bip); 207 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 208 *nvecs += bip->bli_format_count; 209 for (i = 0; i < bip->bli_format_count; i++) { 210 *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]); 211 } 212 return; 213 } 214 215 ASSERT(bip->bli_flags & XFS_BLI_LOGGED); 216 217 if (bip->bli_flags & XFS_BLI_ORDERED) { 218 /* 219 * The buffer has been logged just to order it. It is not being 220 * included in the transaction commit, so no vectors are used at 221 * all. 222 */ 223 trace_xfs_buf_item_size_ordered(bip); 224 *nvecs = XFS_LOG_VEC_ORDERED; 225 return; 226 } 227 228 /* 229 * The vector count is based on the number of buffer vectors we have 230 * dirty bits in. This will only be greater than one when we have a 231 * compound buffer with more than one segment dirty. Hence for compound 232 * buffers we need to track which segment the dirty bits correspond to, 233 * and when we move from one segment to the next increment the vector 234 * count for the extra buf log format structure that will need to be 235 * written. 236 */ 237 bytes = 0; 238 for (i = 0; i < bip->bli_format_count; i++) { 239 xfs_buf_item_size_segment(bip, &bip->bli_formats[i], offset, 240 nvecs, &bytes); 241 offset += BBTOB(bp->b_maps[i].bm_len); 242 } 243 244 /* 245 * Round up the buffer size required to minimise the number of memory 246 * allocations that need to be done as this item grows when relogged by 247 * repeated modifications. 248 */ 249 *nbytes = round_up(bytes, 512); 250 trace_xfs_buf_item_size(bip); 251 } 252 253 static inline void 254 xfs_buf_item_copy_iovec( 255 struct xfs_log_vec *lv, 256 struct xfs_log_iovec **vecp, 257 struct xfs_buf *bp, 258 uint offset, 259 int first_bit, 260 uint nbits) 261 { 262 offset += first_bit * XFS_BLF_CHUNK; 263 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK, 264 xfs_buf_offset(bp, offset), 265 nbits * XFS_BLF_CHUNK); 266 } 267 268 static void 269 xfs_buf_item_format_segment( 270 struct xfs_buf_log_item *bip, 271 struct xfs_log_vec *lv, 272 struct xfs_log_iovec **vecp, 273 uint offset, 274 struct xfs_buf_log_format *blfp) 275 { 276 struct xfs_buf *bp = bip->bli_buf; 277 uint base_size; 278 int first_bit; 279 int last_bit; 280 int next_bit; 281 uint nbits; 282 283 /* copy the flags across from the base format item */ 284 blfp->blf_flags = bip->__bli_format.blf_flags; 285 286 /* 287 * Base size is the actual size of the ondisk structure - it reflects 288 * the actual size of the dirty bitmap rather than the size of the in 289 * memory structure. 290 */ 291 base_size = xfs_buf_log_format_size(blfp); 292 293 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0); 294 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) { 295 /* 296 * If the map is not be dirty in the transaction, mark 297 * the size as zero and do not advance the vector pointer. 298 */ 299 return; 300 } 301 302 blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size); 303 blfp->blf_size = 1; 304 305 if (bip->bli_flags & XFS_BLI_STALE) { 306 /* 307 * The buffer is stale, so all we need to log 308 * is the buf log format structure with the 309 * cancel flag in it. 310 */ 311 trace_xfs_buf_item_format_stale(bip); 312 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL); 313 return; 314 } 315 316 317 /* 318 * Fill in an iovec for each set of contiguous chunks. 319 */ 320 do { 321 ASSERT(first_bit >= 0); 322 nbits = xfs_contig_bits(blfp->blf_data_map, 323 blfp->blf_map_size, first_bit); 324 ASSERT(nbits > 0); 325 326 /* 327 * Straddling a page is rare because we don't log contiguous 328 * chunks of unmapped buffers anywhere. 329 */ 330 if (nbits > 1 && 331 xfs_buf_item_straddle(bp, offset, first_bit, nbits)) 332 goto slow_scan; 333 334 xfs_buf_item_copy_iovec(lv, vecp, bp, offset, 335 first_bit, nbits); 336 blfp->blf_size++; 337 338 /* 339 * This takes the bit number to start looking from and 340 * returns the next set bit from there. It returns -1 341 * if there are no more bits set or the start bit is 342 * beyond the end of the bitmap. 343 */ 344 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 345 (uint)first_bit + nbits + 1); 346 } while (first_bit != -1); 347 348 return; 349 350 slow_scan: 351 ASSERT(bp->b_addr == NULL); 352 last_bit = first_bit; 353 nbits = 1; 354 for (;;) { 355 /* 356 * This takes the bit number to start looking from and 357 * returns the next set bit from there. It returns -1 358 * if there are no more bits set or the start bit is 359 * beyond the end of the bitmap. 360 */ 361 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 362 (uint)last_bit + 1); 363 /* 364 * If we run out of bits fill in the last iovec and get out of 365 * the loop. Else if we start a new set of bits then fill in 366 * the iovec for the series we were looking at and start 367 * counting the bits in the new one. Else we're still in the 368 * same set of bits so just keep counting and scanning. 369 */ 370 if (next_bit == -1) { 371 xfs_buf_item_copy_iovec(lv, vecp, bp, offset, 372 first_bit, nbits); 373 blfp->blf_size++; 374 break; 375 } else if (next_bit != last_bit + 1 || 376 xfs_buf_item_straddle(bp, offset, first_bit, nbits)) { 377 xfs_buf_item_copy_iovec(lv, vecp, bp, offset, 378 first_bit, nbits); 379 blfp->blf_size++; 380 first_bit = next_bit; 381 last_bit = next_bit; 382 nbits = 1; 383 } else { 384 last_bit++; 385 nbits++; 386 } 387 } 388 } 389 390 /* 391 * This is called to fill in the vector of log iovecs for the 392 * given log buf item. It fills the first entry with a buf log 393 * format structure, and the rest point to contiguous chunks 394 * within the buffer. 395 */ 396 STATIC void 397 xfs_buf_item_format( 398 struct xfs_log_item *lip, 399 struct xfs_log_vec *lv) 400 { 401 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 402 struct xfs_buf *bp = bip->bli_buf; 403 struct xfs_log_iovec *vecp = NULL; 404 uint offset = 0; 405 int i; 406 407 ASSERT(atomic_read(&bip->bli_refcount) > 0); 408 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || 409 (bip->bli_flags & XFS_BLI_STALE)); 410 ASSERT((bip->bli_flags & XFS_BLI_STALE) || 411 (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF 412 && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF)); 413 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) || 414 (bip->bli_flags & XFS_BLI_STALE)); 415 416 417 /* 418 * If it is an inode buffer, transfer the in-memory state to the 419 * format flags and clear the in-memory state. 420 * 421 * For buffer based inode allocation, we do not transfer 422 * this state if the inode buffer allocation has not yet been committed 423 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent 424 * correct replay of the inode allocation. 425 * 426 * For icreate item based inode allocation, the buffers aren't written 427 * to the journal during allocation, and hence we should always tag the 428 * buffer as an inode buffer so that the correct unlinked list replay 429 * occurs during recovery. 430 */ 431 if (bip->bli_flags & XFS_BLI_INODE_BUF) { 432 if (xfs_has_v3inodes(lip->li_log->l_mp) || 433 !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && 434 xfs_log_item_in_current_chkpt(lip))) 435 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF; 436 bip->bli_flags &= ~XFS_BLI_INODE_BUF; 437 } 438 439 for (i = 0; i < bip->bli_format_count; i++) { 440 xfs_buf_item_format_segment(bip, lv, &vecp, offset, 441 &bip->bli_formats[i]); 442 offset += BBTOB(bp->b_maps[i].bm_len); 443 } 444 445 /* 446 * Check to make sure everything is consistent. 447 */ 448 trace_xfs_buf_item_format(bip); 449 } 450 451 /* 452 * This is called to pin the buffer associated with the buf log item in memory 453 * so it cannot be written out. 454 * 455 * We also always take a reference to the buffer log item here so that the bli 456 * is held while the item is pinned in memory. This means that we can 457 * unconditionally drop the reference count a transaction holds when the 458 * transaction is completed. 459 */ 460 STATIC void 461 xfs_buf_item_pin( 462 struct xfs_log_item *lip) 463 { 464 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 465 466 ASSERT(atomic_read(&bip->bli_refcount) > 0); 467 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || 468 (bip->bli_flags & XFS_BLI_ORDERED) || 469 (bip->bli_flags & XFS_BLI_STALE)); 470 471 trace_xfs_buf_item_pin(bip); 472 473 atomic_inc(&bip->bli_refcount); 474 atomic_inc(&bip->bli_buf->b_pin_count); 475 } 476 477 /* 478 * This is called to unpin the buffer associated with the buf log item which 479 * was previously pinned with a call to xfs_buf_item_pin(). 480 */ 481 STATIC void 482 xfs_buf_item_unpin( 483 struct xfs_log_item *lip, 484 int remove) 485 { 486 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 487 struct xfs_buf *bp = bip->bli_buf; 488 int stale = bip->bli_flags & XFS_BLI_STALE; 489 int freed; 490 491 ASSERT(bp->b_log_item == bip); 492 ASSERT(atomic_read(&bip->bli_refcount) > 0); 493 494 trace_xfs_buf_item_unpin(bip); 495 496 /* 497 * Drop the bli ref associated with the pin and grab the hold required 498 * for the I/O simulation failure in the abort case. We have to do this 499 * before the pin count drops because the AIL doesn't acquire a bli 500 * reference. Therefore if the refcount drops to zero, the bli could 501 * still be AIL resident and the buffer submitted for I/O (and freed on 502 * completion) at any point before we return. This can be removed once 503 * the AIL properly holds a reference on the bli. 504 */ 505 freed = atomic_dec_and_test(&bip->bli_refcount); 506 if (freed && !stale && remove) 507 xfs_buf_hold(bp); 508 if (atomic_dec_and_test(&bp->b_pin_count)) 509 wake_up_all(&bp->b_waiters); 510 511 /* nothing to do but drop the pin count if the bli is active */ 512 if (!freed) 513 return; 514 515 if (stale) { 516 ASSERT(bip->bli_flags & XFS_BLI_STALE); 517 ASSERT(xfs_buf_islocked(bp)); 518 ASSERT(bp->b_flags & XBF_STALE); 519 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 520 ASSERT(list_empty(&lip->li_trans)); 521 ASSERT(!bp->b_transp); 522 523 trace_xfs_buf_item_unpin_stale(bip); 524 525 /* 526 * If we get called here because of an IO error, we may or may 527 * not have the item on the AIL. xfs_trans_ail_delete() will 528 * take care of that situation. xfs_trans_ail_delete() drops 529 * the AIL lock. 530 */ 531 if (bip->bli_flags & XFS_BLI_STALE_INODE) { 532 xfs_buf_item_done(bp); 533 xfs_buf_inode_iodone(bp); 534 ASSERT(list_empty(&bp->b_li_list)); 535 } else { 536 xfs_trans_ail_delete(lip, SHUTDOWN_LOG_IO_ERROR); 537 xfs_buf_item_relse(bp); 538 ASSERT(bp->b_log_item == NULL); 539 } 540 xfs_buf_relse(bp); 541 } else if (remove) { 542 /* 543 * The buffer must be locked and held by the caller to simulate 544 * an async I/O failure. We acquired the hold for this case 545 * before the buffer was unpinned. 546 */ 547 xfs_buf_lock(bp); 548 bp->b_flags |= XBF_ASYNC; 549 xfs_buf_ioend_fail(bp); 550 } 551 } 552 553 STATIC uint 554 xfs_buf_item_push( 555 struct xfs_log_item *lip, 556 struct list_head *buffer_list) 557 { 558 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 559 struct xfs_buf *bp = bip->bli_buf; 560 uint rval = XFS_ITEM_SUCCESS; 561 562 if (xfs_buf_ispinned(bp)) 563 return XFS_ITEM_PINNED; 564 if (!xfs_buf_trylock(bp)) { 565 /* 566 * If we have just raced with a buffer being pinned and it has 567 * been marked stale, we could end up stalling until someone else 568 * issues a log force to unpin the stale buffer. Check for the 569 * race condition here so xfsaild recognizes the buffer is pinned 570 * and queues a log force to move it along. 571 */ 572 if (xfs_buf_ispinned(bp)) 573 return XFS_ITEM_PINNED; 574 return XFS_ITEM_LOCKED; 575 } 576 577 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 578 579 trace_xfs_buf_item_push(bip); 580 581 /* has a previous flush failed due to IO errors? */ 582 if (bp->b_flags & XBF_WRITE_FAIL) { 583 xfs_buf_alert_ratelimited(bp, "XFS: Failing async write", 584 "Failing async write on buffer block 0x%llx. Retrying async write.", 585 (long long)xfs_buf_daddr(bp)); 586 } 587 588 if (!xfs_buf_delwri_queue(bp, buffer_list)) 589 rval = XFS_ITEM_FLUSHING; 590 xfs_buf_unlock(bp); 591 return rval; 592 } 593 594 /* 595 * Drop the buffer log item refcount and take appropriate action. This helper 596 * determines whether the bli must be freed or not, since a decrement to zero 597 * does not necessarily mean the bli is unused. 598 * 599 * Return true if the bli is freed, false otherwise. 600 */ 601 bool 602 xfs_buf_item_put( 603 struct xfs_buf_log_item *bip) 604 { 605 struct xfs_log_item *lip = &bip->bli_item; 606 bool aborted; 607 bool dirty; 608 609 /* drop the bli ref and return if it wasn't the last one */ 610 if (!atomic_dec_and_test(&bip->bli_refcount)) 611 return false; 612 613 /* 614 * We dropped the last ref and must free the item if clean or aborted. 615 * If the bli is dirty and non-aborted, the buffer was clean in the 616 * transaction but still awaiting writeback from previous changes. In 617 * that case, the bli is freed on buffer writeback completion. 618 */ 619 aborted = test_bit(XFS_LI_ABORTED, &lip->li_flags) || 620 xlog_is_shutdown(lip->li_log); 621 dirty = bip->bli_flags & XFS_BLI_DIRTY; 622 if (dirty && !aborted) 623 return false; 624 625 /* 626 * The bli is aborted or clean. An aborted item may be in the AIL 627 * regardless of dirty state. For example, consider an aborted 628 * transaction that invalidated a dirty bli and cleared the dirty 629 * state. 630 */ 631 if (aborted) 632 xfs_trans_ail_delete(lip, 0); 633 xfs_buf_item_relse(bip->bli_buf); 634 return true; 635 } 636 637 /* 638 * Release the buffer associated with the buf log item. If there is no dirty 639 * logged data associated with the buffer recorded in the buf log item, then 640 * free the buf log item and remove the reference to it in the buffer. 641 * 642 * This call ignores the recursion count. It is only called when the buffer 643 * should REALLY be unlocked, regardless of the recursion count. 644 * 645 * We unconditionally drop the transaction's reference to the log item. If the 646 * item was logged, then another reference was taken when it was pinned, so we 647 * can safely drop the transaction reference now. This also allows us to avoid 648 * potential races with the unpin code freeing the bli by not referencing the 649 * bli after we've dropped the reference count. 650 * 651 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item 652 * if necessary but do not unlock the buffer. This is for support of 653 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't 654 * free the item. 655 */ 656 STATIC void 657 xfs_buf_item_release( 658 struct xfs_log_item *lip) 659 { 660 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 661 struct xfs_buf *bp = bip->bli_buf; 662 bool released; 663 bool hold = bip->bli_flags & XFS_BLI_HOLD; 664 bool stale = bip->bli_flags & XFS_BLI_STALE; 665 #if defined(DEBUG) || defined(XFS_WARN) 666 bool ordered = bip->bli_flags & XFS_BLI_ORDERED; 667 bool dirty = bip->bli_flags & XFS_BLI_DIRTY; 668 bool aborted = test_bit(XFS_LI_ABORTED, 669 &lip->li_flags); 670 #endif 671 672 trace_xfs_buf_item_release(bip); 673 674 /* 675 * The bli dirty state should match whether the blf has logged segments 676 * except for ordered buffers, where only the bli should be dirty. 677 */ 678 ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) || 679 (ordered && dirty && !xfs_buf_item_dirty_format(bip))); 680 ASSERT(!stale || (bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 681 682 /* 683 * Clear the buffer's association with this transaction and 684 * per-transaction state from the bli, which has been copied above. 685 */ 686 bp->b_transp = NULL; 687 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED); 688 689 /* 690 * Unref the item and unlock the buffer unless held or stale. Stale 691 * buffers remain locked until final unpin unless the bli is freed by 692 * the unref call. The latter implies shutdown because buffer 693 * invalidation dirties the bli and transaction. 694 */ 695 released = xfs_buf_item_put(bip); 696 if (hold || (stale && !released)) 697 return; 698 ASSERT(!stale || aborted); 699 xfs_buf_relse(bp); 700 } 701 702 STATIC void 703 xfs_buf_item_committing( 704 struct xfs_log_item *lip, 705 xfs_csn_t seq) 706 { 707 return xfs_buf_item_release(lip); 708 } 709 710 /* 711 * This is called to find out where the oldest active copy of the 712 * buf log item in the on disk log resides now that the last log 713 * write of it completed at the given lsn. 714 * We always re-log all the dirty data in a buffer, so usually the 715 * latest copy in the on disk log is the only one that matters. For 716 * those cases we simply return the given lsn. 717 * 718 * The one exception to this is for buffers full of newly allocated 719 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF 720 * flag set, indicating that only the di_next_unlinked fields from the 721 * inodes in the buffers will be replayed during recovery. If the 722 * original newly allocated inode images have not yet been flushed 723 * when the buffer is so relogged, then we need to make sure that we 724 * keep the old images in the 'active' portion of the log. We do this 725 * by returning the original lsn of that transaction here rather than 726 * the current one. 727 */ 728 STATIC xfs_lsn_t 729 xfs_buf_item_committed( 730 struct xfs_log_item *lip, 731 xfs_lsn_t lsn) 732 { 733 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 734 735 trace_xfs_buf_item_committed(bip); 736 737 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0) 738 return lip->li_lsn; 739 return lsn; 740 } 741 742 static const struct xfs_item_ops xfs_buf_item_ops = { 743 .iop_size = xfs_buf_item_size, 744 .iop_format = xfs_buf_item_format, 745 .iop_pin = xfs_buf_item_pin, 746 .iop_unpin = xfs_buf_item_unpin, 747 .iop_release = xfs_buf_item_release, 748 .iop_committing = xfs_buf_item_committing, 749 .iop_committed = xfs_buf_item_committed, 750 .iop_push = xfs_buf_item_push, 751 }; 752 753 STATIC void 754 xfs_buf_item_get_format( 755 struct xfs_buf_log_item *bip, 756 int count) 757 { 758 ASSERT(bip->bli_formats == NULL); 759 bip->bli_format_count = count; 760 761 if (count == 1) { 762 bip->bli_formats = &bip->__bli_format; 763 return; 764 } 765 766 bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format), 767 0); 768 } 769 770 STATIC void 771 xfs_buf_item_free_format( 772 struct xfs_buf_log_item *bip) 773 { 774 if (bip->bli_formats != &bip->__bli_format) { 775 kmem_free(bip->bli_formats); 776 bip->bli_formats = NULL; 777 } 778 } 779 780 /* 781 * Allocate a new buf log item to go with the given buffer. 782 * Set the buffer's b_log_item field to point to the new 783 * buf log item. 784 */ 785 int 786 xfs_buf_item_init( 787 struct xfs_buf *bp, 788 struct xfs_mount *mp) 789 { 790 struct xfs_buf_log_item *bip = bp->b_log_item; 791 int chunks; 792 int map_size; 793 int i; 794 795 /* 796 * Check to see if there is already a buf log item for 797 * this buffer. If we do already have one, there is 798 * nothing to do here so return. 799 */ 800 ASSERT(bp->b_mount == mp); 801 if (bip) { 802 ASSERT(bip->bli_item.li_type == XFS_LI_BUF); 803 ASSERT(!bp->b_transp); 804 ASSERT(bip->bli_buf == bp); 805 return 0; 806 } 807 808 bip = kmem_cache_zalloc(xfs_buf_item_cache, GFP_KERNEL | __GFP_NOFAIL); 809 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops); 810 bip->bli_buf = bp; 811 812 /* 813 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer 814 * can be divided into. Make sure not to truncate any pieces. 815 * map_size is the size of the bitmap needed to describe the 816 * chunks of the buffer. 817 * 818 * Discontiguous buffer support follows the layout of the underlying 819 * buffer. This makes the implementation as simple as possible. 820 */ 821 xfs_buf_item_get_format(bip, bp->b_map_count); 822 823 for (i = 0; i < bip->bli_format_count; i++) { 824 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len), 825 XFS_BLF_CHUNK); 826 map_size = DIV_ROUND_UP(chunks, NBWORD); 827 828 if (map_size > XFS_BLF_DATAMAP_SIZE) { 829 kmem_cache_free(xfs_buf_item_cache, bip); 830 xfs_err(mp, 831 "buffer item dirty bitmap (%u uints) too small to reflect %u bytes!", 832 map_size, 833 BBTOB(bp->b_maps[i].bm_len)); 834 return -EFSCORRUPTED; 835 } 836 837 bip->bli_formats[i].blf_type = XFS_LI_BUF; 838 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn; 839 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len; 840 bip->bli_formats[i].blf_map_size = map_size; 841 } 842 843 bp->b_log_item = bip; 844 xfs_buf_hold(bp); 845 return 0; 846 } 847 848 849 /* 850 * Mark bytes first through last inclusive as dirty in the buf 851 * item's bitmap. 852 */ 853 static void 854 xfs_buf_item_log_segment( 855 uint first, 856 uint last, 857 uint *map) 858 { 859 uint first_bit; 860 uint last_bit; 861 uint bits_to_set; 862 uint bits_set; 863 uint word_num; 864 uint *wordp; 865 uint bit; 866 uint end_bit; 867 uint mask; 868 869 ASSERT(first < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD); 870 ASSERT(last < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD); 871 872 /* 873 * Convert byte offsets to bit numbers. 874 */ 875 first_bit = first >> XFS_BLF_SHIFT; 876 last_bit = last >> XFS_BLF_SHIFT; 877 878 /* 879 * Calculate the total number of bits to be set. 880 */ 881 bits_to_set = last_bit - first_bit + 1; 882 883 /* 884 * Get a pointer to the first word in the bitmap 885 * to set a bit in. 886 */ 887 word_num = first_bit >> BIT_TO_WORD_SHIFT; 888 wordp = &map[word_num]; 889 890 /* 891 * Calculate the starting bit in the first word. 892 */ 893 bit = first_bit & (uint)(NBWORD - 1); 894 895 /* 896 * First set any bits in the first word of our range. 897 * If it starts at bit 0 of the word, it will be 898 * set below rather than here. That is what the variable 899 * bit tells us. The variable bits_set tracks the number 900 * of bits that have been set so far. End_bit is the number 901 * of the last bit to be set in this word plus one. 902 */ 903 if (bit) { 904 end_bit = min(bit + bits_to_set, (uint)NBWORD); 905 mask = ((1U << (end_bit - bit)) - 1) << bit; 906 *wordp |= mask; 907 wordp++; 908 bits_set = end_bit - bit; 909 } else { 910 bits_set = 0; 911 } 912 913 /* 914 * Now set bits a whole word at a time that are between 915 * first_bit and last_bit. 916 */ 917 while ((bits_to_set - bits_set) >= NBWORD) { 918 *wordp = 0xffffffff; 919 bits_set += NBWORD; 920 wordp++; 921 } 922 923 /* 924 * Finally, set any bits left to be set in one last partial word. 925 */ 926 end_bit = bits_to_set - bits_set; 927 if (end_bit) { 928 mask = (1U << end_bit) - 1; 929 *wordp |= mask; 930 } 931 } 932 933 /* 934 * Mark bytes first through last inclusive as dirty in the buf 935 * item's bitmap. 936 */ 937 void 938 xfs_buf_item_log( 939 struct xfs_buf_log_item *bip, 940 uint first, 941 uint last) 942 { 943 int i; 944 uint start; 945 uint end; 946 struct xfs_buf *bp = bip->bli_buf; 947 948 /* 949 * walk each buffer segment and mark them dirty appropriately. 950 */ 951 start = 0; 952 for (i = 0; i < bip->bli_format_count; i++) { 953 if (start > last) 954 break; 955 end = start + BBTOB(bp->b_maps[i].bm_len) - 1; 956 957 /* skip to the map that includes the first byte to log */ 958 if (first > end) { 959 start += BBTOB(bp->b_maps[i].bm_len); 960 continue; 961 } 962 963 /* 964 * Trim the range to this segment and mark it in the bitmap. 965 * Note that we must convert buffer offsets to segment relative 966 * offsets (e.g., the first byte of each segment is byte 0 of 967 * that segment). 968 */ 969 if (first < start) 970 first = start; 971 if (end > last) 972 end = last; 973 xfs_buf_item_log_segment(first - start, end - start, 974 &bip->bli_formats[i].blf_data_map[0]); 975 976 start += BBTOB(bp->b_maps[i].bm_len); 977 } 978 } 979 980 981 /* 982 * Return true if the buffer has any ranges logged/dirtied by a transaction, 983 * false otherwise. 984 */ 985 bool 986 xfs_buf_item_dirty_format( 987 struct xfs_buf_log_item *bip) 988 { 989 int i; 990 991 for (i = 0; i < bip->bli_format_count; i++) { 992 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map, 993 bip->bli_formats[i].blf_map_size)) 994 return true; 995 } 996 997 return false; 998 } 999 1000 STATIC void 1001 xfs_buf_item_free( 1002 struct xfs_buf_log_item *bip) 1003 { 1004 xfs_buf_item_free_format(bip); 1005 kmem_free(bip->bli_item.li_lv_shadow); 1006 kmem_cache_free(xfs_buf_item_cache, bip); 1007 } 1008 1009 /* 1010 * xfs_buf_item_relse() is called when the buf log item is no longer needed. 1011 */ 1012 void 1013 xfs_buf_item_relse( 1014 struct xfs_buf *bp) 1015 { 1016 struct xfs_buf_log_item *bip = bp->b_log_item; 1017 1018 trace_xfs_buf_item_relse(bp, _RET_IP_); 1019 ASSERT(!test_bit(XFS_LI_IN_AIL, &bip->bli_item.li_flags)); 1020 1021 if (atomic_read(&bip->bli_refcount)) 1022 return; 1023 bp->b_log_item = NULL; 1024 xfs_buf_rele(bp); 1025 xfs_buf_item_free(bip); 1026 } 1027 1028 void 1029 xfs_buf_item_done( 1030 struct xfs_buf *bp) 1031 { 1032 /* 1033 * If we are forcibly shutting down, this may well be off the AIL 1034 * already. That's because we simulate the log-committed callbacks to 1035 * unpin these buffers. Or we may never have put this item on AIL 1036 * because of the transaction was aborted forcibly. 1037 * xfs_trans_ail_delete() takes care of these. 1038 * 1039 * Either way, AIL is useless if we're forcing a shutdown. 1040 * 1041 * Note that log recovery writes might have buffer items that are not on 1042 * the AIL even when the file system is not shut down. 1043 */ 1044 xfs_trans_ail_delete(&bp->b_log_item->bli_item, 1045 (bp->b_flags & _XBF_LOGRECOVERY) ? 0 : 1046 SHUTDOWN_CORRUPT_INCORE); 1047 xfs_buf_item_relse(bp); 1048 } 1049