1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_trans.h" 24 #include "xfs_sb.h" 25 #include "xfs_ag.h" 26 #include "xfs_mount.h" 27 #include "xfs_buf_item.h" 28 #include "xfs_trans_priv.h" 29 #include "xfs_error.h" 30 #include "xfs_trace.h" 31 32 33 kmem_zone_t *xfs_buf_item_zone; 34 35 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip) 36 { 37 return container_of(lip, struct xfs_buf_log_item, bli_item); 38 } 39 40 STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp); 41 42 static inline int 43 xfs_buf_log_format_size( 44 struct xfs_buf_log_format *blfp) 45 { 46 return offsetof(struct xfs_buf_log_format, blf_data_map) + 47 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0])); 48 } 49 50 /* 51 * This returns the number of log iovecs needed to log the 52 * given buf log item. 53 * 54 * It calculates this as 1 iovec for the buf log format structure 55 * and 1 for each stretch of non-contiguous chunks to be logged. 56 * Contiguous chunks are logged in a single iovec. 57 * 58 * If the XFS_BLI_STALE flag has been set, then log nothing. 59 */ 60 STATIC void 61 xfs_buf_item_size_segment( 62 struct xfs_buf_log_item *bip, 63 struct xfs_buf_log_format *blfp, 64 int *nvecs, 65 int *nbytes) 66 { 67 struct xfs_buf *bp = bip->bli_buf; 68 int next_bit; 69 int last_bit; 70 71 last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0); 72 if (last_bit == -1) 73 return; 74 75 /* 76 * initial count for a dirty buffer is 2 vectors - the format structure 77 * and the first dirty region. 78 */ 79 *nvecs += 2; 80 *nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK; 81 82 while (last_bit != -1) { 83 /* 84 * This takes the bit number to start looking from and 85 * returns the next set bit from there. It returns -1 86 * if there are no more bits set or the start bit is 87 * beyond the end of the bitmap. 88 */ 89 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 90 last_bit + 1); 91 /* 92 * If we run out of bits, leave the loop, 93 * else if we find a new set of bits bump the number of vecs, 94 * else keep scanning the current set of bits. 95 */ 96 if (next_bit == -1) { 97 break; 98 } else if (next_bit != last_bit + 1) { 99 last_bit = next_bit; 100 (*nvecs)++; 101 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) != 102 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) + 103 XFS_BLF_CHUNK)) { 104 last_bit = next_bit; 105 (*nvecs)++; 106 } else { 107 last_bit++; 108 } 109 *nbytes += XFS_BLF_CHUNK; 110 } 111 } 112 113 /* 114 * This returns the number of log iovecs needed to log the given buf log item. 115 * 116 * It calculates this as 1 iovec for the buf log format structure and 1 for each 117 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged 118 * in a single iovec. 119 * 120 * Discontiguous buffers need a format structure per region that that is being 121 * logged. This makes the changes in the buffer appear to log recovery as though 122 * they came from separate buffers, just like would occur if multiple buffers 123 * were used instead of a single discontiguous buffer. This enables 124 * discontiguous buffers to be in-memory constructs, completely transparent to 125 * what ends up on disk. 126 * 127 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log 128 * format structures. 129 */ 130 STATIC void 131 xfs_buf_item_size( 132 struct xfs_log_item *lip, 133 int *nvecs, 134 int *nbytes) 135 { 136 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 137 int i; 138 139 ASSERT(atomic_read(&bip->bli_refcount) > 0); 140 if (bip->bli_flags & XFS_BLI_STALE) { 141 /* 142 * The buffer is stale, so all we need to log 143 * is the buf log format structure with the 144 * cancel flag in it. 145 */ 146 trace_xfs_buf_item_size_stale(bip); 147 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 148 *nvecs += bip->bli_format_count; 149 for (i = 0; i < bip->bli_format_count; i++) { 150 *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]); 151 } 152 return; 153 } 154 155 ASSERT(bip->bli_flags & XFS_BLI_LOGGED); 156 157 if (bip->bli_flags & XFS_BLI_ORDERED) { 158 /* 159 * The buffer has been logged just to order it. 160 * It is not being included in the transaction 161 * commit, so no vectors are used at all. 162 */ 163 trace_xfs_buf_item_size_ordered(bip); 164 *nvecs = XFS_LOG_VEC_ORDERED; 165 return; 166 } 167 168 /* 169 * the vector count is based on the number of buffer vectors we have 170 * dirty bits in. This will only be greater than one when we have a 171 * compound buffer with more than one segment dirty. Hence for compound 172 * buffers we need to track which segment the dirty bits correspond to, 173 * and when we move from one segment to the next increment the vector 174 * count for the extra buf log format structure that will need to be 175 * written. 176 */ 177 for (i = 0; i < bip->bli_format_count; i++) { 178 xfs_buf_item_size_segment(bip, &bip->bli_formats[i], 179 nvecs, nbytes); 180 } 181 trace_xfs_buf_item_size(bip); 182 } 183 184 static struct xfs_log_iovec * 185 xfs_buf_item_format_segment( 186 struct xfs_buf_log_item *bip, 187 struct xfs_log_iovec *vecp, 188 uint offset, 189 struct xfs_buf_log_format *blfp) 190 { 191 struct xfs_buf *bp = bip->bli_buf; 192 uint base_size; 193 uint nvecs; 194 int first_bit; 195 int last_bit; 196 int next_bit; 197 uint nbits; 198 uint buffer_offset; 199 200 /* copy the flags across from the base format item */ 201 blfp->blf_flags = bip->__bli_format.blf_flags; 202 203 /* 204 * Base size is the actual size of the ondisk structure - it reflects 205 * the actual size of the dirty bitmap rather than the size of the in 206 * memory structure. 207 */ 208 base_size = xfs_buf_log_format_size(blfp); 209 210 nvecs = 0; 211 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0); 212 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) { 213 /* 214 * If the map is not be dirty in the transaction, mark 215 * the size as zero and do not advance the vector pointer. 216 */ 217 goto out; 218 } 219 220 vecp->i_addr = blfp; 221 vecp->i_len = base_size; 222 vecp->i_type = XLOG_REG_TYPE_BFORMAT; 223 vecp++; 224 nvecs = 1; 225 226 if (bip->bli_flags & XFS_BLI_STALE) { 227 /* 228 * The buffer is stale, so all we need to log 229 * is the buf log format structure with the 230 * cancel flag in it. 231 */ 232 trace_xfs_buf_item_format_stale(bip); 233 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL); 234 goto out; 235 } 236 237 238 /* 239 * Fill in an iovec for each set of contiguous chunks. 240 */ 241 242 last_bit = first_bit; 243 nbits = 1; 244 for (;;) { 245 /* 246 * This takes the bit number to start looking from and 247 * returns the next set bit from there. It returns -1 248 * if there are no more bits set or the start bit is 249 * beyond the end of the bitmap. 250 */ 251 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 252 (uint)last_bit + 1); 253 /* 254 * If we run out of bits fill in the last iovec and get 255 * out of the loop. 256 * Else if we start a new set of bits then fill in the 257 * iovec for the series we were looking at and start 258 * counting the bits in the new one. 259 * Else we're still in the same set of bits so just 260 * keep counting and scanning. 261 */ 262 if (next_bit == -1) { 263 buffer_offset = offset + first_bit * XFS_BLF_CHUNK; 264 vecp->i_addr = xfs_buf_offset(bp, buffer_offset); 265 vecp->i_len = nbits * XFS_BLF_CHUNK; 266 vecp->i_type = XLOG_REG_TYPE_BCHUNK; 267 nvecs++; 268 break; 269 } else if (next_bit != last_bit + 1) { 270 buffer_offset = offset + first_bit * XFS_BLF_CHUNK; 271 vecp->i_addr = xfs_buf_offset(bp, buffer_offset); 272 vecp->i_len = nbits * XFS_BLF_CHUNK; 273 vecp->i_type = XLOG_REG_TYPE_BCHUNK; 274 nvecs++; 275 vecp++; 276 first_bit = next_bit; 277 last_bit = next_bit; 278 nbits = 1; 279 } else if (xfs_buf_offset(bp, offset + 280 (next_bit << XFS_BLF_SHIFT)) != 281 (xfs_buf_offset(bp, offset + 282 (last_bit << XFS_BLF_SHIFT)) + 283 XFS_BLF_CHUNK)) { 284 buffer_offset = offset + first_bit * XFS_BLF_CHUNK; 285 vecp->i_addr = xfs_buf_offset(bp, buffer_offset); 286 vecp->i_len = nbits * XFS_BLF_CHUNK; 287 vecp->i_type = XLOG_REG_TYPE_BCHUNK; 288 nvecs++; 289 vecp++; 290 first_bit = next_bit; 291 last_bit = next_bit; 292 nbits = 1; 293 } else { 294 last_bit++; 295 nbits++; 296 } 297 } 298 out: 299 blfp->blf_size = nvecs; 300 return vecp; 301 } 302 303 /* 304 * This is called to fill in the vector of log iovecs for the 305 * given log buf item. It fills the first entry with a buf log 306 * format structure, and the rest point to contiguous chunks 307 * within the buffer. 308 */ 309 STATIC void 310 xfs_buf_item_format( 311 struct xfs_log_item *lip, 312 struct xfs_log_iovec *vecp) 313 { 314 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 315 struct xfs_buf *bp = bip->bli_buf; 316 uint offset = 0; 317 int i; 318 319 ASSERT(atomic_read(&bip->bli_refcount) > 0); 320 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || 321 (bip->bli_flags & XFS_BLI_STALE)); 322 323 /* 324 * If it is an inode buffer, transfer the in-memory state to the 325 * format flags and clear the in-memory state. 326 * 327 * For buffer based inode allocation, we do not transfer 328 * this state if the inode buffer allocation has not yet been committed 329 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent 330 * correct replay of the inode allocation. 331 * 332 * For icreate item based inode allocation, the buffers aren't written 333 * to the journal during allocation, and hence we should always tag the 334 * buffer as an inode buffer so that the correct unlinked list replay 335 * occurs during recovery. 336 */ 337 if (bip->bli_flags & XFS_BLI_INODE_BUF) { 338 if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) || 339 !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && 340 xfs_log_item_in_current_chkpt(lip))) 341 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF; 342 bip->bli_flags &= ~XFS_BLI_INODE_BUF; 343 } 344 345 if ((bip->bli_flags & (XFS_BLI_ORDERED|XFS_BLI_STALE)) == 346 XFS_BLI_ORDERED) { 347 /* 348 * The buffer has been logged just to order it. It is not being 349 * included in the transaction commit, so don't format it. 350 */ 351 trace_xfs_buf_item_format_ordered(bip); 352 return; 353 } 354 355 for (i = 0; i < bip->bli_format_count; i++) { 356 vecp = xfs_buf_item_format_segment(bip, vecp, offset, 357 &bip->bli_formats[i]); 358 offset += bp->b_maps[i].bm_len; 359 } 360 361 /* 362 * Check to make sure everything is consistent. 363 */ 364 trace_xfs_buf_item_format(bip); 365 } 366 367 /* 368 * This is called to pin the buffer associated with the buf log item in memory 369 * so it cannot be written out. 370 * 371 * We also always take a reference to the buffer log item here so that the bli 372 * is held while the item is pinned in memory. This means that we can 373 * unconditionally drop the reference count a transaction holds when the 374 * transaction is completed. 375 */ 376 STATIC void 377 xfs_buf_item_pin( 378 struct xfs_log_item *lip) 379 { 380 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 381 382 ASSERT(atomic_read(&bip->bli_refcount) > 0); 383 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || 384 (bip->bli_flags & XFS_BLI_ORDERED) || 385 (bip->bli_flags & XFS_BLI_STALE)); 386 387 trace_xfs_buf_item_pin(bip); 388 389 atomic_inc(&bip->bli_refcount); 390 atomic_inc(&bip->bli_buf->b_pin_count); 391 } 392 393 /* 394 * This is called to unpin the buffer associated with the buf log 395 * item which was previously pinned with a call to xfs_buf_item_pin(). 396 * 397 * Also drop the reference to the buf item for the current transaction. 398 * If the XFS_BLI_STALE flag is set and we are the last reference, 399 * then free up the buf log item and unlock the buffer. 400 * 401 * If the remove flag is set we are called from uncommit in the 402 * forced-shutdown path. If that is true and the reference count on 403 * the log item is going to drop to zero we need to free the item's 404 * descriptor in the transaction. 405 */ 406 STATIC void 407 xfs_buf_item_unpin( 408 struct xfs_log_item *lip, 409 int remove) 410 { 411 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 412 xfs_buf_t *bp = bip->bli_buf; 413 struct xfs_ail *ailp = lip->li_ailp; 414 int stale = bip->bli_flags & XFS_BLI_STALE; 415 int freed; 416 417 ASSERT(bp->b_fspriv == bip); 418 ASSERT(atomic_read(&bip->bli_refcount) > 0); 419 420 trace_xfs_buf_item_unpin(bip); 421 422 freed = atomic_dec_and_test(&bip->bli_refcount); 423 424 if (atomic_dec_and_test(&bp->b_pin_count)) 425 wake_up_all(&bp->b_waiters); 426 427 if (freed && stale) { 428 ASSERT(bip->bli_flags & XFS_BLI_STALE); 429 ASSERT(xfs_buf_islocked(bp)); 430 ASSERT(XFS_BUF_ISSTALE(bp)); 431 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 432 433 trace_xfs_buf_item_unpin_stale(bip); 434 435 if (remove) { 436 /* 437 * If we are in a transaction context, we have to 438 * remove the log item from the transaction as we are 439 * about to release our reference to the buffer. If we 440 * don't, the unlock that occurs later in 441 * xfs_trans_uncommit() will try to reference the 442 * buffer which we no longer have a hold on. 443 */ 444 if (lip->li_desc) 445 xfs_trans_del_item(lip); 446 447 /* 448 * Since the transaction no longer refers to the buffer, 449 * the buffer should no longer refer to the transaction. 450 */ 451 bp->b_transp = NULL; 452 } 453 454 /* 455 * If we get called here because of an IO error, we may 456 * or may not have the item on the AIL. xfs_trans_ail_delete() 457 * will take care of that situation. 458 * xfs_trans_ail_delete() drops the AIL lock. 459 */ 460 if (bip->bli_flags & XFS_BLI_STALE_INODE) { 461 xfs_buf_do_callbacks(bp); 462 bp->b_fspriv = NULL; 463 bp->b_iodone = NULL; 464 } else { 465 spin_lock(&ailp->xa_lock); 466 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR); 467 xfs_buf_item_relse(bp); 468 ASSERT(bp->b_fspriv == NULL); 469 } 470 xfs_buf_relse(bp); 471 } else if (freed && remove) { 472 /* 473 * There are currently two references to the buffer - the active 474 * LRU reference and the buf log item. What we are about to do 475 * here - simulate a failed IO completion - requires 3 476 * references. 477 * 478 * The LRU reference is removed by the xfs_buf_stale() call. The 479 * buf item reference is removed by the xfs_buf_iodone() 480 * callback that is run by xfs_buf_do_callbacks() during ioend 481 * processing (via the bp->b_iodone callback), and then finally 482 * the ioend processing will drop the IO reference if the buffer 483 * is marked XBF_ASYNC. 484 * 485 * Hence we need to take an additional reference here so that IO 486 * completion processing doesn't free the buffer prematurely. 487 */ 488 xfs_buf_lock(bp); 489 xfs_buf_hold(bp); 490 bp->b_flags |= XBF_ASYNC; 491 xfs_buf_ioerror(bp, EIO); 492 XFS_BUF_UNDONE(bp); 493 xfs_buf_stale(bp); 494 xfs_buf_ioend(bp, 0); 495 } 496 } 497 498 STATIC uint 499 xfs_buf_item_push( 500 struct xfs_log_item *lip, 501 struct list_head *buffer_list) 502 { 503 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 504 struct xfs_buf *bp = bip->bli_buf; 505 uint rval = XFS_ITEM_SUCCESS; 506 507 if (xfs_buf_ispinned(bp)) 508 return XFS_ITEM_PINNED; 509 if (!xfs_buf_trylock(bp)) { 510 /* 511 * If we have just raced with a buffer being pinned and it has 512 * been marked stale, we could end up stalling until someone else 513 * issues a log force to unpin the stale buffer. Check for the 514 * race condition here so xfsaild recognizes the buffer is pinned 515 * and queues a log force to move it along. 516 */ 517 if (xfs_buf_ispinned(bp)) 518 return XFS_ITEM_PINNED; 519 return XFS_ITEM_LOCKED; 520 } 521 522 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 523 524 trace_xfs_buf_item_push(bip); 525 526 if (!xfs_buf_delwri_queue(bp, buffer_list)) 527 rval = XFS_ITEM_FLUSHING; 528 xfs_buf_unlock(bp); 529 return rval; 530 } 531 532 /* 533 * Release the buffer associated with the buf log item. If there is no dirty 534 * logged data associated with the buffer recorded in the buf log item, then 535 * free the buf log item and remove the reference to it in the buffer. 536 * 537 * This call ignores the recursion count. It is only called when the buffer 538 * should REALLY be unlocked, regardless of the recursion count. 539 * 540 * We unconditionally drop the transaction's reference to the log item. If the 541 * item was logged, then another reference was taken when it was pinned, so we 542 * can safely drop the transaction reference now. This also allows us to avoid 543 * potential races with the unpin code freeing the bli by not referencing the 544 * bli after we've dropped the reference count. 545 * 546 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item 547 * if necessary but do not unlock the buffer. This is for support of 548 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't 549 * free the item. 550 */ 551 STATIC void 552 xfs_buf_item_unlock( 553 struct xfs_log_item *lip) 554 { 555 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 556 struct xfs_buf *bp = bip->bli_buf; 557 bool clean; 558 bool aborted; 559 int flags; 560 561 /* Clear the buffer's association with this transaction. */ 562 bp->b_transp = NULL; 563 564 /* 565 * If this is a transaction abort, don't return early. Instead, allow 566 * the brelse to happen. Normally it would be done for stale 567 * (cancelled) buffers at unpin time, but we'll never go through the 568 * pin/unpin cycle if we abort inside commit. 569 */ 570 aborted = (lip->li_flags & XFS_LI_ABORTED) ? true : false; 571 /* 572 * Before possibly freeing the buf item, copy the per-transaction state 573 * so we can reference it safely later after clearing it from the 574 * buffer log item. 575 */ 576 flags = bip->bli_flags; 577 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED); 578 579 /* 580 * If the buf item is marked stale, then don't do anything. We'll 581 * unlock the buffer and free the buf item when the buffer is unpinned 582 * for the last time. 583 */ 584 if (flags & XFS_BLI_STALE) { 585 trace_xfs_buf_item_unlock_stale(bip); 586 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 587 if (!aborted) { 588 atomic_dec(&bip->bli_refcount); 589 return; 590 } 591 } 592 593 trace_xfs_buf_item_unlock(bip); 594 595 /* 596 * If the buf item isn't tracking any data, free it, otherwise drop the 597 * reference we hold to it. If we are aborting the transaction, this may 598 * be the only reference to the buf item, so we free it anyway 599 * regardless of whether it is dirty or not. A dirty abort implies a 600 * shutdown, anyway. 601 * 602 * Ordered buffers are dirty but may have no recorded changes, so ensure 603 * we only release clean items here. 604 */ 605 clean = (flags & XFS_BLI_DIRTY) ? false : true; 606 if (clean) { 607 int i; 608 for (i = 0; i < bip->bli_format_count; i++) { 609 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map, 610 bip->bli_formats[i].blf_map_size)) { 611 clean = false; 612 break; 613 } 614 } 615 } 616 617 /* 618 * Clean buffers, by definition, cannot be in the AIL. However, aborted 619 * buffers may be dirty and hence in the AIL. Therefore if we are 620 * aborting a buffer and we've just taken the last refernce away, we 621 * have to check if it is in the AIL before freeing it. We need to free 622 * it in this case, because an aborted transaction has already shut the 623 * filesystem down and this is the last chance we will have to do so. 624 */ 625 if (atomic_dec_and_test(&bip->bli_refcount)) { 626 if (clean) 627 xfs_buf_item_relse(bp); 628 else if (aborted) { 629 ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp)); 630 if (lip->li_flags & XFS_LI_IN_AIL) { 631 xfs_trans_ail_delete(lip->li_ailp, lip, 632 SHUTDOWN_LOG_IO_ERROR); 633 } 634 xfs_buf_item_relse(bp); 635 } 636 } 637 638 if (!(flags & XFS_BLI_HOLD)) 639 xfs_buf_relse(bp); 640 } 641 642 /* 643 * This is called to find out where the oldest active copy of the 644 * buf log item in the on disk log resides now that the last log 645 * write of it completed at the given lsn. 646 * We always re-log all the dirty data in a buffer, so usually the 647 * latest copy in the on disk log is the only one that matters. For 648 * those cases we simply return the given lsn. 649 * 650 * The one exception to this is for buffers full of newly allocated 651 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF 652 * flag set, indicating that only the di_next_unlinked fields from the 653 * inodes in the buffers will be replayed during recovery. If the 654 * original newly allocated inode images have not yet been flushed 655 * when the buffer is so relogged, then we need to make sure that we 656 * keep the old images in the 'active' portion of the log. We do this 657 * by returning the original lsn of that transaction here rather than 658 * the current one. 659 */ 660 STATIC xfs_lsn_t 661 xfs_buf_item_committed( 662 struct xfs_log_item *lip, 663 xfs_lsn_t lsn) 664 { 665 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 666 667 trace_xfs_buf_item_committed(bip); 668 669 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0) 670 return lip->li_lsn; 671 return lsn; 672 } 673 674 STATIC void 675 xfs_buf_item_committing( 676 struct xfs_log_item *lip, 677 xfs_lsn_t commit_lsn) 678 { 679 } 680 681 /* 682 * This is the ops vector shared by all buf log items. 683 */ 684 static const struct xfs_item_ops xfs_buf_item_ops = { 685 .iop_size = xfs_buf_item_size, 686 .iop_format = xfs_buf_item_format, 687 .iop_pin = xfs_buf_item_pin, 688 .iop_unpin = xfs_buf_item_unpin, 689 .iop_unlock = xfs_buf_item_unlock, 690 .iop_committed = xfs_buf_item_committed, 691 .iop_push = xfs_buf_item_push, 692 .iop_committing = xfs_buf_item_committing 693 }; 694 695 STATIC int 696 xfs_buf_item_get_format( 697 struct xfs_buf_log_item *bip, 698 int count) 699 { 700 ASSERT(bip->bli_formats == NULL); 701 bip->bli_format_count = count; 702 703 if (count == 1) { 704 bip->bli_formats = &bip->__bli_format; 705 return 0; 706 } 707 708 bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format), 709 KM_SLEEP); 710 if (!bip->bli_formats) 711 return ENOMEM; 712 return 0; 713 } 714 715 STATIC void 716 xfs_buf_item_free_format( 717 struct xfs_buf_log_item *bip) 718 { 719 if (bip->bli_formats != &bip->__bli_format) { 720 kmem_free(bip->bli_formats); 721 bip->bli_formats = NULL; 722 } 723 } 724 725 /* 726 * Allocate a new buf log item to go with the given buffer. 727 * Set the buffer's b_fsprivate field to point to the new 728 * buf log item. If there are other item's attached to the 729 * buffer (see xfs_buf_attach_iodone() below), then put the 730 * buf log item at the front. 731 */ 732 void 733 xfs_buf_item_init( 734 xfs_buf_t *bp, 735 xfs_mount_t *mp) 736 { 737 xfs_log_item_t *lip = bp->b_fspriv; 738 xfs_buf_log_item_t *bip; 739 int chunks; 740 int map_size; 741 int error; 742 int i; 743 744 /* 745 * Check to see if there is already a buf log item for 746 * this buffer. If there is, it is guaranteed to be 747 * the first. If we do already have one, there is 748 * nothing to do here so return. 749 */ 750 ASSERT(bp->b_target->bt_mount == mp); 751 if (lip != NULL && lip->li_type == XFS_LI_BUF) 752 return; 753 754 bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP); 755 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops); 756 bip->bli_buf = bp; 757 xfs_buf_hold(bp); 758 759 /* 760 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer 761 * can be divided into. Make sure not to truncate any pieces. 762 * map_size is the size of the bitmap needed to describe the 763 * chunks of the buffer. 764 * 765 * Discontiguous buffer support follows the layout of the underlying 766 * buffer. This makes the implementation as simple as possible. 767 */ 768 error = xfs_buf_item_get_format(bip, bp->b_map_count); 769 ASSERT(error == 0); 770 771 for (i = 0; i < bip->bli_format_count; i++) { 772 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len), 773 XFS_BLF_CHUNK); 774 map_size = DIV_ROUND_UP(chunks, NBWORD); 775 776 bip->bli_formats[i].blf_type = XFS_LI_BUF; 777 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn; 778 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len; 779 bip->bli_formats[i].blf_map_size = map_size; 780 } 781 782 #ifdef XFS_TRANS_DEBUG 783 /* 784 * Allocate the arrays for tracking what needs to be logged 785 * and what our callers request to be logged. bli_orig 786 * holds a copy of the original, clean buffer for comparison 787 * against, and bli_logged keeps a 1 bit flag per byte in 788 * the buffer to indicate which bytes the callers have asked 789 * to have logged. 790 */ 791 bip->bli_orig = kmem_alloc(BBTOB(bp->b_length), KM_SLEEP); 792 memcpy(bip->bli_orig, bp->b_addr, BBTOB(bp->b_length)); 793 bip->bli_logged = kmem_zalloc(BBTOB(bp->b_length) / NBBY, KM_SLEEP); 794 #endif 795 796 /* 797 * Put the buf item into the list of items attached to the 798 * buffer at the front. 799 */ 800 if (bp->b_fspriv) 801 bip->bli_item.li_bio_list = bp->b_fspriv; 802 bp->b_fspriv = bip; 803 } 804 805 806 /* 807 * Mark bytes first through last inclusive as dirty in the buf 808 * item's bitmap. 809 */ 810 void 811 xfs_buf_item_log_segment( 812 struct xfs_buf_log_item *bip, 813 uint first, 814 uint last, 815 uint *map) 816 { 817 uint first_bit; 818 uint last_bit; 819 uint bits_to_set; 820 uint bits_set; 821 uint word_num; 822 uint *wordp; 823 uint bit; 824 uint end_bit; 825 uint mask; 826 827 /* 828 * Convert byte offsets to bit numbers. 829 */ 830 first_bit = first >> XFS_BLF_SHIFT; 831 last_bit = last >> XFS_BLF_SHIFT; 832 833 /* 834 * Calculate the total number of bits to be set. 835 */ 836 bits_to_set = last_bit - first_bit + 1; 837 838 /* 839 * Get a pointer to the first word in the bitmap 840 * to set a bit in. 841 */ 842 word_num = first_bit >> BIT_TO_WORD_SHIFT; 843 wordp = &map[word_num]; 844 845 /* 846 * Calculate the starting bit in the first word. 847 */ 848 bit = first_bit & (uint)(NBWORD - 1); 849 850 /* 851 * First set any bits in the first word of our range. 852 * If it starts at bit 0 of the word, it will be 853 * set below rather than here. That is what the variable 854 * bit tells us. The variable bits_set tracks the number 855 * of bits that have been set so far. End_bit is the number 856 * of the last bit to be set in this word plus one. 857 */ 858 if (bit) { 859 end_bit = MIN(bit + bits_to_set, (uint)NBWORD); 860 mask = ((1 << (end_bit - bit)) - 1) << bit; 861 *wordp |= mask; 862 wordp++; 863 bits_set = end_bit - bit; 864 } else { 865 bits_set = 0; 866 } 867 868 /* 869 * Now set bits a whole word at a time that are between 870 * first_bit and last_bit. 871 */ 872 while ((bits_to_set - bits_set) >= NBWORD) { 873 *wordp |= 0xffffffff; 874 bits_set += NBWORD; 875 wordp++; 876 } 877 878 /* 879 * Finally, set any bits left to be set in one last partial word. 880 */ 881 end_bit = bits_to_set - bits_set; 882 if (end_bit) { 883 mask = (1 << end_bit) - 1; 884 *wordp |= mask; 885 } 886 } 887 888 /* 889 * Mark bytes first through last inclusive as dirty in the buf 890 * item's bitmap. 891 */ 892 void 893 xfs_buf_item_log( 894 xfs_buf_log_item_t *bip, 895 uint first, 896 uint last) 897 { 898 int i; 899 uint start; 900 uint end; 901 struct xfs_buf *bp = bip->bli_buf; 902 903 /* 904 * walk each buffer segment and mark them dirty appropriately. 905 */ 906 start = 0; 907 for (i = 0; i < bip->bli_format_count; i++) { 908 if (start > last) 909 break; 910 end = start + BBTOB(bp->b_maps[i].bm_len); 911 if (first > end) { 912 start += BBTOB(bp->b_maps[i].bm_len); 913 continue; 914 } 915 if (first < start) 916 first = start; 917 if (end > last) 918 end = last; 919 920 xfs_buf_item_log_segment(bip, first, end, 921 &bip->bli_formats[i].blf_data_map[0]); 922 923 start += bp->b_maps[i].bm_len; 924 } 925 } 926 927 928 /* 929 * Return 1 if the buffer has been logged or ordered in a transaction (at any 930 * point, not just the current transaction) and 0 if not. 931 */ 932 uint 933 xfs_buf_item_dirty( 934 xfs_buf_log_item_t *bip) 935 { 936 return (bip->bli_flags & XFS_BLI_DIRTY); 937 } 938 939 STATIC void 940 xfs_buf_item_free( 941 xfs_buf_log_item_t *bip) 942 { 943 #ifdef XFS_TRANS_DEBUG 944 kmem_free(bip->bli_orig); 945 kmem_free(bip->bli_logged); 946 #endif /* XFS_TRANS_DEBUG */ 947 948 xfs_buf_item_free_format(bip); 949 kmem_zone_free(xfs_buf_item_zone, bip); 950 } 951 952 /* 953 * This is called when the buf log item is no longer needed. It should 954 * free the buf log item associated with the given buffer and clear 955 * the buffer's pointer to the buf log item. If there are no more 956 * items in the list, clear the b_iodone field of the buffer (see 957 * xfs_buf_attach_iodone() below). 958 */ 959 void 960 xfs_buf_item_relse( 961 xfs_buf_t *bp) 962 { 963 xfs_buf_log_item_t *bip = bp->b_fspriv; 964 965 trace_xfs_buf_item_relse(bp, _RET_IP_); 966 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL)); 967 968 bp->b_fspriv = bip->bli_item.li_bio_list; 969 if (bp->b_fspriv == NULL) 970 bp->b_iodone = NULL; 971 972 xfs_buf_rele(bp); 973 xfs_buf_item_free(bip); 974 } 975 976 977 /* 978 * Add the given log item with its callback to the list of callbacks 979 * to be called when the buffer's I/O completes. If it is not set 980 * already, set the buffer's b_iodone() routine to be 981 * xfs_buf_iodone_callbacks() and link the log item into the list of 982 * items rooted at b_fsprivate. Items are always added as the second 983 * entry in the list if there is a first, because the buf item code 984 * assumes that the buf log item is first. 985 */ 986 void 987 xfs_buf_attach_iodone( 988 xfs_buf_t *bp, 989 void (*cb)(xfs_buf_t *, xfs_log_item_t *), 990 xfs_log_item_t *lip) 991 { 992 xfs_log_item_t *head_lip; 993 994 ASSERT(xfs_buf_islocked(bp)); 995 996 lip->li_cb = cb; 997 head_lip = bp->b_fspriv; 998 if (head_lip) { 999 lip->li_bio_list = head_lip->li_bio_list; 1000 head_lip->li_bio_list = lip; 1001 } else { 1002 bp->b_fspriv = lip; 1003 } 1004 1005 ASSERT(bp->b_iodone == NULL || 1006 bp->b_iodone == xfs_buf_iodone_callbacks); 1007 bp->b_iodone = xfs_buf_iodone_callbacks; 1008 } 1009 1010 /* 1011 * We can have many callbacks on a buffer. Running the callbacks individually 1012 * can cause a lot of contention on the AIL lock, so we allow for a single 1013 * callback to be able to scan the remaining lip->li_bio_list for other items 1014 * of the same type and callback to be processed in the first call. 1015 * 1016 * As a result, the loop walking the callback list below will also modify the 1017 * list. it removes the first item from the list and then runs the callback. 1018 * The loop then restarts from the new head of the list. This allows the 1019 * callback to scan and modify the list attached to the buffer and we don't 1020 * have to care about maintaining a next item pointer. 1021 */ 1022 STATIC void 1023 xfs_buf_do_callbacks( 1024 struct xfs_buf *bp) 1025 { 1026 struct xfs_log_item *lip; 1027 1028 while ((lip = bp->b_fspriv) != NULL) { 1029 bp->b_fspriv = lip->li_bio_list; 1030 ASSERT(lip->li_cb != NULL); 1031 /* 1032 * Clear the next pointer so we don't have any 1033 * confusion if the item is added to another buf. 1034 * Don't touch the log item after calling its 1035 * callback, because it could have freed itself. 1036 */ 1037 lip->li_bio_list = NULL; 1038 lip->li_cb(bp, lip); 1039 } 1040 } 1041 1042 /* 1043 * This is the iodone() function for buffers which have had callbacks 1044 * attached to them by xfs_buf_attach_iodone(). It should remove each 1045 * log item from the buffer's list and call the callback of each in turn. 1046 * When done, the buffer's fsprivate field is set to NULL and the buffer 1047 * is unlocked with a call to iodone(). 1048 */ 1049 void 1050 xfs_buf_iodone_callbacks( 1051 struct xfs_buf *bp) 1052 { 1053 struct xfs_log_item *lip = bp->b_fspriv; 1054 struct xfs_mount *mp = lip->li_mountp; 1055 static ulong lasttime; 1056 static xfs_buftarg_t *lasttarg; 1057 1058 if (likely(!xfs_buf_geterror(bp))) 1059 goto do_callbacks; 1060 1061 /* 1062 * If we've already decided to shutdown the filesystem because of 1063 * I/O errors, there's no point in giving this a retry. 1064 */ 1065 if (XFS_FORCED_SHUTDOWN(mp)) { 1066 xfs_buf_stale(bp); 1067 XFS_BUF_DONE(bp); 1068 trace_xfs_buf_item_iodone(bp, _RET_IP_); 1069 goto do_callbacks; 1070 } 1071 1072 if (bp->b_target != lasttarg || 1073 time_after(jiffies, (lasttime + 5*HZ))) { 1074 lasttime = jiffies; 1075 xfs_buf_ioerror_alert(bp, __func__); 1076 } 1077 lasttarg = bp->b_target; 1078 1079 /* 1080 * If the write was asynchronous then no one will be looking for the 1081 * error. Clear the error state and write the buffer out again. 1082 * 1083 * XXX: This helps against transient write errors, but we need to find 1084 * a way to shut the filesystem down if the writes keep failing. 1085 * 1086 * In practice we'll shut the filesystem down soon as non-transient 1087 * erorrs tend to affect the whole device and a failing log write 1088 * will make us give up. But we really ought to do better here. 1089 */ 1090 if (XFS_BUF_ISASYNC(bp)) { 1091 ASSERT(bp->b_iodone != NULL); 1092 1093 trace_xfs_buf_item_iodone_async(bp, _RET_IP_); 1094 1095 xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */ 1096 1097 if (!XFS_BUF_ISSTALE(bp)) { 1098 bp->b_flags |= XBF_WRITE | XBF_ASYNC | XBF_DONE; 1099 xfs_buf_iorequest(bp); 1100 } else { 1101 xfs_buf_relse(bp); 1102 } 1103 1104 return; 1105 } 1106 1107 /* 1108 * If the write of the buffer was synchronous, we want to make 1109 * sure to return the error to the caller of xfs_bwrite(). 1110 */ 1111 xfs_buf_stale(bp); 1112 XFS_BUF_DONE(bp); 1113 1114 trace_xfs_buf_error_relse(bp, _RET_IP_); 1115 1116 do_callbacks: 1117 xfs_buf_do_callbacks(bp); 1118 bp->b_fspriv = NULL; 1119 bp->b_iodone = NULL; 1120 xfs_buf_ioend(bp, 0); 1121 } 1122 1123 /* 1124 * This is the iodone() function for buffers which have been 1125 * logged. It is called when they are eventually flushed out. 1126 * It should remove the buf item from the AIL, and free the buf item. 1127 * It is called by xfs_buf_iodone_callbacks() above which will take 1128 * care of cleaning up the buffer itself. 1129 */ 1130 void 1131 xfs_buf_iodone( 1132 struct xfs_buf *bp, 1133 struct xfs_log_item *lip) 1134 { 1135 struct xfs_ail *ailp = lip->li_ailp; 1136 1137 ASSERT(BUF_ITEM(lip)->bli_buf == bp); 1138 1139 xfs_buf_rele(bp); 1140 1141 /* 1142 * If we are forcibly shutting down, this may well be 1143 * off the AIL already. That's because we simulate the 1144 * log-committed callbacks to unpin these buffers. Or we may never 1145 * have put this item on AIL because of the transaction was 1146 * aborted forcibly. xfs_trans_ail_delete() takes care of these. 1147 * 1148 * Either way, AIL is useless if we're forcing a shutdown. 1149 */ 1150 spin_lock(&ailp->xa_lock); 1151 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE); 1152 xfs_buf_item_free(BUF_ITEM(lip)); 1153 } 1154