xref: /openbmc/linux/fs/xfs/xfs_buf_item.c (revision 1fa6ac37)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dmapi.h"
28 #include "xfs_mount.h"
29 #include "xfs_buf_item.h"
30 #include "xfs_trans_priv.h"
31 #include "xfs_error.h"
32 #include "xfs_trace.h"
33 
34 
35 kmem_zone_t	*xfs_buf_item_zone;
36 
37 #ifdef XFS_TRANS_DEBUG
38 /*
39  * This function uses an alternate strategy for tracking the bytes
40  * that the user requests to be logged.  This can then be used
41  * in conjunction with the bli_orig array in the buf log item to
42  * catch bugs in our callers' code.
43  *
44  * We also double check the bits set in xfs_buf_item_log using a
45  * simple algorithm to check that every byte is accounted for.
46  */
47 STATIC void
48 xfs_buf_item_log_debug(
49 	xfs_buf_log_item_t	*bip,
50 	uint			first,
51 	uint			last)
52 {
53 	uint	x;
54 	uint	byte;
55 	uint	nbytes;
56 	uint	chunk_num;
57 	uint	word_num;
58 	uint	bit_num;
59 	uint	bit_set;
60 	uint	*wordp;
61 
62 	ASSERT(bip->bli_logged != NULL);
63 	byte = first;
64 	nbytes = last - first + 1;
65 	bfset(bip->bli_logged, first, nbytes);
66 	for (x = 0; x < nbytes; x++) {
67 		chunk_num = byte >> XFS_BLF_SHIFT;
68 		word_num = chunk_num >> BIT_TO_WORD_SHIFT;
69 		bit_num = chunk_num & (NBWORD - 1);
70 		wordp = &(bip->bli_format.blf_data_map[word_num]);
71 		bit_set = *wordp & (1 << bit_num);
72 		ASSERT(bit_set);
73 		byte++;
74 	}
75 }
76 
77 /*
78  * This function is called when we flush something into a buffer without
79  * logging it.  This happens for things like inodes which are logged
80  * separately from the buffer.
81  */
82 void
83 xfs_buf_item_flush_log_debug(
84 	xfs_buf_t	*bp,
85 	uint		first,
86 	uint		last)
87 {
88 	xfs_buf_log_item_t	*bip;
89 	uint			nbytes;
90 
91 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
92 	if ((bip == NULL) || (bip->bli_item.li_type != XFS_LI_BUF)) {
93 		return;
94 	}
95 
96 	ASSERT(bip->bli_logged != NULL);
97 	nbytes = last - first + 1;
98 	bfset(bip->bli_logged, first, nbytes);
99 }
100 
101 /*
102  * This function is called to verify that our callers have logged
103  * all the bytes that they changed.
104  *
105  * It does this by comparing the original copy of the buffer stored in
106  * the buf log item's bli_orig array to the current copy of the buffer
107  * and ensuring that all bytes which mismatch are set in the bli_logged
108  * array of the buf log item.
109  */
110 STATIC void
111 xfs_buf_item_log_check(
112 	xfs_buf_log_item_t	*bip)
113 {
114 	char		*orig;
115 	char		*buffer;
116 	int		x;
117 	xfs_buf_t	*bp;
118 
119 	ASSERT(bip->bli_orig != NULL);
120 	ASSERT(bip->bli_logged != NULL);
121 
122 	bp = bip->bli_buf;
123 	ASSERT(XFS_BUF_COUNT(bp) > 0);
124 	ASSERT(XFS_BUF_PTR(bp) != NULL);
125 	orig = bip->bli_orig;
126 	buffer = XFS_BUF_PTR(bp);
127 	for (x = 0; x < XFS_BUF_COUNT(bp); x++) {
128 		if (orig[x] != buffer[x] && !btst(bip->bli_logged, x))
129 			cmn_err(CE_PANIC,
130 	"xfs_buf_item_log_check bip %x buffer %x orig %x index %d",
131 				bip, bp, orig, x);
132 	}
133 }
134 #else
135 #define		xfs_buf_item_log_debug(x,y,z)
136 #define		xfs_buf_item_log_check(x)
137 #endif
138 
139 STATIC void	xfs_buf_error_relse(xfs_buf_t *bp);
140 STATIC void	xfs_buf_do_callbacks(xfs_buf_t *bp, xfs_log_item_t *lip);
141 
142 /*
143  * This returns the number of log iovecs needed to log the
144  * given buf log item.
145  *
146  * It calculates this as 1 iovec for the buf log format structure
147  * and 1 for each stretch of non-contiguous chunks to be logged.
148  * Contiguous chunks are logged in a single iovec.
149  *
150  * If the XFS_BLI_STALE flag has been set, then log nothing.
151  */
152 STATIC uint
153 xfs_buf_item_size(
154 	xfs_buf_log_item_t	*bip)
155 {
156 	uint		nvecs;
157 	int		next_bit;
158 	int		last_bit;
159 	xfs_buf_t	*bp;
160 
161 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
162 	if (bip->bli_flags & XFS_BLI_STALE) {
163 		/*
164 		 * The buffer is stale, so all we need to log
165 		 * is the buf log format structure with the
166 		 * cancel flag in it.
167 		 */
168 		trace_xfs_buf_item_size_stale(bip);
169 		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
170 		return 1;
171 	}
172 
173 	bp = bip->bli_buf;
174 	ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
175 	nvecs = 1;
176 	last_bit = xfs_next_bit(bip->bli_format.blf_data_map,
177 					 bip->bli_format.blf_map_size, 0);
178 	ASSERT(last_bit != -1);
179 	nvecs++;
180 	while (last_bit != -1) {
181 		/*
182 		 * This takes the bit number to start looking from and
183 		 * returns the next set bit from there.  It returns -1
184 		 * if there are no more bits set or the start bit is
185 		 * beyond the end of the bitmap.
186 		 */
187 		next_bit = xfs_next_bit(bip->bli_format.blf_data_map,
188 						 bip->bli_format.blf_map_size,
189 						 last_bit + 1);
190 		/*
191 		 * If we run out of bits, leave the loop,
192 		 * else if we find a new set of bits bump the number of vecs,
193 		 * else keep scanning the current set of bits.
194 		 */
195 		if (next_bit == -1) {
196 			last_bit = -1;
197 		} else if (next_bit != last_bit + 1) {
198 			last_bit = next_bit;
199 			nvecs++;
200 		} else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
201 			   (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
202 			    XFS_BLF_CHUNK)) {
203 			last_bit = next_bit;
204 			nvecs++;
205 		} else {
206 			last_bit++;
207 		}
208 	}
209 
210 	trace_xfs_buf_item_size(bip);
211 	return nvecs;
212 }
213 
214 /*
215  * This is called to fill in the vector of log iovecs for the
216  * given log buf item.  It fills the first entry with a buf log
217  * format structure, and the rest point to contiguous chunks
218  * within the buffer.
219  */
220 STATIC void
221 xfs_buf_item_format(
222 	xfs_buf_log_item_t	*bip,
223 	xfs_log_iovec_t		*log_vector)
224 {
225 	uint		base_size;
226 	uint		nvecs;
227 	xfs_log_iovec_t	*vecp;
228 	xfs_buf_t	*bp;
229 	int		first_bit;
230 	int		last_bit;
231 	int		next_bit;
232 	uint		nbits;
233 	uint		buffer_offset;
234 
235 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
236 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
237 	       (bip->bli_flags & XFS_BLI_STALE));
238 	bp = bip->bli_buf;
239 	vecp = log_vector;
240 
241 	/*
242 	 * The size of the base structure is the size of the
243 	 * declared structure plus the space for the extra words
244 	 * of the bitmap.  We subtract one from the map size, because
245 	 * the first element of the bitmap is accounted for in the
246 	 * size of the base structure.
247 	 */
248 	base_size =
249 		(uint)(sizeof(xfs_buf_log_format_t) +
250 		       ((bip->bli_format.blf_map_size - 1) * sizeof(uint)));
251 	vecp->i_addr = (xfs_caddr_t)&bip->bli_format;
252 	vecp->i_len = base_size;
253 	vecp->i_type = XLOG_REG_TYPE_BFORMAT;
254 	vecp++;
255 	nvecs = 1;
256 
257 	/*
258 	 * If it is an inode buffer, transfer the in-memory state to the
259 	 * format flags and clear the in-memory state. We do not transfer
260 	 * this state if the inode buffer allocation has not yet been committed
261 	 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
262 	 * correct replay of the inode allocation.
263 	 */
264 	if (bip->bli_flags & XFS_BLI_INODE_BUF) {
265 		if (!((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
266 		      xfs_log_item_in_current_chkpt(&bip->bli_item)))
267 			bip->bli_format.blf_flags |= XFS_BLF_INODE_BUF;
268 		bip->bli_flags &= ~XFS_BLI_INODE_BUF;
269 	}
270 
271 	if (bip->bli_flags & XFS_BLI_STALE) {
272 		/*
273 		 * The buffer is stale, so all we need to log
274 		 * is the buf log format structure with the
275 		 * cancel flag in it.
276 		 */
277 		trace_xfs_buf_item_format_stale(bip);
278 		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
279 		bip->bli_format.blf_size = nvecs;
280 		return;
281 	}
282 
283 	/*
284 	 * Fill in an iovec for each set of contiguous chunks.
285 	 */
286 	first_bit = xfs_next_bit(bip->bli_format.blf_data_map,
287 					 bip->bli_format.blf_map_size, 0);
288 	ASSERT(first_bit != -1);
289 	last_bit = first_bit;
290 	nbits = 1;
291 	for (;;) {
292 		/*
293 		 * This takes the bit number to start looking from and
294 		 * returns the next set bit from there.  It returns -1
295 		 * if there are no more bits set or the start bit is
296 		 * beyond the end of the bitmap.
297 		 */
298 		next_bit = xfs_next_bit(bip->bli_format.blf_data_map,
299 						 bip->bli_format.blf_map_size,
300 						 (uint)last_bit + 1);
301 		/*
302 		 * If we run out of bits fill in the last iovec and get
303 		 * out of the loop.
304 		 * Else if we start a new set of bits then fill in the
305 		 * iovec for the series we were looking at and start
306 		 * counting the bits in the new one.
307 		 * Else we're still in the same set of bits so just
308 		 * keep counting and scanning.
309 		 */
310 		if (next_bit == -1) {
311 			buffer_offset = first_bit * XFS_BLF_CHUNK;
312 			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
313 			vecp->i_len = nbits * XFS_BLF_CHUNK;
314 			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
315 			nvecs++;
316 			break;
317 		} else if (next_bit != last_bit + 1) {
318 			buffer_offset = first_bit * XFS_BLF_CHUNK;
319 			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
320 			vecp->i_len = nbits * XFS_BLF_CHUNK;
321 			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
322 			nvecs++;
323 			vecp++;
324 			first_bit = next_bit;
325 			last_bit = next_bit;
326 			nbits = 1;
327 		} else if (xfs_buf_offset(bp, next_bit << XFS_BLF_SHIFT) !=
328 			   (xfs_buf_offset(bp, last_bit << XFS_BLF_SHIFT) +
329 			    XFS_BLF_CHUNK)) {
330 			buffer_offset = first_bit * XFS_BLF_CHUNK;
331 			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
332 			vecp->i_len = nbits * XFS_BLF_CHUNK;
333 			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
334 /* You would think we need to bump the nvecs here too, but we do not
335  * this number is used by recovery, and it gets confused by the boundary
336  * split here
337  *			nvecs++;
338  */
339 			vecp++;
340 			first_bit = next_bit;
341 			last_bit = next_bit;
342 			nbits = 1;
343 		} else {
344 			last_bit++;
345 			nbits++;
346 		}
347 	}
348 	bip->bli_format.blf_size = nvecs;
349 
350 	/*
351 	 * Check to make sure everything is consistent.
352 	 */
353 	trace_xfs_buf_item_format(bip);
354 	xfs_buf_item_log_check(bip);
355 }
356 
357 /*
358  * This is called to pin the buffer associated with the buf log item in memory
359  * so it cannot be written out.  Simply call bpin() on the buffer to do this.
360  *
361  * We also always take a reference to the buffer log item here so that the bli
362  * is held while the item is pinned in memory. This means that we can
363  * unconditionally drop the reference count a transaction holds when the
364  * transaction is completed.
365  */
366 
367 STATIC void
368 xfs_buf_item_pin(
369 	xfs_buf_log_item_t	*bip)
370 {
371 	xfs_buf_t	*bp;
372 
373 	bp = bip->bli_buf;
374 	ASSERT(XFS_BUF_ISBUSY(bp));
375 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
376 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
377 	       (bip->bli_flags & XFS_BLI_STALE));
378 	atomic_inc(&bip->bli_refcount);
379 	trace_xfs_buf_item_pin(bip);
380 	xfs_bpin(bp);
381 }
382 
383 
384 /*
385  * This is called to unpin the buffer associated with the buf log
386  * item which was previously pinned with a call to xfs_buf_item_pin().
387  * Just call bunpin() on the buffer to do this.
388  *
389  * Also drop the reference to the buf item for the current transaction.
390  * If the XFS_BLI_STALE flag is set and we are the last reference,
391  * then free up the buf log item and unlock the buffer.
392  */
393 STATIC void
394 xfs_buf_item_unpin(
395 	xfs_buf_log_item_t	*bip)
396 {
397 	struct xfs_ail	*ailp;
398 	xfs_buf_t	*bp;
399 	int		freed;
400 	int		stale = bip->bli_flags & XFS_BLI_STALE;
401 
402 	bp = bip->bli_buf;
403 	ASSERT(bp != NULL);
404 	ASSERT(XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *) == bip);
405 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
406 	trace_xfs_buf_item_unpin(bip);
407 
408 	freed = atomic_dec_and_test(&bip->bli_refcount);
409 	ailp = bip->bli_item.li_ailp;
410 	xfs_bunpin(bp);
411 	if (freed && stale) {
412 		ASSERT(bip->bli_flags & XFS_BLI_STALE);
413 		ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
414 		ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
415 		ASSERT(XFS_BUF_ISSTALE(bp));
416 		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
417 		trace_xfs_buf_item_unpin_stale(bip);
418 
419 		/*
420 		 * If we get called here because of an IO error, we may
421 		 * or may not have the item on the AIL. xfs_trans_ail_delete()
422 		 * will take care of that situation.
423 		 * xfs_trans_ail_delete() drops the AIL lock.
424 		 */
425 		if (bip->bli_flags & XFS_BLI_STALE_INODE) {
426 			xfs_buf_do_callbacks(bp, (xfs_log_item_t *)bip);
427 			XFS_BUF_SET_FSPRIVATE(bp, NULL);
428 			XFS_BUF_CLR_IODONE_FUNC(bp);
429 		} else {
430 			spin_lock(&ailp->xa_lock);
431 			xfs_trans_ail_delete(ailp, (xfs_log_item_t *)bip);
432 			xfs_buf_item_relse(bp);
433 			ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL);
434 		}
435 		xfs_buf_relse(bp);
436 	}
437 }
438 
439 /*
440  * this is called from uncommit in the forced-shutdown path.
441  * we need to check to see if the reference count on the log item
442  * is going to drop to zero.  If so, unpin will free the log item
443  * so we need to free the item's descriptor (that points to the item)
444  * in the transaction.
445  */
446 STATIC void
447 xfs_buf_item_unpin_remove(
448 	xfs_buf_log_item_t	*bip,
449 	xfs_trans_t		*tp)
450 {
451 	/* will xfs_buf_item_unpin() call xfs_buf_item_relse()? */
452 	if ((atomic_read(&bip->bli_refcount) == 1) &&
453 	    (bip->bli_flags & XFS_BLI_STALE)) {
454 		/*
455 		 * yes -- We can safely do some work here and then call
456 		 * buf_item_unpin to do the rest because we are
457 		 * are holding the buffer locked so no one else will be
458 		 * able to bump up the refcount. We have to remove the
459 		 * log item from the transaction as we are about to release
460 		 * our reference to the buffer. If we don't, the unlock that
461 		 * occurs later in the xfs_trans_uncommit() will try to
462 		 * reference the buffer which we no longer have a hold on.
463 		 */
464 		struct xfs_log_item_desc *lidp;
465 
466 		ASSERT(XFS_BUF_VALUSEMA(bip->bli_buf) <= 0);
467 		trace_xfs_buf_item_unpin_stale(bip);
468 
469 		lidp = xfs_trans_find_item(tp, (xfs_log_item_t *)bip);
470 		xfs_trans_free_item(tp, lidp);
471 
472 		/*
473 		 * Since the transaction no longer refers to the buffer, the
474 		 * buffer should no longer refer to the transaction.
475 		 */
476 		XFS_BUF_SET_FSPRIVATE2(bip->bli_buf, NULL);
477 	}
478 	xfs_buf_item_unpin(bip);
479 }
480 
481 /*
482  * This is called to attempt to lock the buffer associated with this
483  * buf log item.  Don't sleep on the buffer lock.  If we can't get
484  * the lock right away, return 0.  If we can get the lock, take a
485  * reference to the buffer. If this is a delayed write buffer that
486  * needs AIL help to be written back, invoke the pushbuf routine
487  * rather than the normal success path.
488  */
489 STATIC uint
490 xfs_buf_item_trylock(
491 	xfs_buf_log_item_t	*bip)
492 {
493 	xfs_buf_t	*bp;
494 
495 	bp = bip->bli_buf;
496 	if (XFS_BUF_ISPINNED(bp))
497 		return XFS_ITEM_PINNED;
498 	if (!XFS_BUF_CPSEMA(bp))
499 		return XFS_ITEM_LOCKED;
500 
501 	/* take a reference to the buffer.  */
502 	XFS_BUF_HOLD(bp);
503 
504 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
505 	trace_xfs_buf_item_trylock(bip);
506 	if (XFS_BUF_ISDELAYWRITE(bp))
507 		return XFS_ITEM_PUSHBUF;
508 	return XFS_ITEM_SUCCESS;
509 }
510 
511 /*
512  * Release the buffer associated with the buf log item.  If there is no dirty
513  * logged data associated with the buffer recorded in the buf log item, then
514  * free the buf log item and remove the reference to it in the buffer.
515  *
516  * This call ignores the recursion count.  It is only called when the buffer
517  * should REALLY be unlocked, regardless of the recursion count.
518  *
519  * We unconditionally drop the transaction's reference to the log item. If the
520  * item was logged, then another reference was taken when it was pinned, so we
521  * can safely drop the transaction reference now.  This also allows us to avoid
522  * potential races with the unpin code freeing the bli by not referencing the
523  * bli after we've dropped the reference count.
524  *
525  * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
526  * if necessary but do not unlock the buffer.  This is for support of
527  * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
528  * free the item.
529  */
530 STATIC void
531 xfs_buf_item_unlock(
532 	xfs_buf_log_item_t	*bip)
533 {
534 	int		aborted;
535 	xfs_buf_t	*bp;
536 	uint		hold;
537 
538 	bp = bip->bli_buf;
539 
540 	/* Clear the buffer's association with this transaction. */
541 	XFS_BUF_SET_FSPRIVATE2(bp, NULL);
542 
543 	/*
544 	 * If this is a transaction abort, don't return early.  Instead, allow
545 	 * the brelse to happen.  Normally it would be done for stale
546 	 * (cancelled) buffers at unpin time, but we'll never go through the
547 	 * pin/unpin cycle if we abort inside commit.
548 	 */
549 	aborted = (bip->bli_item.li_flags & XFS_LI_ABORTED) != 0;
550 
551 	/*
552 	 * Before possibly freeing the buf item, determine if we should
553 	 * release the buffer at the end of this routine.
554 	 */
555 	hold = bip->bli_flags & XFS_BLI_HOLD;
556 
557 	/* Clear the per transaction state. */
558 	bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD);
559 
560 	/*
561 	 * If the buf item is marked stale, then don't do anything.  We'll
562 	 * unlock the buffer and free the buf item when the buffer is unpinned
563 	 * for the last time.
564 	 */
565 	if (bip->bli_flags & XFS_BLI_STALE) {
566 		trace_xfs_buf_item_unlock_stale(bip);
567 		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
568 		if (!aborted) {
569 			atomic_dec(&bip->bli_refcount);
570 			return;
571 		}
572 	}
573 
574 	trace_xfs_buf_item_unlock(bip);
575 
576 	/*
577 	 * If the buf item isn't tracking any data, free it, otherwise drop the
578 	 * reference we hold to it.
579 	 */
580 	if (xfs_bitmap_empty(bip->bli_format.blf_data_map,
581 			     bip->bli_format.blf_map_size))
582 		xfs_buf_item_relse(bp);
583 	else
584 		atomic_dec(&bip->bli_refcount);
585 
586 	if (!hold)
587 		xfs_buf_relse(bp);
588 }
589 
590 /*
591  * This is called to find out where the oldest active copy of the
592  * buf log item in the on disk log resides now that the last log
593  * write of it completed at the given lsn.
594  * We always re-log all the dirty data in a buffer, so usually the
595  * latest copy in the on disk log is the only one that matters.  For
596  * those cases we simply return the given lsn.
597  *
598  * The one exception to this is for buffers full of newly allocated
599  * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
600  * flag set, indicating that only the di_next_unlinked fields from the
601  * inodes in the buffers will be replayed during recovery.  If the
602  * original newly allocated inode images have not yet been flushed
603  * when the buffer is so relogged, then we need to make sure that we
604  * keep the old images in the 'active' portion of the log.  We do this
605  * by returning the original lsn of that transaction here rather than
606  * the current one.
607  */
608 STATIC xfs_lsn_t
609 xfs_buf_item_committed(
610 	xfs_buf_log_item_t	*bip,
611 	xfs_lsn_t		lsn)
612 {
613 	trace_xfs_buf_item_committed(bip);
614 
615 	if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
616 	    (bip->bli_item.li_lsn != 0)) {
617 		return bip->bli_item.li_lsn;
618 	}
619 	return (lsn);
620 }
621 
622 /*
623  * The buffer is locked, but is not a delayed write buffer. This happens
624  * if we race with IO completion and hence we don't want to try to write it
625  * again. Just release the buffer.
626  */
627 STATIC void
628 xfs_buf_item_push(
629 	xfs_buf_log_item_t	*bip)
630 {
631 	xfs_buf_t	*bp;
632 
633 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
634 	trace_xfs_buf_item_push(bip);
635 
636 	bp = bip->bli_buf;
637 	ASSERT(!XFS_BUF_ISDELAYWRITE(bp));
638 	xfs_buf_relse(bp);
639 }
640 
641 /*
642  * The buffer is locked and is a delayed write buffer. Promote the buffer
643  * in the delayed write queue as the caller knows that they must invoke
644  * the xfsbufd to get this buffer written. We have to unlock the buffer
645  * to allow the xfsbufd to write it, too.
646  */
647 STATIC void
648 xfs_buf_item_pushbuf(
649 	xfs_buf_log_item_t	*bip)
650 {
651 	xfs_buf_t	*bp;
652 
653 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
654 	trace_xfs_buf_item_pushbuf(bip);
655 
656 	bp = bip->bli_buf;
657 	ASSERT(XFS_BUF_ISDELAYWRITE(bp));
658 	xfs_buf_delwri_promote(bp);
659 	xfs_buf_relse(bp);
660 }
661 
662 /* ARGSUSED */
663 STATIC void
664 xfs_buf_item_committing(xfs_buf_log_item_t *bip, xfs_lsn_t commit_lsn)
665 {
666 }
667 
668 /*
669  * This is the ops vector shared by all buf log items.
670  */
671 static struct xfs_item_ops xfs_buf_item_ops = {
672 	.iop_size	= (uint(*)(xfs_log_item_t*))xfs_buf_item_size,
673 	.iop_format	= (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
674 					xfs_buf_item_format,
675 	.iop_pin	= (void(*)(xfs_log_item_t*))xfs_buf_item_pin,
676 	.iop_unpin	= (void(*)(xfs_log_item_t*))xfs_buf_item_unpin,
677 	.iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t *))
678 					xfs_buf_item_unpin_remove,
679 	.iop_trylock	= (uint(*)(xfs_log_item_t*))xfs_buf_item_trylock,
680 	.iop_unlock	= (void(*)(xfs_log_item_t*))xfs_buf_item_unlock,
681 	.iop_committed	= (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
682 					xfs_buf_item_committed,
683 	.iop_push	= (void(*)(xfs_log_item_t*))xfs_buf_item_push,
684 	.iop_pushbuf	= (void(*)(xfs_log_item_t*))xfs_buf_item_pushbuf,
685 	.iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
686 					xfs_buf_item_committing
687 };
688 
689 
690 /*
691  * Allocate a new buf log item to go with the given buffer.
692  * Set the buffer's b_fsprivate field to point to the new
693  * buf log item.  If there are other item's attached to the
694  * buffer (see xfs_buf_attach_iodone() below), then put the
695  * buf log item at the front.
696  */
697 void
698 xfs_buf_item_init(
699 	xfs_buf_t	*bp,
700 	xfs_mount_t	*mp)
701 {
702 	xfs_log_item_t		*lip;
703 	xfs_buf_log_item_t	*bip;
704 	int			chunks;
705 	int			map_size;
706 
707 	/*
708 	 * Check to see if there is already a buf log item for
709 	 * this buffer.  If there is, it is guaranteed to be
710 	 * the first.  If we do already have one, there is
711 	 * nothing to do here so return.
712 	 */
713 	if (bp->b_mount != mp)
714 		bp->b_mount = mp;
715 	XFS_BUF_SET_BDSTRAT_FUNC(bp, xfs_bdstrat_cb);
716 	if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) {
717 		lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
718 		if (lip->li_type == XFS_LI_BUF) {
719 			return;
720 		}
721 	}
722 
723 	/*
724 	 * chunks is the number of XFS_BLF_CHUNK size pieces
725 	 * the buffer can be divided into. Make sure not to
726 	 * truncate any pieces.  map_size is the size of the
727 	 * bitmap needed to describe the chunks of the buffer.
728 	 */
729 	chunks = (int)((XFS_BUF_COUNT(bp) + (XFS_BLF_CHUNK - 1)) >> XFS_BLF_SHIFT);
730 	map_size = (int)((chunks + NBWORD) >> BIT_TO_WORD_SHIFT);
731 
732 	bip = (xfs_buf_log_item_t*)kmem_zone_zalloc(xfs_buf_item_zone,
733 						    KM_SLEEP);
734 	xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
735 	bip->bli_buf = bp;
736 	xfs_buf_hold(bp);
737 	bip->bli_format.blf_type = XFS_LI_BUF;
738 	bip->bli_format.blf_blkno = (__int64_t)XFS_BUF_ADDR(bp);
739 	bip->bli_format.blf_len = (ushort)BTOBB(XFS_BUF_COUNT(bp));
740 	bip->bli_format.blf_map_size = map_size;
741 
742 #ifdef XFS_TRANS_DEBUG
743 	/*
744 	 * Allocate the arrays for tracking what needs to be logged
745 	 * and what our callers request to be logged.  bli_orig
746 	 * holds a copy of the original, clean buffer for comparison
747 	 * against, and bli_logged keeps a 1 bit flag per byte in
748 	 * the buffer to indicate which bytes the callers have asked
749 	 * to have logged.
750 	 */
751 	bip->bli_orig = (char *)kmem_alloc(XFS_BUF_COUNT(bp), KM_SLEEP);
752 	memcpy(bip->bli_orig, XFS_BUF_PTR(bp), XFS_BUF_COUNT(bp));
753 	bip->bli_logged = (char *)kmem_zalloc(XFS_BUF_COUNT(bp) / NBBY, KM_SLEEP);
754 #endif
755 
756 	/*
757 	 * Put the buf item into the list of items attached to the
758 	 * buffer at the front.
759 	 */
760 	if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) {
761 		bip->bli_item.li_bio_list =
762 				XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
763 	}
764 	XFS_BUF_SET_FSPRIVATE(bp, bip);
765 }
766 
767 
768 /*
769  * Mark bytes first through last inclusive as dirty in the buf
770  * item's bitmap.
771  */
772 void
773 xfs_buf_item_log(
774 	xfs_buf_log_item_t	*bip,
775 	uint			first,
776 	uint			last)
777 {
778 	uint		first_bit;
779 	uint		last_bit;
780 	uint		bits_to_set;
781 	uint		bits_set;
782 	uint		word_num;
783 	uint		*wordp;
784 	uint		bit;
785 	uint		end_bit;
786 	uint		mask;
787 
788 	/*
789 	 * Mark the item as having some dirty data for
790 	 * quick reference in xfs_buf_item_dirty.
791 	 */
792 	bip->bli_flags |= XFS_BLI_DIRTY;
793 
794 	/*
795 	 * Convert byte offsets to bit numbers.
796 	 */
797 	first_bit = first >> XFS_BLF_SHIFT;
798 	last_bit = last >> XFS_BLF_SHIFT;
799 
800 	/*
801 	 * Calculate the total number of bits to be set.
802 	 */
803 	bits_to_set = last_bit - first_bit + 1;
804 
805 	/*
806 	 * Get a pointer to the first word in the bitmap
807 	 * to set a bit in.
808 	 */
809 	word_num = first_bit >> BIT_TO_WORD_SHIFT;
810 	wordp = &(bip->bli_format.blf_data_map[word_num]);
811 
812 	/*
813 	 * Calculate the starting bit in the first word.
814 	 */
815 	bit = first_bit & (uint)(NBWORD - 1);
816 
817 	/*
818 	 * First set any bits in the first word of our range.
819 	 * If it starts at bit 0 of the word, it will be
820 	 * set below rather than here.  That is what the variable
821 	 * bit tells us. The variable bits_set tracks the number
822 	 * of bits that have been set so far.  End_bit is the number
823 	 * of the last bit to be set in this word plus one.
824 	 */
825 	if (bit) {
826 		end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
827 		mask = ((1 << (end_bit - bit)) - 1) << bit;
828 		*wordp |= mask;
829 		wordp++;
830 		bits_set = end_bit - bit;
831 	} else {
832 		bits_set = 0;
833 	}
834 
835 	/*
836 	 * Now set bits a whole word at a time that are between
837 	 * first_bit and last_bit.
838 	 */
839 	while ((bits_to_set - bits_set) >= NBWORD) {
840 		*wordp |= 0xffffffff;
841 		bits_set += NBWORD;
842 		wordp++;
843 	}
844 
845 	/*
846 	 * Finally, set any bits left to be set in one last partial word.
847 	 */
848 	end_bit = bits_to_set - bits_set;
849 	if (end_bit) {
850 		mask = (1 << end_bit) - 1;
851 		*wordp |= mask;
852 	}
853 
854 	xfs_buf_item_log_debug(bip, first, last);
855 }
856 
857 
858 /*
859  * Return 1 if the buffer has some data that has been logged (at any
860  * point, not just the current transaction) and 0 if not.
861  */
862 uint
863 xfs_buf_item_dirty(
864 	xfs_buf_log_item_t	*bip)
865 {
866 	return (bip->bli_flags & XFS_BLI_DIRTY);
867 }
868 
869 STATIC void
870 xfs_buf_item_free(
871 	xfs_buf_log_item_t	*bip)
872 {
873 #ifdef XFS_TRANS_DEBUG
874 	kmem_free(bip->bli_orig);
875 	kmem_free(bip->bli_logged);
876 #endif /* XFS_TRANS_DEBUG */
877 
878 	kmem_zone_free(xfs_buf_item_zone, bip);
879 }
880 
881 /*
882  * This is called when the buf log item is no longer needed.  It should
883  * free the buf log item associated with the given buffer and clear
884  * the buffer's pointer to the buf log item.  If there are no more
885  * items in the list, clear the b_iodone field of the buffer (see
886  * xfs_buf_attach_iodone() below).
887  */
888 void
889 xfs_buf_item_relse(
890 	xfs_buf_t	*bp)
891 {
892 	xfs_buf_log_item_t	*bip;
893 
894 	trace_xfs_buf_item_relse(bp, _RET_IP_);
895 
896 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
897 	XFS_BUF_SET_FSPRIVATE(bp, bip->bli_item.li_bio_list);
898 	if ((XFS_BUF_FSPRIVATE(bp, void *) == NULL) &&
899 	    (XFS_BUF_IODONE_FUNC(bp) != NULL)) {
900 		XFS_BUF_CLR_IODONE_FUNC(bp);
901 	}
902 	xfs_buf_rele(bp);
903 	xfs_buf_item_free(bip);
904 }
905 
906 
907 /*
908  * Add the given log item with its callback to the list of callbacks
909  * to be called when the buffer's I/O completes.  If it is not set
910  * already, set the buffer's b_iodone() routine to be
911  * xfs_buf_iodone_callbacks() and link the log item into the list of
912  * items rooted at b_fsprivate.  Items are always added as the second
913  * entry in the list if there is a first, because the buf item code
914  * assumes that the buf log item is first.
915  */
916 void
917 xfs_buf_attach_iodone(
918 	xfs_buf_t	*bp,
919 	void		(*cb)(xfs_buf_t *, xfs_log_item_t *),
920 	xfs_log_item_t	*lip)
921 {
922 	xfs_log_item_t	*head_lip;
923 
924 	ASSERT(XFS_BUF_ISBUSY(bp));
925 	ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
926 
927 	lip->li_cb = cb;
928 	if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) {
929 		head_lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
930 		lip->li_bio_list = head_lip->li_bio_list;
931 		head_lip->li_bio_list = lip;
932 	} else {
933 		XFS_BUF_SET_FSPRIVATE(bp, lip);
934 	}
935 
936 	ASSERT((XFS_BUF_IODONE_FUNC(bp) == xfs_buf_iodone_callbacks) ||
937 	       (XFS_BUF_IODONE_FUNC(bp) == NULL));
938 	XFS_BUF_SET_IODONE_FUNC(bp, xfs_buf_iodone_callbacks);
939 }
940 
941 STATIC void
942 xfs_buf_do_callbacks(
943 	xfs_buf_t	*bp,
944 	xfs_log_item_t	*lip)
945 {
946 	xfs_log_item_t	*nlip;
947 
948 	while (lip != NULL) {
949 		nlip = lip->li_bio_list;
950 		ASSERT(lip->li_cb != NULL);
951 		/*
952 		 * Clear the next pointer so we don't have any
953 		 * confusion if the item is added to another buf.
954 		 * Don't touch the log item after calling its
955 		 * callback, because it could have freed itself.
956 		 */
957 		lip->li_bio_list = NULL;
958 		lip->li_cb(bp, lip);
959 		lip = nlip;
960 	}
961 }
962 
963 /*
964  * This is the iodone() function for buffers which have had callbacks
965  * attached to them by xfs_buf_attach_iodone().  It should remove each
966  * log item from the buffer's list and call the callback of each in turn.
967  * When done, the buffer's fsprivate field is set to NULL and the buffer
968  * is unlocked with a call to iodone().
969  */
970 void
971 xfs_buf_iodone_callbacks(
972 	xfs_buf_t	*bp)
973 {
974 	xfs_log_item_t	*lip;
975 	static ulong	lasttime;
976 	static xfs_buftarg_t *lasttarg;
977 	xfs_mount_t	*mp;
978 
979 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
980 	lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
981 
982 	if (XFS_BUF_GETERROR(bp) != 0) {
983 		/*
984 		 * If we've already decided to shutdown the filesystem
985 		 * because of IO errors, there's no point in giving this
986 		 * a retry.
987 		 */
988 		mp = lip->li_mountp;
989 		if (XFS_FORCED_SHUTDOWN(mp)) {
990 			ASSERT(XFS_BUF_TARGET(bp) == mp->m_ddev_targp);
991 			XFS_BUF_SUPER_STALE(bp);
992 			trace_xfs_buf_item_iodone(bp, _RET_IP_);
993 			xfs_buf_do_callbacks(bp, lip);
994 			XFS_BUF_SET_FSPRIVATE(bp, NULL);
995 			XFS_BUF_CLR_IODONE_FUNC(bp);
996 			xfs_biodone(bp);
997 			return;
998 		}
999 
1000 		if ((XFS_BUF_TARGET(bp) != lasttarg) ||
1001 		    (time_after(jiffies, (lasttime + 5*HZ)))) {
1002 			lasttime = jiffies;
1003 			cmn_err(CE_ALERT, "Device %s, XFS metadata write error"
1004 					" block 0x%llx in %s",
1005 				XFS_BUFTARG_NAME(XFS_BUF_TARGET(bp)),
1006 			      (__uint64_t)XFS_BUF_ADDR(bp), mp->m_fsname);
1007 		}
1008 		lasttarg = XFS_BUF_TARGET(bp);
1009 
1010 		if (XFS_BUF_ISASYNC(bp)) {
1011 			/*
1012 			 * If the write was asynchronous then noone will be
1013 			 * looking for the error.  Clear the error state
1014 			 * and write the buffer out again delayed write.
1015 			 *
1016 			 * XXXsup This is OK, so long as we catch these
1017 			 * before we start the umount; we don't want these
1018 			 * DELWRI metadata bufs to be hanging around.
1019 			 */
1020 			XFS_BUF_ERROR(bp,0); /* errno of 0 unsets the flag */
1021 
1022 			if (!(XFS_BUF_ISSTALE(bp))) {
1023 				XFS_BUF_DELAYWRITE(bp);
1024 				XFS_BUF_DONE(bp);
1025 				XFS_BUF_SET_START(bp);
1026 			}
1027 			ASSERT(XFS_BUF_IODONE_FUNC(bp));
1028 			trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1029 			xfs_buf_relse(bp);
1030 		} else {
1031 			/*
1032 			 * If the write of the buffer was not asynchronous,
1033 			 * then we want to make sure to return the error
1034 			 * to the caller of bwrite().  Because of this we
1035 			 * cannot clear the B_ERROR state at this point.
1036 			 * Instead we install a callback function that
1037 			 * will be called when the buffer is released, and
1038 			 * that routine will clear the error state and
1039 			 * set the buffer to be written out again after
1040 			 * some delay.
1041 			 */
1042 			/* We actually overwrite the existing b-relse
1043 			   function at times, but we're gonna be shutting down
1044 			   anyway. */
1045 			XFS_BUF_SET_BRELSE_FUNC(bp,xfs_buf_error_relse);
1046 			XFS_BUF_DONE(bp);
1047 			XFS_BUF_FINISH_IOWAIT(bp);
1048 		}
1049 		return;
1050 	}
1051 
1052 	xfs_buf_do_callbacks(bp, lip);
1053 	XFS_BUF_SET_FSPRIVATE(bp, NULL);
1054 	XFS_BUF_CLR_IODONE_FUNC(bp);
1055 	xfs_biodone(bp);
1056 }
1057 
1058 /*
1059  * This is a callback routine attached to a buffer which gets an error
1060  * when being written out synchronously.
1061  */
1062 STATIC void
1063 xfs_buf_error_relse(
1064 	xfs_buf_t	*bp)
1065 {
1066 	xfs_log_item_t	*lip;
1067 	xfs_mount_t	*mp;
1068 
1069 	lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
1070 	mp = (xfs_mount_t *)lip->li_mountp;
1071 	ASSERT(XFS_BUF_TARGET(bp) == mp->m_ddev_targp);
1072 
1073 	XFS_BUF_STALE(bp);
1074 	XFS_BUF_DONE(bp);
1075 	XFS_BUF_UNDELAYWRITE(bp);
1076 	XFS_BUF_ERROR(bp,0);
1077 
1078 	trace_xfs_buf_error_relse(bp, _RET_IP_);
1079 
1080 	if (! XFS_FORCED_SHUTDOWN(mp))
1081 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1082 	/*
1083 	 * We have to unpin the pinned buffers so do the
1084 	 * callbacks.
1085 	 */
1086 	xfs_buf_do_callbacks(bp, lip);
1087 	XFS_BUF_SET_FSPRIVATE(bp, NULL);
1088 	XFS_BUF_CLR_IODONE_FUNC(bp);
1089 	XFS_BUF_SET_BRELSE_FUNC(bp,NULL);
1090 	xfs_buf_relse(bp);
1091 }
1092 
1093 
1094 /*
1095  * This is the iodone() function for buffers which have been
1096  * logged.  It is called when they are eventually flushed out.
1097  * It should remove the buf item from the AIL, and free the buf item.
1098  * It is called by xfs_buf_iodone_callbacks() above which will take
1099  * care of cleaning up the buffer itself.
1100  */
1101 /* ARGSUSED */
1102 void
1103 xfs_buf_iodone(
1104 	xfs_buf_t		*bp,
1105 	xfs_buf_log_item_t	*bip)
1106 {
1107 	struct xfs_ail		*ailp = bip->bli_item.li_ailp;
1108 
1109 	ASSERT(bip->bli_buf == bp);
1110 
1111 	xfs_buf_rele(bp);
1112 
1113 	/*
1114 	 * If we are forcibly shutting down, this may well be
1115 	 * off the AIL already. That's because we simulate the
1116 	 * log-committed callbacks to unpin these buffers. Or we may never
1117 	 * have put this item on AIL because of the transaction was
1118 	 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1119 	 *
1120 	 * Either way, AIL is useless if we're forcing a shutdown.
1121 	 */
1122 	spin_lock(&ailp->xa_lock);
1123 	xfs_trans_ail_delete(ailp, (xfs_log_item_t *)bip);
1124 	xfs_buf_item_free(bip);
1125 }
1126