xref: /openbmc/linux/fs/xfs/xfs_buf_item.c (revision 151f4e2b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_sb.h"
13 #include "xfs_mount.h"
14 #include "xfs_trans.h"
15 #include "xfs_buf_item.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_error.h"
18 #include "xfs_trace.h"
19 #include "xfs_log.h"
20 #include "xfs_inode.h"
21 
22 
23 kmem_zone_t	*xfs_buf_item_zone;
24 
25 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
26 {
27 	return container_of(lip, struct xfs_buf_log_item, bli_item);
28 }
29 
30 STATIC void	xfs_buf_do_callbacks(struct xfs_buf *bp);
31 
32 static inline int
33 xfs_buf_log_format_size(
34 	struct xfs_buf_log_format *blfp)
35 {
36 	return offsetof(struct xfs_buf_log_format, blf_data_map) +
37 			(blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
38 }
39 
40 /*
41  * This returns the number of log iovecs needed to log the
42  * given buf log item.
43  *
44  * It calculates this as 1 iovec for the buf log format structure
45  * and 1 for each stretch of non-contiguous chunks to be logged.
46  * Contiguous chunks are logged in a single iovec.
47  *
48  * If the XFS_BLI_STALE flag has been set, then log nothing.
49  */
50 STATIC void
51 xfs_buf_item_size_segment(
52 	struct xfs_buf_log_item		*bip,
53 	struct xfs_buf_log_format	*blfp,
54 	int				*nvecs,
55 	int				*nbytes)
56 {
57 	struct xfs_buf			*bp = bip->bli_buf;
58 	int				next_bit;
59 	int				last_bit;
60 
61 	last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
62 	if (last_bit == -1)
63 		return;
64 
65 	/*
66 	 * initial count for a dirty buffer is 2 vectors - the format structure
67 	 * and the first dirty region.
68 	 */
69 	*nvecs += 2;
70 	*nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
71 
72 	while (last_bit != -1) {
73 		/*
74 		 * This takes the bit number to start looking from and
75 		 * returns the next set bit from there.  It returns -1
76 		 * if there are no more bits set or the start bit is
77 		 * beyond the end of the bitmap.
78 		 */
79 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
80 					last_bit + 1);
81 		/*
82 		 * If we run out of bits, leave the loop,
83 		 * else if we find a new set of bits bump the number of vecs,
84 		 * else keep scanning the current set of bits.
85 		 */
86 		if (next_bit == -1) {
87 			break;
88 		} else if (next_bit != last_bit + 1) {
89 			last_bit = next_bit;
90 			(*nvecs)++;
91 		} else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
92 			   (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
93 			    XFS_BLF_CHUNK)) {
94 			last_bit = next_bit;
95 			(*nvecs)++;
96 		} else {
97 			last_bit++;
98 		}
99 		*nbytes += XFS_BLF_CHUNK;
100 	}
101 }
102 
103 /*
104  * This returns the number of log iovecs needed to log the given buf log item.
105  *
106  * It calculates this as 1 iovec for the buf log format structure and 1 for each
107  * stretch of non-contiguous chunks to be logged.  Contiguous chunks are logged
108  * in a single iovec.
109  *
110  * Discontiguous buffers need a format structure per region that that is being
111  * logged. This makes the changes in the buffer appear to log recovery as though
112  * they came from separate buffers, just like would occur if multiple buffers
113  * were used instead of a single discontiguous buffer. This enables
114  * discontiguous buffers to be in-memory constructs, completely transparent to
115  * what ends up on disk.
116  *
117  * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
118  * format structures.
119  */
120 STATIC void
121 xfs_buf_item_size(
122 	struct xfs_log_item	*lip,
123 	int			*nvecs,
124 	int			*nbytes)
125 {
126 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
127 	int			i;
128 
129 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
130 	if (bip->bli_flags & XFS_BLI_STALE) {
131 		/*
132 		 * The buffer is stale, so all we need to log
133 		 * is the buf log format structure with the
134 		 * cancel flag in it.
135 		 */
136 		trace_xfs_buf_item_size_stale(bip);
137 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
138 		*nvecs += bip->bli_format_count;
139 		for (i = 0; i < bip->bli_format_count; i++) {
140 			*nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
141 		}
142 		return;
143 	}
144 
145 	ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
146 
147 	if (bip->bli_flags & XFS_BLI_ORDERED) {
148 		/*
149 		 * The buffer has been logged just to order it.
150 		 * It is not being included in the transaction
151 		 * commit, so no vectors are used at all.
152 		 */
153 		trace_xfs_buf_item_size_ordered(bip);
154 		*nvecs = XFS_LOG_VEC_ORDERED;
155 		return;
156 	}
157 
158 	/*
159 	 * the vector count is based on the number of buffer vectors we have
160 	 * dirty bits in. This will only be greater than one when we have a
161 	 * compound buffer with more than one segment dirty. Hence for compound
162 	 * buffers we need to track which segment the dirty bits correspond to,
163 	 * and when we move from one segment to the next increment the vector
164 	 * count for the extra buf log format structure that will need to be
165 	 * written.
166 	 */
167 	for (i = 0; i < bip->bli_format_count; i++) {
168 		xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
169 					  nvecs, nbytes);
170 	}
171 	trace_xfs_buf_item_size(bip);
172 }
173 
174 static inline void
175 xfs_buf_item_copy_iovec(
176 	struct xfs_log_vec	*lv,
177 	struct xfs_log_iovec	**vecp,
178 	struct xfs_buf		*bp,
179 	uint			offset,
180 	int			first_bit,
181 	uint			nbits)
182 {
183 	offset += first_bit * XFS_BLF_CHUNK;
184 	xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
185 			xfs_buf_offset(bp, offset),
186 			nbits * XFS_BLF_CHUNK);
187 }
188 
189 static inline bool
190 xfs_buf_item_straddle(
191 	struct xfs_buf		*bp,
192 	uint			offset,
193 	int			next_bit,
194 	int			last_bit)
195 {
196 	return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) !=
197 		(xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) +
198 		 XFS_BLF_CHUNK);
199 }
200 
201 static void
202 xfs_buf_item_format_segment(
203 	struct xfs_buf_log_item	*bip,
204 	struct xfs_log_vec	*lv,
205 	struct xfs_log_iovec	**vecp,
206 	uint			offset,
207 	struct xfs_buf_log_format *blfp)
208 {
209 	struct xfs_buf		*bp = bip->bli_buf;
210 	uint			base_size;
211 	int			first_bit;
212 	int			last_bit;
213 	int			next_bit;
214 	uint			nbits;
215 
216 	/* copy the flags across from the base format item */
217 	blfp->blf_flags = bip->__bli_format.blf_flags;
218 
219 	/*
220 	 * Base size is the actual size of the ondisk structure - it reflects
221 	 * the actual size of the dirty bitmap rather than the size of the in
222 	 * memory structure.
223 	 */
224 	base_size = xfs_buf_log_format_size(blfp);
225 
226 	first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
227 	if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
228 		/*
229 		 * If the map is not be dirty in the transaction, mark
230 		 * the size as zero and do not advance the vector pointer.
231 		 */
232 		return;
233 	}
234 
235 	blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
236 	blfp->blf_size = 1;
237 
238 	if (bip->bli_flags & XFS_BLI_STALE) {
239 		/*
240 		 * The buffer is stale, so all we need to log
241 		 * is the buf log format structure with the
242 		 * cancel flag in it.
243 		 */
244 		trace_xfs_buf_item_format_stale(bip);
245 		ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
246 		return;
247 	}
248 
249 
250 	/*
251 	 * Fill in an iovec for each set of contiguous chunks.
252 	 */
253 	last_bit = first_bit;
254 	nbits = 1;
255 	for (;;) {
256 		/*
257 		 * This takes the bit number to start looking from and
258 		 * returns the next set bit from there.  It returns -1
259 		 * if there are no more bits set or the start bit is
260 		 * beyond the end of the bitmap.
261 		 */
262 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
263 					(uint)last_bit + 1);
264 		/*
265 		 * If we run out of bits fill in the last iovec and get out of
266 		 * the loop.  Else if we start a new set of bits then fill in
267 		 * the iovec for the series we were looking at and start
268 		 * counting the bits in the new one.  Else we're still in the
269 		 * same set of bits so just keep counting and scanning.
270 		 */
271 		if (next_bit == -1) {
272 			xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
273 						first_bit, nbits);
274 			blfp->blf_size++;
275 			break;
276 		} else if (next_bit != last_bit + 1 ||
277 		           xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) {
278 			xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
279 						first_bit, nbits);
280 			blfp->blf_size++;
281 			first_bit = next_bit;
282 			last_bit = next_bit;
283 			nbits = 1;
284 		} else {
285 			last_bit++;
286 			nbits++;
287 		}
288 	}
289 }
290 
291 /*
292  * This is called to fill in the vector of log iovecs for the
293  * given log buf item.  It fills the first entry with a buf log
294  * format structure, and the rest point to contiguous chunks
295  * within the buffer.
296  */
297 STATIC void
298 xfs_buf_item_format(
299 	struct xfs_log_item	*lip,
300 	struct xfs_log_vec	*lv)
301 {
302 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
303 	struct xfs_buf		*bp = bip->bli_buf;
304 	struct xfs_log_iovec	*vecp = NULL;
305 	uint			offset = 0;
306 	int			i;
307 
308 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
309 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
310 	       (bip->bli_flags & XFS_BLI_STALE));
311 	ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
312 	       (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
313 	        && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
314 	ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) ||
315 	       (bip->bli_flags & XFS_BLI_STALE));
316 
317 
318 	/*
319 	 * If it is an inode buffer, transfer the in-memory state to the
320 	 * format flags and clear the in-memory state.
321 	 *
322 	 * For buffer based inode allocation, we do not transfer
323 	 * this state if the inode buffer allocation has not yet been committed
324 	 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
325 	 * correct replay of the inode allocation.
326 	 *
327 	 * For icreate item based inode allocation, the buffers aren't written
328 	 * to the journal during allocation, and hence we should always tag the
329 	 * buffer as an inode buffer so that the correct unlinked list replay
330 	 * occurs during recovery.
331 	 */
332 	if (bip->bli_flags & XFS_BLI_INODE_BUF) {
333 		if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) ||
334 		    !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
335 		      xfs_log_item_in_current_chkpt(lip)))
336 			bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
337 		bip->bli_flags &= ~XFS_BLI_INODE_BUF;
338 	}
339 
340 	for (i = 0; i < bip->bli_format_count; i++) {
341 		xfs_buf_item_format_segment(bip, lv, &vecp, offset,
342 					    &bip->bli_formats[i]);
343 		offset += BBTOB(bp->b_maps[i].bm_len);
344 	}
345 
346 	/*
347 	 * Check to make sure everything is consistent.
348 	 */
349 	trace_xfs_buf_item_format(bip);
350 }
351 
352 /*
353  * This is called to pin the buffer associated with the buf log item in memory
354  * so it cannot be written out.
355  *
356  * We also always take a reference to the buffer log item here so that the bli
357  * is held while the item is pinned in memory. This means that we can
358  * unconditionally drop the reference count a transaction holds when the
359  * transaction is completed.
360  */
361 STATIC void
362 xfs_buf_item_pin(
363 	struct xfs_log_item	*lip)
364 {
365 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
366 
367 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
368 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
369 	       (bip->bli_flags & XFS_BLI_ORDERED) ||
370 	       (bip->bli_flags & XFS_BLI_STALE));
371 
372 	trace_xfs_buf_item_pin(bip);
373 
374 	atomic_inc(&bip->bli_refcount);
375 	atomic_inc(&bip->bli_buf->b_pin_count);
376 }
377 
378 /*
379  * This is called to unpin the buffer associated with the buf log
380  * item which was previously pinned with a call to xfs_buf_item_pin().
381  *
382  * Also drop the reference to the buf item for the current transaction.
383  * If the XFS_BLI_STALE flag is set and we are the last reference,
384  * then free up the buf log item and unlock the buffer.
385  *
386  * If the remove flag is set we are called from uncommit in the
387  * forced-shutdown path.  If that is true and the reference count on
388  * the log item is going to drop to zero we need to free the item's
389  * descriptor in the transaction.
390  */
391 STATIC void
392 xfs_buf_item_unpin(
393 	struct xfs_log_item	*lip,
394 	int			remove)
395 {
396 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
397 	xfs_buf_t		*bp = bip->bli_buf;
398 	struct xfs_ail		*ailp = lip->li_ailp;
399 	int			stale = bip->bli_flags & XFS_BLI_STALE;
400 	int			freed;
401 
402 	ASSERT(bp->b_log_item == bip);
403 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
404 
405 	trace_xfs_buf_item_unpin(bip);
406 
407 	freed = atomic_dec_and_test(&bip->bli_refcount);
408 
409 	if (atomic_dec_and_test(&bp->b_pin_count))
410 		wake_up_all(&bp->b_waiters);
411 
412 	if (freed && stale) {
413 		ASSERT(bip->bli_flags & XFS_BLI_STALE);
414 		ASSERT(xfs_buf_islocked(bp));
415 		ASSERT(bp->b_flags & XBF_STALE);
416 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
417 
418 		trace_xfs_buf_item_unpin_stale(bip);
419 
420 		if (remove) {
421 			/*
422 			 * If we are in a transaction context, we have to
423 			 * remove the log item from the transaction as we are
424 			 * about to release our reference to the buffer.  If we
425 			 * don't, the unlock that occurs later in
426 			 * xfs_trans_uncommit() will try to reference the
427 			 * buffer which we no longer have a hold on.
428 			 */
429 			if (!list_empty(&lip->li_trans))
430 				xfs_trans_del_item(lip);
431 
432 			/*
433 			 * Since the transaction no longer refers to the buffer,
434 			 * the buffer should no longer refer to the transaction.
435 			 */
436 			bp->b_transp = NULL;
437 		}
438 
439 		/*
440 		 * If we get called here because of an IO error, we may
441 		 * or may not have the item on the AIL. xfs_trans_ail_delete()
442 		 * will take care of that situation.
443 		 * xfs_trans_ail_delete() drops the AIL lock.
444 		 */
445 		if (bip->bli_flags & XFS_BLI_STALE_INODE) {
446 			xfs_buf_do_callbacks(bp);
447 			bp->b_log_item = NULL;
448 			list_del_init(&bp->b_li_list);
449 			bp->b_iodone = NULL;
450 		} else {
451 			spin_lock(&ailp->ail_lock);
452 			xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
453 			xfs_buf_item_relse(bp);
454 			ASSERT(bp->b_log_item == NULL);
455 		}
456 		xfs_buf_relse(bp);
457 	} else if (freed && remove) {
458 		/*
459 		 * There are currently two references to the buffer - the active
460 		 * LRU reference and the buf log item. What we are about to do
461 		 * here - simulate a failed IO completion - requires 3
462 		 * references.
463 		 *
464 		 * The LRU reference is removed by the xfs_buf_stale() call. The
465 		 * buf item reference is removed by the xfs_buf_iodone()
466 		 * callback that is run by xfs_buf_do_callbacks() during ioend
467 		 * processing (via the bp->b_iodone callback), and then finally
468 		 * the ioend processing will drop the IO reference if the buffer
469 		 * is marked XBF_ASYNC.
470 		 *
471 		 * Hence we need to take an additional reference here so that IO
472 		 * completion processing doesn't free the buffer prematurely.
473 		 */
474 		xfs_buf_lock(bp);
475 		xfs_buf_hold(bp);
476 		bp->b_flags |= XBF_ASYNC;
477 		xfs_buf_ioerror(bp, -EIO);
478 		bp->b_flags &= ~XBF_DONE;
479 		xfs_buf_stale(bp);
480 		xfs_buf_ioend(bp);
481 	}
482 }
483 
484 /*
485  * Buffer IO error rate limiting. Limit it to no more than 10 messages per 30
486  * seconds so as to not spam logs too much on repeated detection of the same
487  * buffer being bad..
488  */
489 
490 static DEFINE_RATELIMIT_STATE(xfs_buf_write_fail_rl_state, 30 * HZ, 10);
491 
492 STATIC uint
493 xfs_buf_item_push(
494 	struct xfs_log_item	*lip,
495 	struct list_head	*buffer_list)
496 {
497 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
498 	struct xfs_buf		*bp = bip->bli_buf;
499 	uint			rval = XFS_ITEM_SUCCESS;
500 
501 	if (xfs_buf_ispinned(bp))
502 		return XFS_ITEM_PINNED;
503 	if (!xfs_buf_trylock(bp)) {
504 		/*
505 		 * If we have just raced with a buffer being pinned and it has
506 		 * been marked stale, we could end up stalling until someone else
507 		 * issues a log force to unpin the stale buffer. Check for the
508 		 * race condition here so xfsaild recognizes the buffer is pinned
509 		 * and queues a log force to move it along.
510 		 */
511 		if (xfs_buf_ispinned(bp))
512 			return XFS_ITEM_PINNED;
513 		return XFS_ITEM_LOCKED;
514 	}
515 
516 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
517 
518 	trace_xfs_buf_item_push(bip);
519 
520 	/* has a previous flush failed due to IO errors? */
521 	if ((bp->b_flags & XBF_WRITE_FAIL) &&
522 	    ___ratelimit(&xfs_buf_write_fail_rl_state, "XFS: Failing async write")) {
523 		xfs_warn(bp->b_target->bt_mount,
524 "Failing async write on buffer block 0x%llx. Retrying async write.",
525 			 (long long)bp->b_bn);
526 	}
527 
528 	if (!xfs_buf_delwri_queue(bp, buffer_list))
529 		rval = XFS_ITEM_FLUSHING;
530 	xfs_buf_unlock(bp);
531 	return rval;
532 }
533 
534 /*
535  * Drop the buffer log item refcount and take appropriate action. This helper
536  * determines whether the bli must be freed or not, since a decrement to zero
537  * does not necessarily mean the bli is unused.
538  *
539  * Return true if the bli is freed, false otherwise.
540  */
541 bool
542 xfs_buf_item_put(
543 	struct xfs_buf_log_item	*bip)
544 {
545 	struct xfs_log_item	*lip = &bip->bli_item;
546 	bool			aborted;
547 	bool			dirty;
548 
549 	/* drop the bli ref and return if it wasn't the last one */
550 	if (!atomic_dec_and_test(&bip->bli_refcount))
551 		return false;
552 
553 	/*
554 	 * We dropped the last ref and must free the item if clean or aborted.
555 	 * If the bli is dirty and non-aborted, the buffer was clean in the
556 	 * transaction but still awaiting writeback from previous changes. In
557 	 * that case, the bli is freed on buffer writeback completion.
558 	 */
559 	aborted = test_bit(XFS_LI_ABORTED, &lip->li_flags) ||
560 		  XFS_FORCED_SHUTDOWN(lip->li_mountp);
561 	dirty = bip->bli_flags & XFS_BLI_DIRTY;
562 	if (dirty && !aborted)
563 		return false;
564 
565 	/*
566 	 * The bli is aborted or clean. An aborted item may be in the AIL
567 	 * regardless of dirty state.  For example, consider an aborted
568 	 * transaction that invalidated a dirty bli and cleared the dirty
569 	 * state.
570 	 */
571 	if (aborted)
572 		xfs_trans_ail_remove(lip, SHUTDOWN_LOG_IO_ERROR);
573 	xfs_buf_item_relse(bip->bli_buf);
574 	return true;
575 }
576 
577 /*
578  * Release the buffer associated with the buf log item.  If there is no dirty
579  * logged data associated with the buffer recorded in the buf log item, then
580  * free the buf log item and remove the reference to it in the buffer.
581  *
582  * This call ignores the recursion count.  It is only called when the buffer
583  * should REALLY be unlocked, regardless of the recursion count.
584  *
585  * We unconditionally drop the transaction's reference to the log item. If the
586  * item was logged, then another reference was taken when it was pinned, so we
587  * can safely drop the transaction reference now.  This also allows us to avoid
588  * potential races with the unpin code freeing the bli by not referencing the
589  * bli after we've dropped the reference count.
590  *
591  * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
592  * if necessary but do not unlock the buffer.  This is for support of
593  * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
594  * free the item.
595  */
596 STATIC void
597 xfs_buf_item_unlock(
598 	struct xfs_log_item	*lip)
599 {
600 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
601 	struct xfs_buf		*bp = bip->bli_buf;
602 	bool			released;
603 	bool			hold = bip->bli_flags & XFS_BLI_HOLD;
604 	bool			stale = bip->bli_flags & XFS_BLI_STALE;
605 #if defined(DEBUG) || defined(XFS_WARN)
606 	bool			ordered = bip->bli_flags & XFS_BLI_ORDERED;
607 	bool			dirty = bip->bli_flags & XFS_BLI_DIRTY;
608 	bool			aborted = test_bit(XFS_LI_ABORTED,
609 						   &lip->li_flags);
610 #endif
611 
612 	trace_xfs_buf_item_unlock(bip);
613 
614 	/*
615 	 * The bli dirty state should match whether the blf has logged segments
616 	 * except for ordered buffers, where only the bli should be dirty.
617 	 */
618 	ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) ||
619 	       (ordered && dirty && !xfs_buf_item_dirty_format(bip)));
620 	ASSERT(!stale || (bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
621 
622 	/*
623 	 * Clear the buffer's association with this transaction and
624 	 * per-transaction state from the bli, which has been copied above.
625 	 */
626 	bp->b_transp = NULL;
627 	bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
628 
629 	/*
630 	 * Unref the item and unlock the buffer unless held or stale. Stale
631 	 * buffers remain locked until final unpin unless the bli is freed by
632 	 * the unref call. The latter implies shutdown because buffer
633 	 * invalidation dirties the bli and transaction.
634 	 */
635 	released = xfs_buf_item_put(bip);
636 	if (hold || (stale && !released))
637 		return;
638 	ASSERT(!stale || aborted);
639 	xfs_buf_relse(bp);
640 }
641 
642 /*
643  * This is called to find out where the oldest active copy of the
644  * buf log item in the on disk log resides now that the last log
645  * write of it completed at the given lsn.
646  * We always re-log all the dirty data in a buffer, so usually the
647  * latest copy in the on disk log is the only one that matters.  For
648  * those cases we simply return the given lsn.
649  *
650  * The one exception to this is for buffers full of newly allocated
651  * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
652  * flag set, indicating that only the di_next_unlinked fields from the
653  * inodes in the buffers will be replayed during recovery.  If the
654  * original newly allocated inode images have not yet been flushed
655  * when the buffer is so relogged, then we need to make sure that we
656  * keep the old images in the 'active' portion of the log.  We do this
657  * by returning the original lsn of that transaction here rather than
658  * the current one.
659  */
660 STATIC xfs_lsn_t
661 xfs_buf_item_committed(
662 	struct xfs_log_item	*lip,
663 	xfs_lsn_t		lsn)
664 {
665 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
666 
667 	trace_xfs_buf_item_committed(bip);
668 
669 	if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
670 		return lip->li_lsn;
671 	return lsn;
672 }
673 
674 STATIC void
675 xfs_buf_item_committing(
676 	struct xfs_log_item	*lip,
677 	xfs_lsn_t		commit_lsn)
678 {
679 }
680 
681 /*
682  * This is the ops vector shared by all buf log items.
683  */
684 static const struct xfs_item_ops xfs_buf_item_ops = {
685 	.iop_size	= xfs_buf_item_size,
686 	.iop_format	= xfs_buf_item_format,
687 	.iop_pin	= xfs_buf_item_pin,
688 	.iop_unpin	= xfs_buf_item_unpin,
689 	.iop_unlock	= xfs_buf_item_unlock,
690 	.iop_committed	= xfs_buf_item_committed,
691 	.iop_push	= xfs_buf_item_push,
692 	.iop_committing = xfs_buf_item_committing
693 };
694 
695 STATIC int
696 xfs_buf_item_get_format(
697 	struct xfs_buf_log_item	*bip,
698 	int			count)
699 {
700 	ASSERT(bip->bli_formats == NULL);
701 	bip->bli_format_count = count;
702 
703 	if (count == 1) {
704 		bip->bli_formats = &bip->__bli_format;
705 		return 0;
706 	}
707 
708 	bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
709 				KM_SLEEP);
710 	if (!bip->bli_formats)
711 		return -ENOMEM;
712 	return 0;
713 }
714 
715 STATIC void
716 xfs_buf_item_free_format(
717 	struct xfs_buf_log_item	*bip)
718 {
719 	if (bip->bli_formats != &bip->__bli_format) {
720 		kmem_free(bip->bli_formats);
721 		bip->bli_formats = NULL;
722 	}
723 }
724 
725 /*
726  * Allocate a new buf log item to go with the given buffer.
727  * Set the buffer's b_log_item field to point to the new
728  * buf log item.
729  */
730 int
731 xfs_buf_item_init(
732 	struct xfs_buf	*bp,
733 	struct xfs_mount *mp)
734 {
735 	struct xfs_buf_log_item	*bip = bp->b_log_item;
736 	int			chunks;
737 	int			map_size;
738 	int			error;
739 	int			i;
740 
741 	/*
742 	 * Check to see if there is already a buf log item for
743 	 * this buffer. If we do already have one, there is
744 	 * nothing to do here so return.
745 	 */
746 	ASSERT(bp->b_target->bt_mount == mp);
747 	if (bip) {
748 		ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
749 		ASSERT(!bp->b_transp);
750 		ASSERT(bip->bli_buf == bp);
751 		return 0;
752 	}
753 
754 	bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
755 	xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
756 	bip->bli_buf = bp;
757 
758 	/*
759 	 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
760 	 * can be divided into. Make sure not to truncate any pieces.
761 	 * map_size is the size of the bitmap needed to describe the
762 	 * chunks of the buffer.
763 	 *
764 	 * Discontiguous buffer support follows the layout of the underlying
765 	 * buffer. This makes the implementation as simple as possible.
766 	 */
767 	error = xfs_buf_item_get_format(bip, bp->b_map_count);
768 	ASSERT(error == 0);
769 	if (error) {	/* to stop gcc throwing set-but-unused warnings */
770 		kmem_zone_free(xfs_buf_item_zone, bip);
771 		return error;
772 	}
773 
774 
775 	for (i = 0; i < bip->bli_format_count; i++) {
776 		chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
777 				      XFS_BLF_CHUNK);
778 		map_size = DIV_ROUND_UP(chunks, NBWORD);
779 
780 		bip->bli_formats[i].blf_type = XFS_LI_BUF;
781 		bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
782 		bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
783 		bip->bli_formats[i].blf_map_size = map_size;
784 	}
785 
786 	bp->b_log_item = bip;
787 	xfs_buf_hold(bp);
788 	return 0;
789 }
790 
791 
792 /*
793  * Mark bytes first through last inclusive as dirty in the buf
794  * item's bitmap.
795  */
796 static void
797 xfs_buf_item_log_segment(
798 	uint			first,
799 	uint			last,
800 	uint			*map)
801 {
802 	uint		first_bit;
803 	uint		last_bit;
804 	uint		bits_to_set;
805 	uint		bits_set;
806 	uint		word_num;
807 	uint		*wordp;
808 	uint		bit;
809 	uint		end_bit;
810 	uint		mask;
811 
812 	/*
813 	 * Convert byte offsets to bit numbers.
814 	 */
815 	first_bit = first >> XFS_BLF_SHIFT;
816 	last_bit = last >> XFS_BLF_SHIFT;
817 
818 	/*
819 	 * Calculate the total number of bits to be set.
820 	 */
821 	bits_to_set = last_bit - first_bit + 1;
822 
823 	/*
824 	 * Get a pointer to the first word in the bitmap
825 	 * to set a bit in.
826 	 */
827 	word_num = first_bit >> BIT_TO_WORD_SHIFT;
828 	wordp = &map[word_num];
829 
830 	/*
831 	 * Calculate the starting bit in the first word.
832 	 */
833 	bit = first_bit & (uint)(NBWORD - 1);
834 
835 	/*
836 	 * First set any bits in the first word of our range.
837 	 * If it starts at bit 0 of the word, it will be
838 	 * set below rather than here.  That is what the variable
839 	 * bit tells us. The variable bits_set tracks the number
840 	 * of bits that have been set so far.  End_bit is the number
841 	 * of the last bit to be set in this word plus one.
842 	 */
843 	if (bit) {
844 		end_bit = min(bit + bits_to_set, (uint)NBWORD);
845 		mask = ((1U << (end_bit - bit)) - 1) << bit;
846 		*wordp |= mask;
847 		wordp++;
848 		bits_set = end_bit - bit;
849 	} else {
850 		bits_set = 0;
851 	}
852 
853 	/*
854 	 * Now set bits a whole word at a time that are between
855 	 * first_bit and last_bit.
856 	 */
857 	while ((bits_to_set - bits_set) >= NBWORD) {
858 		*wordp |= 0xffffffff;
859 		bits_set += NBWORD;
860 		wordp++;
861 	}
862 
863 	/*
864 	 * Finally, set any bits left to be set in one last partial word.
865 	 */
866 	end_bit = bits_to_set - bits_set;
867 	if (end_bit) {
868 		mask = (1U << end_bit) - 1;
869 		*wordp |= mask;
870 	}
871 }
872 
873 /*
874  * Mark bytes first through last inclusive as dirty in the buf
875  * item's bitmap.
876  */
877 void
878 xfs_buf_item_log(
879 	struct xfs_buf_log_item	*bip,
880 	uint			first,
881 	uint			last)
882 {
883 	int			i;
884 	uint			start;
885 	uint			end;
886 	struct xfs_buf		*bp = bip->bli_buf;
887 
888 	/*
889 	 * walk each buffer segment and mark them dirty appropriately.
890 	 */
891 	start = 0;
892 	for (i = 0; i < bip->bli_format_count; i++) {
893 		if (start > last)
894 			break;
895 		end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
896 
897 		/* skip to the map that includes the first byte to log */
898 		if (first > end) {
899 			start += BBTOB(bp->b_maps[i].bm_len);
900 			continue;
901 		}
902 
903 		/*
904 		 * Trim the range to this segment and mark it in the bitmap.
905 		 * Note that we must convert buffer offsets to segment relative
906 		 * offsets (e.g., the first byte of each segment is byte 0 of
907 		 * that segment).
908 		 */
909 		if (first < start)
910 			first = start;
911 		if (end > last)
912 			end = last;
913 		xfs_buf_item_log_segment(first - start, end - start,
914 					 &bip->bli_formats[i].blf_data_map[0]);
915 
916 		start += BBTOB(bp->b_maps[i].bm_len);
917 	}
918 }
919 
920 
921 /*
922  * Return true if the buffer has any ranges logged/dirtied by a transaction,
923  * false otherwise.
924  */
925 bool
926 xfs_buf_item_dirty_format(
927 	struct xfs_buf_log_item	*bip)
928 {
929 	int			i;
930 
931 	for (i = 0; i < bip->bli_format_count; i++) {
932 		if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
933 			     bip->bli_formats[i].blf_map_size))
934 			return true;
935 	}
936 
937 	return false;
938 }
939 
940 STATIC void
941 xfs_buf_item_free(
942 	struct xfs_buf_log_item	*bip)
943 {
944 	xfs_buf_item_free_format(bip);
945 	kmem_free(bip->bli_item.li_lv_shadow);
946 	kmem_zone_free(xfs_buf_item_zone, bip);
947 }
948 
949 /*
950  * This is called when the buf log item is no longer needed.  It should
951  * free the buf log item associated with the given buffer and clear
952  * the buffer's pointer to the buf log item.  If there are no more
953  * items in the list, clear the b_iodone field of the buffer (see
954  * xfs_buf_attach_iodone() below).
955  */
956 void
957 xfs_buf_item_relse(
958 	xfs_buf_t	*bp)
959 {
960 	struct xfs_buf_log_item	*bip = bp->b_log_item;
961 
962 	trace_xfs_buf_item_relse(bp, _RET_IP_);
963 	ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
964 
965 	bp->b_log_item = NULL;
966 	if (list_empty(&bp->b_li_list))
967 		bp->b_iodone = NULL;
968 
969 	xfs_buf_rele(bp);
970 	xfs_buf_item_free(bip);
971 }
972 
973 
974 /*
975  * Add the given log item with its callback to the list of callbacks
976  * to be called when the buffer's I/O completes.  If it is not set
977  * already, set the buffer's b_iodone() routine to be
978  * xfs_buf_iodone_callbacks() and link the log item into the list of
979  * items rooted at b_li_list.
980  */
981 void
982 xfs_buf_attach_iodone(
983 	xfs_buf_t	*bp,
984 	void		(*cb)(xfs_buf_t *, xfs_log_item_t *),
985 	xfs_log_item_t	*lip)
986 {
987 	ASSERT(xfs_buf_islocked(bp));
988 
989 	lip->li_cb = cb;
990 	list_add_tail(&lip->li_bio_list, &bp->b_li_list);
991 
992 	ASSERT(bp->b_iodone == NULL ||
993 	       bp->b_iodone == xfs_buf_iodone_callbacks);
994 	bp->b_iodone = xfs_buf_iodone_callbacks;
995 }
996 
997 /*
998  * We can have many callbacks on a buffer. Running the callbacks individually
999  * can cause a lot of contention on the AIL lock, so we allow for a single
1000  * callback to be able to scan the remaining items in bp->b_li_list for other
1001  * items of the same type and callback to be processed in the first call.
1002  *
1003  * As a result, the loop walking the callback list below will also modify the
1004  * list. it removes the first item from the list and then runs the callback.
1005  * The loop then restarts from the new first item int the list. This allows the
1006  * callback to scan and modify the list attached to the buffer and we don't
1007  * have to care about maintaining a next item pointer.
1008  */
1009 STATIC void
1010 xfs_buf_do_callbacks(
1011 	struct xfs_buf		*bp)
1012 {
1013 	struct xfs_buf_log_item *blip = bp->b_log_item;
1014 	struct xfs_log_item	*lip;
1015 
1016 	/* If there is a buf_log_item attached, run its callback */
1017 	if (blip) {
1018 		lip = &blip->bli_item;
1019 		lip->li_cb(bp, lip);
1020 	}
1021 
1022 	while (!list_empty(&bp->b_li_list)) {
1023 		lip = list_first_entry(&bp->b_li_list, struct xfs_log_item,
1024 				       li_bio_list);
1025 
1026 		/*
1027 		 * Remove the item from the list, so we don't have any
1028 		 * confusion if the item is added to another buf.
1029 		 * Don't touch the log item after calling its
1030 		 * callback, because it could have freed itself.
1031 		 */
1032 		list_del_init(&lip->li_bio_list);
1033 		lip->li_cb(bp, lip);
1034 	}
1035 }
1036 
1037 /*
1038  * Invoke the error state callback for each log item affected by the failed I/O.
1039  *
1040  * If a metadata buffer write fails with a non-permanent error, the buffer is
1041  * eventually resubmitted and so the completion callbacks are not run. The error
1042  * state may need to be propagated to the log items attached to the buffer,
1043  * however, so the next AIL push of the item knows hot to handle it correctly.
1044  */
1045 STATIC void
1046 xfs_buf_do_callbacks_fail(
1047 	struct xfs_buf		*bp)
1048 {
1049 	struct xfs_log_item	*lip;
1050 	struct xfs_ail		*ailp;
1051 
1052 	/*
1053 	 * Buffer log item errors are handled directly by xfs_buf_item_push()
1054 	 * and xfs_buf_iodone_callback_error, and they have no IO error
1055 	 * callbacks. Check only for items in b_li_list.
1056 	 */
1057 	if (list_empty(&bp->b_li_list))
1058 		return;
1059 
1060 	lip = list_first_entry(&bp->b_li_list, struct xfs_log_item,
1061 			li_bio_list);
1062 	ailp = lip->li_ailp;
1063 	spin_lock(&ailp->ail_lock);
1064 	list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
1065 		if (lip->li_ops->iop_error)
1066 			lip->li_ops->iop_error(lip, bp);
1067 	}
1068 	spin_unlock(&ailp->ail_lock);
1069 }
1070 
1071 static bool
1072 xfs_buf_iodone_callback_error(
1073 	struct xfs_buf		*bp)
1074 {
1075 	struct xfs_buf_log_item	*bip = bp->b_log_item;
1076 	struct xfs_log_item	*lip;
1077 	struct xfs_mount	*mp;
1078 	static ulong		lasttime;
1079 	static xfs_buftarg_t	*lasttarg;
1080 	struct xfs_error_cfg	*cfg;
1081 
1082 	/*
1083 	 * The failed buffer might not have a buf_log_item attached or the
1084 	 * log_item list might be empty. Get the mp from the available
1085 	 * xfs_log_item
1086 	 */
1087 	lip = list_first_entry_or_null(&bp->b_li_list, struct xfs_log_item,
1088 				       li_bio_list);
1089 	mp = lip ? lip->li_mountp : bip->bli_item.li_mountp;
1090 
1091 	/*
1092 	 * If we've already decided to shutdown the filesystem because of
1093 	 * I/O errors, there's no point in giving this a retry.
1094 	 */
1095 	if (XFS_FORCED_SHUTDOWN(mp))
1096 		goto out_stale;
1097 
1098 	if (bp->b_target != lasttarg ||
1099 	    time_after(jiffies, (lasttime + 5*HZ))) {
1100 		lasttime = jiffies;
1101 		xfs_buf_ioerror_alert(bp, __func__);
1102 	}
1103 	lasttarg = bp->b_target;
1104 
1105 	/* synchronous writes will have callers process the error */
1106 	if (!(bp->b_flags & XBF_ASYNC))
1107 		goto out_stale;
1108 
1109 	trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1110 	ASSERT(bp->b_iodone != NULL);
1111 
1112 	cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1113 
1114 	/*
1115 	 * If the write was asynchronous then no one will be looking for the
1116 	 * error.  If this is the first failure of this type, clear the error
1117 	 * state and write the buffer out again. This means we always retry an
1118 	 * async write failure at least once, but we also need to set the buffer
1119 	 * up to behave correctly now for repeated failures.
1120 	 */
1121 	if (!(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL)) ||
1122 	     bp->b_last_error != bp->b_error) {
1123 		bp->b_flags |= (XBF_WRITE | XBF_DONE | XBF_WRITE_FAIL);
1124 		bp->b_last_error = bp->b_error;
1125 		if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1126 		    !bp->b_first_retry_time)
1127 			bp->b_first_retry_time = jiffies;
1128 
1129 		xfs_buf_ioerror(bp, 0);
1130 		xfs_buf_submit(bp);
1131 		return true;
1132 	}
1133 
1134 	/*
1135 	 * Repeated failure on an async write. Take action according to the
1136 	 * error configuration we have been set up to use.
1137 	 */
1138 
1139 	if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1140 	    ++bp->b_retries > cfg->max_retries)
1141 			goto permanent_error;
1142 	if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1143 	    time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1144 			goto permanent_error;
1145 
1146 	/* At unmount we may treat errors differently */
1147 	if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount)
1148 		goto permanent_error;
1149 
1150 	/*
1151 	 * Still a transient error, run IO completion failure callbacks and let
1152 	 * the higher layers retry the buffer.
1153 	 */
1154 	xfs_buf_do_callbacks_fail(bp);
1155 	xfs_buf_ioerror(bp, 0);
1156 	xfs_buf_relse(bp);
1157 	return true;
1158 
1159 	/*
1160 	 * Permanent error - we need to trigger a shutdown if we haven't already
1161 	 * to indicate that inconsistency will result from this action.
1162 	 */
1163 permanent_error:
1164 	xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1165 out_stale:
1166 	xfs_buf_stale(bp);
1167 	bp->b_flags |= XBF_DONE;
1168 	trace_xfs_buf_error_relse(bp, _RET_IP_);
1169 	return false;
1170 }
1171 
1172 /*
1173  * This is the iodone() function for buffers which have had callbacks attached
1174  * to them by xfs_buf_attach_iodone(). We need to iterate the items on the
1175  * callback list, mark the buffer as having no more callbacks and then push the
1176  * buffer through IO completion processing.
1177  */
1178 void
1179 xfs_buf_iodone_callbacks(
1180 	struct xfs_buf		*bp)
1181 {
1182 	/*
1183 	 * If there is an error, process it. Some errors require us
1184 	 * to run callbacks after failure processing is done so we
1185 	 * detect that and take appropriate action.
1186 	 */
1187 	if (bp->b_error && xfs_buf_iodone_callback_error(bp))
1188 		return;
1189 
1190 	/*
1191 	 * Successful IO or permanent error. Either way, we can clear the
1192 	 * retry state here in preparation for the next error that may occur.
1193 	 */
1194 	bp->b_last_error = 0;
1195 	bp->b_retries = 0;
1196 	bp->b_first_retry_time = 0;
1197 
1198 	xfs_buf_do_callbacks(bp);
1199 	bp->b_log_item = NULL;
1200 	list_del_init(&bp->b_li_list);
1201 	bp->b_iodone = NULL;
1202 	xfs_buf_ioend(bp);
1203 }
1204 
1205 /*
1206  * This is the iodone() function for buffers which have been
1207  * logged.  It is called when they are eventually flushed out.
1208  * It should remove the buf item from the AIL, and free the buf item.
1209  * It is called by xfs_buf_iodone_callbacks() above which will take
1210  * care of cleaning up the buffer itself.
1211  */
1212 void
1213 xfs_buf_iodone(
1214 	struct xfs_buf		*bp,
1215 	struct xfs_log_item	*lip)
1216 {
1217 	struct xfs_ail		*ailp = lip->li_ailp;
1218 
1219 	ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1220 
1221 	xfs_buf_rele(bp);
1222 
1223 	/*
1224 	 * If we are forcibly shutting down, this may well be
1225 	 * off the AIL already. That's because we simulate the
1226 	 * log-committed callbacks to unpin these buffers. Or we may never
1227 	 * have put this item on AIL because of the transaction was
1228 	 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1229 	 *
1230 	 * Either way, AIL is useless if we're forcing a shutdown.
1231 	 */
1232 	spin_lock(&ailp->ail_lock);
1233 	xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
1234 	xfs_buf_item_free(BUF_ITEM(lip));
1235 }
1236 
1237 /*
1238  * Requeue a failed buffer for writeback.
1239  *
1240  * We clear the log item failed state here as well, but we have to be careful
1241  * about reference counts because the only active reference counts on the buffer
1242  * may be the failed log items. Hence if we clear the log item failed state
1243  * before queuing the buffer for IO we can release all active references to
1244  * the buffer and free it, leading to use after free problems in
1245  * xfs_buf_delwri_queue. It makes no difference to the buffer or log items which
1246  * order we process them in - the buffer is locked, and we own the buffer list
1247  * so nothing on them is going to change while we are performing this action.
1248  *
1249  * Hence we can safely queue the buffer for IO before we clear the failed log
1250  * item state, therefore  always having an active reference to the buffer and
1251  * avoiding the transient zero-reference state that leads to use-after-free.
1252  *
1253  * Return true if the buffer was added to the buffer list, false if it was
1254  * already on the buffer list.
1255  */
1256 bool
1257 xfs_buf_resubmit_failed_buffers(
1258 	struct xfs_buf		*bp,
1259 	struct list_head	*buffer_list)
1260 {
1261 	struct xfs_log_item	*lip;
1262 	bool			ret;
1263 
1264 	ret = xfs_buf_delwri_queue(bp, buffer_list);
1265 
1266 	/*
1267 	 * XFS_LI_FAILED set/clear is protected by ail_lock, caller of this
1268 	 * function already have it acquired
1269 	 */
1270 	list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
1271 		xfs_clear_li_failed(lip);
1272 
1273 	return ret;
1274 }
1275