xref: /openbmc/linux/fs/xfs/xfs_buf_item.c (revision 0d456bad)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_error.h"
30 #include "xfs_trace.h"
31 
32 
33 kmem_zone_t	*xfs_buf_item_zone;
34 
35 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
36 {
37 	return container_of(lip, struct xfs_buf_log_item, bli_item);
38 }
39 
40 
41 #ifdef XFS_TRANS_DEBUG
42 /*
43  * This function uses an alternate strategy for tracking the bytes
44  * that the user requests to be logged.  This can then be used
45  * in conjunction with the bli_orig array in the buf log item to
46  * catch bugs in our callers' code.
47  *
48  * We also double check the bits set in xfs_buf_item_log using a
49  * simple algorithm to check that every byte is accounted for.
50  */
51 STATIC void
52 xfs_buf_item_log_debug(
53 	xfs_buf_log_item_t	*bip,
54 	uint			first,
55 	uint			last)
56 {
57 	uint	x;
58 	uint	byte;
59 	uint	nbytes;
60 	uint	chunk_num;
61 	uint	word_num;
62 	uint	bit_num;
63 	uint	bit_set;
64 	uint	*wordp;
65 
66 	ASSERT(bip->bli_logged != NULL);
67 	byte = first;
68 	nbytes = last - first + 1;
69 	bfset(bip->bli_logged, first, nbytes);
70 	for (x = 0; x < nbytes; x++) {
71 		chunk_num = byte >> XFS_BLF_SHIFT;
72 		word_num = chunk_num >> BIT_TO_WORD_SHIFT;
73 		bit_num = chunk_num & (NBWORD - 1);
74 		wordp = &(bip->bli_format.blf_data_map[word_num]);
75 		bit_set = *wordp & (1 << bit_num);
76 		ASSERT(bit_set);
77 		byte++;
78 	}
79 }
80 
81 /*
82  * This function is called when we flush something into a buffer without
83  * logging it.  This happens for things like inodes which are logged
84  * separately from the buffer.
85  */
86 void
87 xfs_buf_item_flush_log_debug(
88 	xfs_buf_t	*bp,
89 	uint		first,
90 	uint		last)
91 {
92 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
93 	uint			nbytes;
94 
95 	if (bip == NULL || (bip->bli_item.li_type != XFS_LI_BUF))
96 		return;
97 
98 	ASSERT(bip->bli_logged != NULL);
99 	nbytes = last - first + 1;
100 	bfset(bip->bli_logged, first, nbytes);
101 }
102 
103 /*
104  * This function is called to verify that our callers have logged
105  * all the bytes that they changed.
106  *
107  * It does this by comparing the original copy of the buffer stored in
108  * the buf log item's bli_orig array to the current copy of the buffer
109  * and ensuring that all bytes which mismatch are set in the bli_logged
110  * array of the buf log item.
111  */
112 STATIC void
113 xfs_buf_item_log_check(
114 	xfs_buf_log_item_t	*bip)
115 {
116 	char		*orig;
117 	char		*buffer;
118 	int		x;
119 	xfs_buf_t	*bp;
120 
121 	ASSERT(bip->bli_orig != NULL);
122 	ASSERT(bip->bli_logged != NULL);
123 
124 	bp = bip->bli_buf;
125 	ASSERT(bp->b_length > 0);
126 	ASSERT(bp->b_addr != NULL);
127 	orig = bip->bli_orig;
128 	buffer = bp->b_addr;
129 	for (x = 0; x < BBTOB(bp->b_length); x++) {
130 		if (orig[x] != buffer[x] && !btst(bip->bli_logged, x)) {
131 			xfs_emerg(bp->b_mount,
132 				"%s: bip %x buffer %x orig %x index %d",
133 				__func__, bip, bp, orig, x);
134 			ASSERT(0);
135 		}
136 	}
137 }
138 #else
139 #define		xfs_buf_item_log_debug(x,y,z)
140 #define		xfs_buf_item_log_check(x)
141 #endif
142 
143 STATIC void	xfs_buf_do_callbacks(struct xfs_buf *bp);
144 
145 /*
146  * This returns the number of log iovecs needed to log the
147  * given buf log item.
148  *
149  * It calculates this as 1 iovec for the buf log format structure
150  * and 1 for each stretch of non-contiguous chunks to be logged.
151  * Contiguous chunks are logged in a single iovec.
152  *
153  * If the XFS_BLI_STALE flag has been set, then log nothing.
154  */
155 STATIC uint
156 xfs_buf_item_size_segment(
157 	struct xfs_buf_log_item	*bip,
158 	struct xfs_buf_log_format *blfp)
159 {
160 	struct xfs_buf		*bp = bip->bli_buf;
161 	uint			nvecs;
162 	int			next_bit;
163 	int			last_bit;
164 
165 	last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
166 	if (last_bit == -1)
167 		return 0;
168 
169 	/*
170 	 * initial count for a dirty buffer is 2 vectors - the format structure
171 	 * and the first dirty region.
172 	 */
173 	nvecs = 2;
174 
175 	while (last_bit != -1) {
176 		/*
177 		 * This takes the bit number to start looking from and
178 		 * returns the next set bit from there.  It returns -1
179 		 * if there are no more bits set or the start bit is
180 		 * beyond the end of the bitmap.
181 		 */
182 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
183 					last_bit + 1);
184 		/*
185 		 * If we run out of bits, leave the loop,
186 		 * else if we find a new set of bits bump the number of vecs,
187 		 * else keep scanning the current set of bits.
188 		 */
189 		if (next_bit == -1) {
190 			break;
191 		} else if (next_bit != last_bit + 1) {
192 			last_bit = next_bit;
193 			nvecs++;
194 		} else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
195 			   (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
196 			    XFS_BLF_CHUNK)) {
197 			last_bit = next_bit;
198 			nvecs++;
199 		} else {
200 			last_bit++;
201 		}
202 	}
203 
204 	return nvecs;
205 }
206 
207 /*
208  * This returns the number of log iovecs needed to log the given buf log item.
209  *
210  * It calculates this as 1 iovec for the buf log format structure and 1 for each
211  * stretch of non-contiguous chunks to be logged.  Contiguous chunks are logged
212  * in a single iovec.
213  *
214  * Discontiguous buffers need a format structure per region that that is being
215  * logged. This makes the changes in the buffer appear to log recovery as though
216  * they came from separate buffers, just like would occur if multiple buffers
217  * were used instead of a single discontiguous buffer. This enables
218  * discontiguous buffers to be in-memory constructs, completely transparent to
219  * what ends up on disk.
220  *
221  * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
222  * format structures.
223  */
224 STATIC uint
225 xfs_buf_item_size(
226 	struct xfs_log_item	*lip)
227 {
228 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
229 	uint			nvecs;
230 	int			i;
231 
232 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
233 	if (bip->bli_flags & XFS_BLI_STALE) {
234 		/*
235 		 * The buffer is stale, so all we need to log
236 		 * is the buf log format structure with the
237 		 * cancel flag in it.
238 		 */
239 		trace_xfs_buf_item_size_stale(bip);
240 		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
241 		return bip->bli_format_count;
242 	}
243 
244 	ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
245 
246 	/*
247 	 * the vector count is based on the number of buffer vectors we have
248 	 * dirty bits in. This will only be greater than one when we have a
249 	 * compound buffer with more than one segment dirty. Hence for compound
250 	 * buffers we need to track which segment the dirty bits correspond to,
251 	 * and when we move from one segment to the next increment the vector
252 	 * count for the extra buf log format structure that will need to be
253 	 * written.
254 	 */
255 	nvecs = 0;
256 	for (i = 0; i < bip->bli_format_count; i++) {
257 		nvecs += xfs_buf_item_size_segment(bip, &bip->bli_formats[i]);
258 	}
259 
260 	trace_xfs_buf_item_size(bip);
261 	return nvecs;
262 }
263 
264 static struct xfs_log_iovec *
265 xfs_buf_item_format_segment(
266 	struct xfs_buf_log_item	*bip,
267 	struct xfs_log_iovec	*vecp,
268 	uint			offset,
269 	struct xfs_buf_log_format *blfp)
270 {
271 	struct xfs_buf	*bp = bip->bli_buf;
272 	uint		base_size;
273 	uint		nvecs;
274 	int		first_bit;
275 	int		last_bit;
276 	int		next_bit;
277 	uint		nbits;
278 	uint		buffer_offset;
279 
280 	/* copy the flags across from the base format item */
281 	blfp->blf_flags = bip->bli_format.blf_flags;
282 
283 	/*
284 	 * Base size is the actual size of the ondisk structure - it reflects
285 	 * the actual size of the dirty bitmap rather than the size of the in
286 	 * memory structure.
287 	 */
288 	base_size = offsetof(struct xfs_buf_log_format, blf_data_map) +
289 			(blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
290 	vecp->i_addr = blfp;
291 	vecp->i_len = base_size;
292 	vecp->i_type = XLOG_REG_TYPE_BFORMAT;
293 	vecp++;
294 	nvecs = 1;
295 
296 	if (bip->bli_flags & XFS_BLI_STALE) {
297 		/*
298 		 * The buffer is stale, so all we need to log
299 		 * is the buf log format structure with the
300 		 * cancel flag in it.
301 		 */
302 		trace_xfs_buf_item_format_stale(bip);
303 		ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
304 		blfp->blf_size = nvecs;
305 		return vecp;
306 	}
307 
308 	/*
309 	 * Fill in an iovec for each set of contiguous chunks.
310 	 */
311 	first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
312 	ASSERT(first_bit != -1);
313 	last_bit = first_bit;
314 	nbits = 1;
315 	for (;;) {
316 		/*
317 		 * This takes the bit number to start looking from and
318 		 * returns the next set bit from there.  It returns -1
319 		 * if there are no more bits set or the start bit is
320 		 * beyond the end of the bitmap.
321 		 */
322 		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
323 					(uint)last_bit + 1);
324 		/*
325 		 * If we run out of bits fill in the last iovec and get
326 		 * out of the loop.
327 		 * Else if we start a new set of bits then fill in the
328 		 * iovec for the series we were looking at and start
329 		 * counting the bits in the new one.
330 		 * Else we're still in the same set of bits so just
331 		 * keep counting and scanning.
332 		 */
333 		if (next_bit == -1) {
334 			buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
335 			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
336 			vecp->i_len = nbits * XFS_BLF_CHUNK;
337 			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
338 			nvecs++;
339 			break;
340 		} else if (next_bit != last_bit + 1) {
341 			buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
342 			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
343 			vecp->i_len = nbits * XFS_BLF_CHUNK;
344 			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
345 			nvecs++;
346 			vecp++;
347 			first_bit = next_bit;
348 			last_bit = next_bit;
349 			nbits = 1;
350 		} else if (xfs_buf_offset(bp, offset +
351 					      (next_bit << XFS_BLF_SHIFT)) !=
352 			   (xfs_buf_offset(bp, offset +
353 					       (last_bit << XFS_BLF_SHIFT)) +
354 			    XFS_BLF_CHUNK)) {
355 			buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
356 			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
357 			vecp->i_len = nbits * XFS_BLF_CHUNK;
358 			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
359 /*
360  * You would think we need to bump the nvecs here too, but we do not
361  * this number is used by recovery, and it gets confused by the boundary
362  * split here
363  *			nvecs++;
364  */
365 			vecp++;
366 			first_bit = next_bit;
367 			last_bit = next_bit;
368 			nbits = 1;
369 		} else {
370 			last_bit++;
371 			nbits++;
372 		}
373 	}
374 	bip->bli_format.blf_size = nvecs;
375 	return vecp;
376 }
377 
378 /*
379  * This is called to fill in the vector of log iovecs for the
380  * given log buf item.  It fills the first entry with a buf log
381  * format structure, and the rest point to contiguous chunks
382  * within the buffer.
383  */
384 STATIC void
385 xfs_buf_item_format(
386 	struct xfs_log_item	*lip,
387 	struct xfs_log_iovec	*vecp)
388 {
389 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
390 	struct xfs_buf		*bp = bip->bli_buf;
391 	uint			offset = 0;
392 	int			i;
393 
394 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
395 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
396 	       (bip->bli_flags & XFS_BLI_STALE));
397 
398 	/*
399 	 * If it is an inode buffer, transfer the in-memory state to the
400 	 * format flags and clear the in-memory state. We do not transfer
401 	 * this state if the inode buffer allocation has not yet been committed
402 	 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
403 	 * correct replay of the inode allocation.
404 	 */
405 	if (bip->bli_flags & XFS_BLI_INODE_BUF) {
406 		if (!((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
407 		      xfs_log_item_in_current_chkpt(lip)))
408 			bip->bli_format.blf_flags |= XFS_BLF_INODE_BUF;
409 		bip->bli_flags &= ~XFS_BLI_INODE_BUF;
410 	}
411 
412 	for (i = 0; i < bip->bli_format_count; i++) {
413 		vecp = xfs_buf_item_format_segment(bip, vecp, offset,
414 						&bip->bli_formats[i]);
415 		offset += bp->b_maps[i].bm_len;
416 	}
417 
418 	/*
419 	 * Check to make sure everything is consistent.
420 	 */
421 	trace_xfs_buf_item_format(bip);
422 	xfs_buf_item_log_check(bip);
423 }
424 
425 /*
426  * This is called to pin the buffer associated with the buf log item in memory
427  * so it cannot be written out.
428  *
429  * We also always take a reference to the buffer log item here so that the bli
430  * is held while the item is pinned in memory. This means that we can
431  * unconditionally drop the reference count a transaction holds when the
432  * transaction is completed.
433  */
434 STATIC void
435 xfs_buf_item_pin(
436 	struct xfs_log_item	*lip)
437 {
438 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
439 
440 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
441 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
442 	       (bip->bli_flags & XFS_BLI_STALE));
443 
444 	trace_xfs_buf_item_pin(bip);
445 
446 	atomic_inc(&bip->bli_refcount);
447 	atomic_inc(&bip->bli_buf->b_pin_count);
448 }
449 
450 /*
451  * This is called to unpin the buffer associated with the buf log
452  * item which was previously pinned with a call to xfs_buf_item_pin().
453  *
454  * Also drop the reference to the buf item for the current transaction.
455  * If the XFS_BLI_STALE flag is set and we are the last reference,
456  * then free up the buf log item and unlock the buffer.
457  *
458  * If the remove flag is set we are called from uncommit in the
459  * forced-shutdown path.  If that is true and the reference count on
460  * the log item is going to drop to zero we need to free the item's
461  * descriptor in the transaction.
462  */
463 STATIC void
464 xfs_buf_item_unpin(
465 	struct xfs_log_item	*lip,
466 	int			remove)
467 {
468 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
469 	xfs_buf_t	*bp = bip->bli_buf;
470 	struct xfs_ail	*ailp = lip->li_ailp;
471 	int		stale = bip->bli_flags & XFS_BLI_STALE;
472 	int		freed;
473 
474 	ASSERT(bp->b_fspriv == bip);
475 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
476 
477 	trace_xfs_buf_item_unpin(bip);
478 
479 	freed = atomic_dec_and_test(&bip->bli_refcount);
480 
481 	if (atomic_dec_and_test(&bp->b_pin_count))
482 		wake_up_all(&bp->b_waiters);
483 
484 	if (freed && stale) {
485 		ASSERT(bip->bli_flags & XFS_BLI_STALE);
486 		ASSERT(xfs_buf_islocked(bp));
487 		ASSERT(XFS_BUF_ISSTALE(bp));
488 		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
489 
490 		trace_xfs_buf_item_unpin_stale(bip);
491 
492 		if (remove) {
493 			/*
494 			 * If we are in a transaction context, we have to
495 			 * remove the log item from the transaction as we are
496 			 * about to release our reference to the buffer.  If we
497 			 * don't, the unlock that occurs later in
498 			 * xfs_trans_uncommit() will try to reference the
499 			 * buffer which we no longer have a hold on.
500 			 */
501 			if (lip->li_desc)
502 				xfs_trans_del_item(lip);
503 
504 			/*
505 			 * Since the transaction no longer refers to the buffer,
506 			 * the buffer should no longer refer to the transaction.
507 			 */
508 			bp->b_transp = NULL;
509 		}
510 
511 		/*
512 		 * If we get called here because of an IO error, we may
513 		 * or may not have the item on the AIL. xfs_trans_ail_delete()
514 		 * will take care of that situation.
515 		 * xfs_trans_ail_delete() drops the AIL lock.
516 		 */
517 		if (bip->bli_flags & XFS_BLI_STALE_INODE) {
518 			xfs_buf_do_callbacks(bp);
519 			bp->b_fspriv = NULL;
520 			bp->b_iodone = NULL;
521 		} else {
522 			spin_lock(&ailp->xa_lock);
523 			xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
524 			xfs_buf_item_relse(bp);
525 			ASSERT(bp->b_fspriv == NULL);
526 		}
527 		xfs_buf_relse(bp);
528 	} else if (freed && remove) {
529 		/*
530 		 * There are currently two references to the buffer - the active
531 		 * LRU reference and the buf log item. What we are about to do
532 		 * here - simulate a failed IO completion - requires 3
533 		 * references.
534 		 *
535 		 * The LRU reference is removed by the xfs_buf_stale() call. The
536 		 * buf item reference is removed by the xfs_buf_iodone()
537 		 * callback that is run by xfs_buf_do_callbacks() during ioend
538 		 * processing (via the bp->b_iodone callback), and then finally
539 		 * the ioend processing will drop the IO reference if the buffer
540 		 * is marked XBF_ASYNC.
541 		 *
542 		 * Hence we need to take an additional reference here so that IO
543 		 * completion processing doesn't free the buffer prematurely.
544 		 */
545 		xfs_buf_lock(bp);
546 		xfs_buf_hold(bp);
547 		bp->b_flags |= XBF_ASYNC;
548 		xfs_buf_ioerror(bp, EIO);
549 		XFS_BUF_UNDONE(bp);
550 		xfs_buf_stale(bp);
551 		xfs_buf_ioend(bp, 0);
552 	}
553 }
554 
555 STATIC uint
556 xfs_buf_item_push(
557 	struct xfs_log_item	*lip,
558 	struct list_head	*buffer_list)
559 {
560 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
561 	struct xfs_buf		*bp = bip->bli_buf;
562 	uint			rval = XFS_ITEM_SUCCESS;
563 
564 	if (xfs_buf_ispinned(bp))
565 		return XFS_ITEM_PINNED;
566 	if (!xfs_buf_trylock(bp))
567 		return XFS_ITEM_LOCKED;
568 
569 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
570 
571 	trace_xfs_buf_item_push(bip);
572 
573 	if (!xfs_buf_delwri_queue(bp, buffer_list))
574 		rval = XFS_ITEM_FLUSHING;
575 	xfs_buf_unlock(bp);
576 	return rval;
577 }
578 
579 /*
580  * Release the buffer associated with the buf log item.  If there is no dirty
581  * logged data associated with the buffer recorded in the buf log item, then
582  * free the buf log item and remove the reference to it in the buffer.
583  *
584  * This call ignores the recursion count.  It is only called when the buffer
585  * should REALLY be unlocked, regardless of the recursion count.
586  *
587  * We unconditionally drop the transaction's reference to the log item. If the
588  * item was logged, then another reference was taken when it was pinned, so we
589  * can safely drop the transaction reference now.  This also allows us to avoid
590  * potential races with the unpin code freeing the bli by not referencing the
591  * bli after we've dropped the reference count.
592  *
593  * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
594  * if necessary but do not unlock the buffer.  This is for support of
595  * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
596  * free the item.
597  */
598 STATIC void
599 xfs_buf_item_unlock(
600 	struct xfs_log_item	*lip)
601 {
602 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
603 	struct xfs_buf		*bp = bip->bli_buf;
604 	int			aborted;
605 	uint			hold;
606 
607 	/* Clear the buffer's association with this transaction. */
608 	bp->b_transp = NULL;
609 
610 	/*
611 	 * If this is a transaction abort, don't return early.  Instead, allow
612 	 * the brelse to happen.  Normally it would be done for stale
613 	 * (cancelled) buffers at unpin time, but we'll never go through the
614 	 * pin/unpin cycle if we abort inside commit.
615 	 */
616 	aborted = (lip->li_flags & XFS_LI_ABORTED) != 0;
617 
618 	/*
619 	 * Before possibly freeing the buf item, determine if we should
620 	 * release the buffer at the end of this routine.
621 	 */
622 	hold = bip->bli_flags & XFS_BLI_HOLD;
623 
624 	/* Clear the per transaction state. */
625 	bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD);
626 
627 	/*
628 	 * If the buf item is marked stale, then don't do anything.  We'll
629 	 * unlock the buffer and free the buf item when the buffer is unpinned
630 	 * for the last time.
631 	 */
632 	if (bip->bli_flags & XFS_BLI_STALE) {
633 		trace_xfs_buf_item_unlock_stale(bip);
634 		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
635 		if (!aborted) {
636 			atomic_dec(&bip->bli_refcount);
637 			return;
638 		}
639 	}
640 
641 	trace_xfs_buf_item_unlock(bip);
642 
643 	/*
644 	 * If the buf item isn't tracking any data, free it, otherwise drop the
645 	 * reference we hold to it.
646 	 */
647 	if (xfs_bitmap_empty(bip->bli_format.blf_data_map,
648 			     bip->bli_format.blf_map_size))
649 		xfs_buf_item_relse(bp);
650 	else
651 		atomic_dec(&bip->bli_refcount);
652 
653 	if (!hold)
654 		xfs_buf_relse(bp);
655 }
656 
657 /*
658  * This is called to find out where the oldest active copy of the
659  * buf log item in the on disk log resides now that the last log
660  * write of it completed at the given lsn.
661  * We always re-log all the dirty data in a buffer, so usually the
662  * latest copy in the on disk log is the only one that matters.  For
663  * those cases we simply return the given lsn.
664  *
665  * The one exception to this is for buffers full of newly allocated
666  * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
667  * flag set, indicating that only the di_next_unlinked fields from the
668  * inodes in the buffers will be replayed during recovery.  If the
669  * original newly allocated inode images have not yet been flushed
670  * when the buffer is so relogged, then we need to make sure that we
671  * keep the old images in the 'active' portion of the log.  We do this
672  * by returning the original lsn of that transaction here rather than
673  * the current one.
674  */
675 STATIC xfs_lsn_t
676 xfs_buf_item_committed(
677 	struct xfs_log_item	*lip,
678 	xfs_lsn_t		lsn)
679 {
680 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
681 
682 	trace_xfs_buf_item_committed(bip);
683 
684 	if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
685 		return lip->li_lsn;
686 	return lsn;
687 }
688 
689 STATIC void
690 xfs_buf_item_committing(
691 	struct xfs_log_item	*lip,
692 	xfs_lsn_t		commit_lsn)
693 {
694 }
695 
696 /*
697  * This is the ops vector shared by all buf log items.
698  */
699 static const struct xfs_item_ops xfs_buf_item_ops = {
700 	.iop_size	= xfs_buf_item_size,
701 	.iop_format	= xfs_buf_item_format,
702 	.iop_pin	= xfs_buf_item_pin,
703 	.iop_unpin	= xfs_buf_item_unpin,
704 	.iop_unlock	= xfs_buf_item_unlock,
705 	.iop_committed	= xfs_buf_item_committed,
706 	.iop_push	= xfs_buf_item_push,
707 	.iop_committing = xfs_buf_item_committing
708 };
709 
710 STATIC int
711 xfs_buf_item_get_format(
712 	struct xfs_buf_log_item	*bip,
713 	int			count)
714 {
715 	ASSERT(bip->bli_formats == NULL);
716 	bip->bli_format_count = count;
717 
718 	if (count == 1) {
719 		bip->bli_formats = &bip->bli_format;
720 		return 0;
721 	}
722 
723 	bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
724 				KM_SLEEP);
725 	if (!bip->bli_formats)
726 		return ENOMEM;
727 	return 0;
728 }
729 
730 STATIC void
731 xfs_buf_item_free_format(
732 	struct xfs_buf_log_item	*bip)
733 {
734 	if (bip->bli_formats != &bip->bli_format) {
735 		kmem_free(bip->bli_formats);
736 		bip->bli_formats = NULL;
737 	}
738 }
739 
740 /*
741  * Allocate a new buf log item to go with the given buffer.
742  * Set the buffer's b_fsprivate field to point to the new
743  * buf log item.  If there are other item's attached to the
744  * buffer (see xfs_buf_attach_iodone() below), then put the
745  * buf log item at the front.
746  */
747 void
748 xfs_buf_item_init(
749 	xfs_buf_t	*bp,
750 	xfs_mount_t	*mp)
751 {
752 	xfs_log_item_t		*lip = bp->b_fspriv;
753 	xfs_buf_log_item_t	*bip;
754 	int			chunks;
755 	int			map_size;
756 	int			error;
757 	int			i;
758 
759 	/*
760 	 * Check to see if there is already a buf log item for
761 	 * this buffer.  If there is, it is guaranteed to be
762 	 * the first.  If we do already have one, there is
763 	 * nothing to do here so return.
764 	 */
765 	ASSERT(bp->b_target->bt_mount == mp);
766 	if (lip != NULL && lip->li_type == XFS_LI_BUF)
767 		return;
768 
769 	bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
770 	xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
771 	bip->bli_buf = bp;
772 	xfs_buf_hold(bp);
773 
774 	/*
775 	 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
776 	 * can be divided into. Make sure not to truncate any pieces.
777 	 * map_size is the size of the bitmap needed to describe the
778 	 * chunks of the buffer.
779 	 *
780 	 * Discontiguous buffer support follows the layout of the underlying
781 	 * buffer. This makes the implementation as simple as possible.
782 	 */
783 	error = xfs_buf_item_get_format(bip, bp->b_map_count);
784 	ASSERT(error == 0);
785 
786 	for (i = 0; i < bip->bli_format_count; i++) {
787 		chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
788 				      XFS_BLF_CHUNK);
789 		map_size = DIV_ROUND_UP(chunks, NBWORD);
790 
791 		bip->bli_formats[i].blf_type = XFS_LI_BUF;
792 		bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
793 		bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
794 		bip->bli_formats[i].blf_map_size = map_size;
795 	}
796 
797 #ifdef XFS_TRANS_DEBUG
798 	/*
799 	 * Allocate the arrays for tracking what needs to be logged
800 	 * and what our callers request to be logged.  bli_orig
801 	 * holds a copy of the original, clean buffer for comparison
802 	 * against, and bli_logged keeps a 1 bit flag per byte in
803 	 * the buffer to indicate which bytes the callers have asked
804 	 * to have logged.
805 	 */
806 	bip->bli_orig = kmem_alloc(BBTOB(bp->b_length), KM_SLEEP);
807 	memcpy(bip->bli_orig, bp->b_addr, BBTOB(bp->b_length));
808 	bip->bli_logged = kmem_zalloc(BBTOB(bp->b_length) / NBBY, KM_SLEEP);
809 #endif
810 
811 	/*
812 	 * Put the buf item into the list of items attached to the
813 	 * buffer at the front.
814 	 */
815 	if (bp->b_fspriv)
816 		bip->bli_item.li_bio_list = bp->b_fspriv;
817 	bp->b_fspriv = bip;
818 }
819 
820 
821 /*
822  * Mark bytes first through last inclusive as dirty in the buf
823  * item's bitmap.
824  */
825 void
826 xfs_buf_item_log_segment(
827 	struct xfs_buf_log_item	*bip,
828 	uint			first,
829 	uint			last,
830 	uint			*map)
831 {
832 	uint		first_bit;
833 	uint		last_bit;
834 	uint		bits_to_set;
835 	uint		bits_set;
836 	uint		word_num;
837 	uint		*wordp;
838 	uint		bit;
839 	uint		end_bit;
840 	uint		mask;
841 
842 	/*
843 	 * Convert byte offsets to bit numbers.
844 	 */
845 	first_bit = first >> XFS_BLF_SHIFT;
846 	last_bit = last >> XFS_BLF_SHIFT;
847 
848 	/*
849 	 * Calculate the total number of bits to be set.
850 	 */
851 	bits_to_set = last_bit - first_bit + 1;
852 
853 	/*
854 	 * Get a pointer to the first word in the bitmap
855 	 * to set a bit in.
856 	 */
857 	word_num = first_bit >> BIT_TO_WORD_SHIFT;
858 	wordp = &map[word_num];
859 
860 	/*
861 	 * Calculate the starting bit in the first word.
862 	 */
863 	bit = first_bit & (uint)(NBWORD - 1);
864 
865 	/*
866 	 * First set any bits in the first word of our range.
867 	 * If it starts at bit 0 of the word, it will be
868 	 * set below rather than here.  That is what the variable
869 	 * bit tells us. The variable bits_set tracks the number
870 	 * of bits that have been set so far.  End_bit is the number
871 	 * of the last bit to be set in this word plus one.
872 	 */
873 	if (bit) {
874 		end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
875 		mask = ((1 << (end_bit - bit)) - 1) << bit;
876 		*wordp |= mask;
877 		wordp++;
878 		bits_set = end_bit - bit;
879 	} else {
880 		bits_set = 0;
881 	}
882 
883 	/*
884 	 * Now set bits a whole word at a time that are between
885 	 * first_bit and last_bit.
886 	 */
887 	while ((bits_to_set - bits_set) >= NBWORD) {
888 		*wordp |= 0xffffffff;
889 		bits_set += NBWORD;
890 		wordp++;
891 	}
892 
893 	/*
894 	 * Finally, set any bits left to be set in one last partial word.
895 	 */
896 	end_bit = bits_to_set - bits_set;
897 	if (end_bit) {
898 		mask = (1 << end_bit) - 1;
899 		*wordp |= mask;
900 	}
901 
902 	xfs_buf_item_log_debug(bip, first, last);
903 }
904 
905 /*
906  * Mark bytes first through last inclusive as dirty in the buf
907  * item's bitmap.
908  */
909 void
910 xfs_buf_item_log(
911 	xfs_buf_log_item_t	*bip,
912 	uint			first,
913 	uint			last)
914 {
915 	int			i;
916 	uint			start;
917 	uint			end;
918 	struct xfs_buf		*bp = bip->bli_buf;
919 
920 	/*
921 	 * Mark the item as having some dirty data for
922 	 * quick reference in xfs_buf_item_dirty.
923 	 */
924 	bip->bli_flags |= XFS_BLI_DIRTY;
925 
926 	/*
927 	 * walk each buffer segment and mark them dirty appropriately.
928 	 */
929 	start = 0;
930 	for (i = 0; i < bip->bli_format_count; i++) {
931 		if (start > last)
932 			break;
933 		end = start + BBTOB(bp->b_maps[i].bm_len);
934 		if (first > end) {
935 			start += BBTOB(bp->b_maps[i].bm_len);
936 			continue;
937 		}
938 		if (first < start)
939 			first = start;
940 		if (end > last)
941 			end = last;
942 
943 		xfs_buf_item_log_segment(bip, first, end,
944 					 &bip->bli_formats[i].blf_data_map[0]);
945 
946 		start += bp->b_maps[i].bm_len;
947 	}
948 }
949 
950 
951 /*
952  * Return 1 if the buffer has some data that has been logged (at any
953  * point, not just the current transaction) and 0 if not.
954  */
955 uint
956 xfs_buf_item_dirty(
957 	xfs_buf_log_item_t	*bip)
958 {
959 	return (bip->bli_flags & XFS_BLI_DIRTY);
960 }
961 
962 STATIC void
963 xfs_buf_item_free(
964 	xfs_buf_log_item_t	*bip)
965 {
966 #ifdef XFS_TRANS_DEBUG
967 	kmem_free(bip->bli_orig);
968 	kmem_free(bip->bli_logged);
969 #endif /* XFS_TRANS_DEBUG */
970 
971 	xfs_buf_item_free_format(bip);
972 	kmem_zone_free(xfs_buf_item_zone, bip);
973 }
974 
975 /*
976  * This is called when the buf log item is no longer needed.  It should
977  * free the buf log item associated with the given buffer and clear
978  * the buffer's pointer to the buf log item.  If there are no more
979  * items in the list, clear the b_iodone field of the buffer (see
980  * xfs_buf_attach_iodone() below).
981  */
982 void
983 xfs_buf_item_relse(
984 	xfs_buf_t	*bp)
985 {
986 	xfs_buf_log_item_t	*bip;
987 
988 	trace_xfs_buf_item_relse(bp, _RET_IP_);
989 
990 	bip = bp->b_fspriv;
991 	bp->b_fspriv = bip->bli_item.li_bio_list;
992 	if (bp->b_fspriv == NULL)
993 		bp->b_iodone = NULL;
994 
995 	xfs_buf_rele(bp);
996 	xfs_buf_item_free(bip);
997 }
998 
999 
1000 /*
1001  * Add the given log item with its callback to the list of callbacks
1002  * to be called when the buffer's I/O completes.  If it is not set
1003  * already, set the buffer's b_iodone() routine to be
1004  * xfs_buf_iodone_callbacks() and link the log item into the list of
1005  * items rooted at b_fsprivate.  Items are always added as the second
1006  * entry in the list if there is a first, because the buf item code
1007  * assumes that the buf log item is first.
1008  */
1009 void
1010 xfs_buf_attach_iodone(
1011 	xfs_buf_t	*bp,
1012 	void		(*cb)(xfs_buf_t *, xfs_log_item_t *),
1013 	xfs_log_item_t	*lip)
1014 {
1015 	xfs_log_item_t	*head_lip;
1016 
1017 	ASSERT(xfs_buf_islocked(bp));
1018 
1019 	lip->li_cb = cb;
1020 	head_lip = bp->b_fspriv;
1021 	if (head_lip) {
1022 		lip->li_bio_list = head_lip->li_bio_list;
1023 		head_lip->li_bio_list = lip;
1024 	} else {
1025 		bp->b_fspriv = lip;
1026 	}
1027 
1028 	ASSERT(bp->b_iodone == NULL ||
1029 	       bp->b_iodone == xfs_buf_iodone_callbacks);
1030 	bp->b_iodone = xfs_buf_iodone_callbacks;
1031 }
1032 
1033 /*
1034  * We can have many callbacks on a buffer. Running the callbacks individually
1035  * can cause a lot of contention on the AIL lock, so we allow for a single
1036  * callback to be able to scan the remaining lip->li_bio_list for other items
1037  * of the same type and callback to be processed in the first call.
1038  *
1039  * As a result, the loop walking the callback list below will also modify the
1040  * list. it removes the first item from the list and then runs the callback.
1041  * The loop then restarts from the new head of the list. This allows the
1042  * callback to scan and modify the list attached to the buffer and we don't
1043  * have to care about maintaining a next item pointer.
1044  */
1045 STATIC void
1046 xfs_buf_do_callbacks(
1047 	struct xfs_buf		*bp)
1048 {
1049 	struct xfs_log_item	*lip;
1050 
1051 	while ((lip = bp->b_fspriv) != NULL) {
1052 		bp->b_fspriv = lip->li_bio_list;
1053 		ASSERT(lip->li_cb != NULL);
1054 		/*
1055 		 * Clear the next pointer so we don't have any
1056 		 * confusion if the item is added to another buf.
1057 		 * Don't touch the log item after calling its
1058 		 * callback, because it could have freed itself.
1059 		 */
1060 		lip->li_bio_list = NULL;
1061 		lip->li_cb(bp, lip);
1062 	}
1063 }
1064 
1065 /*
1066  * This is the iodone() function for buffers which have had callbacks
1067  * attached to them by xfs_buf_attach_iodone().  It should remove each
1068  * log item from the buffer's list and call the callback of each in turn.
1069  * When done, the buffer's fsprivate field is set to NULL and the buffer
1070  * is unlocked with a call to iodone().
1071  */
1072 void
1073 xfs_buf_iodone_callbacks(
1074 	struct xfs_buf		*bp)
1075 {
1076 	struct xfs_log_item	*lip = bp->b_fspriv;
1077 	struct xfs_mount	*mp = lip->li_mountp;
1078 	static ulong		lasttime;
1079 	static xfs_buftarg_t	*lasttarg;
1080 
1081 	if (likely(!xfs_buf_geterror(bp)))
1082 		goto do_callbacks;
1083 
1084 	/*
1085 	 * If we've already decided to shutdown the filesystem because of
1086 	 * I/O errors, there's no point in giving this a retry.
1087 	 */
1088 	if (XFS_FORCED_SHUTDOWN(mp)) {
1089 		xfs_buf_stale(bp);
1090 		XFS_BUF_DONE(bp);
1091 		trace_xfs_buf_item_iodone(bp, _RET_IP_);
1092 		goto do_callbacks;
1093 	}
1094 
1095 	if (bp->b_target != lasttarg ||
1096 	    time_after(jiffies, (lasttime + 5*HZ))) {
1097 		lasttime = jiffies;
1098 		xfs_buf_ioerror_alert(bp, __func__);
1099 	}
1100 	lasttarg = bp->b_target;
1101 
1102 	/*
1103 	 * If the write was asynchronous then no one will be looking for the
1104 	 * error.  Clear the error state and write the buffer out again.
1105 	 *
1106 	 * XXX: This helps against transient write errors, but we need to find
1107 	 * a way to shut the filesystem down if the writes keep failing.
1108 	 *
1109 	 * In practice we'll shut the filesystem down soon as non-transient
1110 	 * erorrs tend to affect the whole device and a failing log write
1111 	 * will make us give up.  But we really ought to do better here.
1112 	 */
1113 	if (XFS_BUF_ISASYNC(bp)) {
1114 		ASSERT(bp->b_iodone != NULL);
1115 
1116 		trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1117 
1118 		xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */
1119 
1120 		if (!XFS_BUF_ISSTALE(bp)) {
1121 			bp->b_flags |= XBF_WRITE | XBF_ASYNC | XBF_DONE;
1122 			xfs_buf_iorequest(bp);
1123 		} else {
1124 			xfs_buf_relse(bp);
1125 		}
1126 
1127 		return;
1128 	}
1129 
1130 	/*
1131 	 * If the write of the buffer was synchronous, we want to make
1132 	 * sure to return the error to the caller of xfs_bwrite().
1133 	 */
1134 	xfs_buf_stale(bp);
1135 	XFS_BUF_DONE(bp);
1136 
1137 	trace_xfs_buf_error_relse(bp, _RET_IP_);
1138 
1139 do_callbacks:
1140 	xfs_buf_do_callbacks(bp);
1141 	bp->b_fspriv = NULL;
1142 	bp->b_iodone = NULL;
1143 	xfs_buf_ioend(bp, 0);
1144 }
1145 
1146 /*
1147  * This is the iodone() function for buffers which have been
1148  * logged.  It is called when they are eventually flushed out.
1149  * It should remove the buf item from the AIL, and free the buf item.
1150  * It is called by xfs_buf_iodone_callbacks() above which will take
1151  * care of cleaning up the buffer itself.
1152  */
1153 void
1154 xfs_buf_iodone(
1155 	struct xfs_buf		*bp,
1156 	struct xfs_log_item	*lip)
1157 {
1158 	struct xfs_ail		*ailp = lip->li_ailp;
1159 
1160 	ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1161 
1162 	xfs_buf_rele(bp);
1163 
1164 	/*
1165 	 * If we are forcibly shutting down, this may well be
1166 	 * off the AIL already. That's because we simulate the
1167 	 * log-committed callbacks to unpin these buffers. Or we may never
1168 	 * have put this item on AIL because of the transaction was
1169 	 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1170 	 *
1171 	 * Either way, AIL is useless if we're forcing a shutdown.
1172 	 */
1173 	spin_lock(&ailp->xa_lock);
1174 	xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
1175 	xfs_buf_item_free(BUF_ITEM(lip));
1176 }
1177