xref: /openbmc/linux/fs/xfs/xfs_buf.c (revision e3d786a3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include <linux/stddef.h>
8 #include <linux/errno.h>
9 #include <linux/gfp.h>
10 #include <linux/pagemap.h>
11 #include <linux/init.h>
12 #include <linux/vmalloc.h>
13 #include <linux/bio.h>
14 #include <linux/sysctl.h>
15 #include <linux/proc_fs.h>
16 #include <linux/workqueue.h>
17 #include <linux/percpu.h>
18 #include <linux/blkdev.h>
19 #include <linux/hash.h>
20 #include <linux/kthread.h>
21 #include <linux/migrate.h>
22 #include <linux/backing-dev.h>
23 #include <linux/freezer.h>
24 
25 #include "xfs_format.h"
26 #include "xfs_log_format.h"
27 #include "xfs_trans_resv.h"
28 #include "xfs_sb.h"
29 #include "xfs_mount.h"
30 #include "xfs_trace.h"
31 #include "xfs_log.h"
32 #include "xfs_errortag.h"
33 #include "xfs_error.h"
34 
35 static kmem_zone_t *xfs_buf_zone;
36 
37 #define xb_to_gfp(flags) \
38 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
39 
40 /*
41  * Locking orders
42  *
43  * xfs_buf_ioacct_inc:
44  * xfs_buf_ioacct_dec:
45  *	b_sema (caller holds)
46  *	  b_lock
47  *
48  * xfs_buf_stale:
49  *	b_sema (caller holds)
50  *	  b_lock
51  *	    lru_lock
52  *
53  * xfs_buf_rele:
54  *	b_lock
55  *	  pag_buf_lock
56  *	    lru_lock
57  *
58  * xfs_buftarg_wait_rele
59  *	lru_lock
60  *	  b_lock (trylock due to inversion)
61  *
62  * xfs_buftarg_isolate
63  *	lru_lock
64  *	  b_lock (trylock due to inversion)
65  */
66 
67 static inline int
68 xfs_buf_is_vmapped(
69 	struct xfs_buf	*bp)
70 {
71 	/*
72 	 * Return true if the buffer is vmapped.
73 	 *
74 	 * b_addr is null if the buffer is not mapped, but the code is clever
75 	 * enough to know it doesn't have to map a single page, so the check has
76 	 * to be both for b_addr and bp->b_page_count > 1.
77 	 */
78 	return bp->b_addr && bp->b_page_count > 1;
79 }
80 
81 static inline int
82 xfs_buf_vmap_len(
83 	struct xfs_buf	*bp)
84 {
85 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
86 }
87 
88 /*
89  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
90  * this buffer. The count is incremented once per buffer (per hold cycle)
91  * because the corresponding decrement is deferred to buffer release. Buffers
92  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
93  * tracking adds unnecessary overhead. This is used for sychronization purposes
94  * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
95  * in-flight buffers.
96  *
97  * Buffers that are never released (e.g., superblock, iclog buffers) must set
98  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
99  * never reaches zero and unmount hangs indefinitely.
100  */
101 static inline void
102 xfs_buf_ioacct_inc(
103 	struct xfs_buf	*bp)
104 {
105 	if (bp->b_flags & XBF_NO_IOACCT)
106 		return;
107 
108 	ASSERT(bp->b_flags & XBF_ASYNC);
109 	spin_lock(&bp->b_lock);
110 	if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
111 		bp->b_state |= XFS_BSTATE_IN_FLIGHT;
112 		percpu_counter_inc(&bp->b_target->bt_io_count);
113 	}
114 	spin_unlock(&bp->b_lock);
115 }
116 
117 /*
118  * Clear the in-flight state on a buffer about to be released to the LRU or
119  * freed and unaccount from the buftarg.
120  */
121 static inline void
122 __xfs_buf_ioacct_dec(
123 	struct xfs_buf	*bp)
124 {
125 	lockdep_assert_held(&bp->b_lock);
126 
127 	if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
128 		bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
129 		percpu_counter_dec(&bp->b_target->bt_io_count);
130 	}
131 }
132 
133 static inline void
134 xfs_buf_ioacct_dec(
135 	struct xfs_buf	*bp)
136 {
137 	spin_lock(&bp->b_lock);
138 	__xfs_buf_ioacct_dec(bp);
139 	spin_unlock(&bp->b_lock);
140 }
141 
142 /*
143  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
144  * b_lru_ref count so that the buffer is freed immediately when the buffer
145  * reference count falls to zero. If the buffer is already on the LRU, we need
146  * to remove the reference that LRU holds on the buffer.
147  *
148  * This prevents build-up of stale buffers on the LRU.
149  */
150 void
151 xfs_buf_stale(
152 	struct xfs_buf	*bp)
153 {
154 	ASSERT(xfs_buf_islocked(bp));
155 
156 	bp->b_flags |= XBF_STALE;
157 
158 	/*
159 	 * Clear the delwri status so that a delwri queue walker will not
160 	 * flush this buffer to disk now that it is stale. The delwri queue has
161 	 * a reference to the buffer, so this is safe to do.
162 	 */
163 	bp->b_flags &= ~_XBF_DELWRI_Q;
164 
165 	/*
166 	 * Once the buffer is marked stale and unlocked, a subsequent lookup
167 	 * could reset b_flags. There is no guarantee that the buffer is
168 	 * unaccounted (released to LRU) before that occurs. Drop in-flight
169 	 * status now to preserve accounting consistency.
170 	 */
171 	spin_lock(&bp->b_lock);
172 	__xfs_buf_ioacct_dec(bp);
173 
174 	atomic_set(&bp->b_lru_ref, 0);
175 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
176 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
177 		atomic_dec(&bp->b_hold);
178 
179 	ASSERT(atomic_read(&bp->b_hold) >= 1);
180 	spin_unlock(&bp->b_lock);
181 }
182 
183 static int
184 xfs_buf_get_maps(
185 	struct xfs_buf		*bp,
186 	int			map_count)
187 {
188 	ASSERT(bp->b_maps == NULL);
189 	bp->b_map_count = map_count;
190 
191 	if (map_count == 1) {
192 		bp->b_maps = &bp->__b_map;
193 		return 0;
194 	}
195 
196 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
197 				KM_NOFS);
198 	if (!bp->b_maps)
199 		return -ENOMEM;
200 	return 0;
201 }
202 
203 /*
204  *	Frees b_pages if it was allocated.
205  */
206 static void
207 xfs_buf_free_maps(
208 	struct xfs_buf	*bp)
209 {
210 	if (bp->b_maps != &bp->__b_map) {
211 		kmem_free(bp->b_maps);
212 		bp->b_maps = NULL;
213 	}
214 }
215 
216 struct xfs_buf *
217 _xfs_buf_alloc(
218 	struct xfs_buftarg	*target,
219 	struct xfs_buf_map	*map,
220 	int			nmaps,
221 	xfs_buf_flags_t		flags)
222 {
223 	struct xfs_buf		*bp;
224 	int			error;
225 	int			i;
226 
227 	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
228 	if (unlikely(!bp))
229 		return NULL;
230 
231 	/*
232 	 * We don't want certain flags to appear in b_flags unless they are
233 	 * specifically set by later operations on the buffer.
234 	 */
235 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
236 
237 	atomic_set(&bp->b_hold, 1);
238 	atomic_set(&bp->b_lru_ref, 1);
239 	init_completion(&bp->b_iowait);
240 	INIT_LIST_HEAD(&bp->b_lru);
241 	INIT_LIST_HEAD(&bp->b_list);
242 	INIT_LIST_HEAD(&bp->b_li_list);
243 	sema_init(&bp->b_sema, 0); /* held, no waiters */
244 	spin_lock_init(&bp->b_lock);
245 	bp->b_target = target;
246 	bp->b_flags = flags;
247 
248 	/*
249 	 * Set length and io_length to the same value initially.
250 	 * I/O routines should use io_length, which will be the same in
251 	 * most cases but may be reset (e.g. XFS recovery).
252 	 */
253 	error = xfs_buf_get_maps(bp, nmaps);
254 	if (error)  {
255 		kmem_zone_free(xfs_buf_zone, bp);
256 		return NULL;
257 	}
258 
259 	bp->b_bn = map[0].bm_bn;
260 	bp->b_length = 0;
261 	for (i = 0; i < nmaps; i++) {
262 		bp->b_maps[i].bm_bn = map[i].bm_bn;
263 		bp->b_maps[i].bm_len = map[i].bm_len;
264 		bp->b_length += map[i].bm_len;
265 	}
266 	bp->b_io_length = bp->b_length;
267 
268 	atomic_set(&bp->b_pin_count, 0);
269 	init_waitqueue_head(&bp->b_waiters);
270 
271 	XFS_STATS_INC(target->bt_mount, xb_create);
272 	trace_xfs_buf_init(bp, _RET_IP_);
273 
274 	return bp;
275 }
276 
277 /*
278  *	Allocate a page array capable of holding a specified number
279  *	of pages, and point the page buf at it.
280  */
281 STATIC int
282 _xfs_buf_get_pages(
283 	xfs_buf_t		*bp,
284 	int			page_count)
285 {
286 	/* Make sure that we have a page list */
287 	if (bp->b_pages == NULL) {
288 		bp->b_page_count = page_count;
289 		if (page_count <= XB_PAGES) {
290 			bp->b_pages = bp->b_page_array;
291 		} else {
292 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
293 						 page_count, KM_NOFS);
294 			if (bp->b_pages == NULL)
295 				return -ENOMEM;
296 		}
297 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
298 	}
299 	return 0;
300 }
301 
302 /*
303  *	Frees b_pages if it was allocated.
304  */
305 STATIC void
306 _xfs_buf_free_pages(
307 	xfs_buf_t	*bp)
308 {
309 	if (bp->b_pages != bp->b_page_array) {
310 		kmem_free(bp->b_pages);
311 		bp->b_pages = NULL;
312 	}
313 }
314 
315 /*
316  *	Releases the specified buffer.
317  *
318  * 	The modification state of any associated pages is left unchanged.
319  * 	The buffer must not be on any hash - use xfs_buf_rele instead for
320  * 	hashed and refcounted buffers
321  */
322 void
323 xfs_buf_free(
324 	xfs_buf_t		*bp)
325 {
326 	trace_xfs_buf_free(bp, _RET_IP_);
327 
328 	ASSERT(list_empty(&bp->b_lru));
329 
330 	if (bp->b_flags & _XBF_PAGES) {
331 		uint		i;
332 
333 		if (xfs_buf_is_vmapped(bp))
334 			vm_unmap_ram(bp->b_addr - bp->b_offset,
335 					bp->b_page_count);
336 
337 		for (i = 0; i < bp->b_page_count; i++) {
338 			struct page	*page = bp->b_pages[i];
339 
340 			__free_page(page);
341 		}
342 	} else if (bp->b_flags & _XBF_KMEM)
343 		kmem_free(bp->b_addr);
344 	_xfs_buf_free_pages(bp);
345 	xfs_buf_free_maps(bp);
346 	kmem_zone_free(xfs_buf_zone, bp);
347 }
348 
349 /*
350  * Allocates all the pages for buffer in question and builds it's page list.
351  */
352 STATIC int
353 xfs_buf_allocate_memory(
354 	xfs_buf_t		*bp,
355 	uint			flags)
356 {
357 	size_t			size;
358 	size_t			nbytes, offset;
359 	gfp_t			gfp_mask = xb_to_gfp(flags);
360 	unsigned short		page_count, i;
361 	xfs_off_t		start, end;
362 	int			error;
363 
364 	/*
365 	 * for buffers that are contained within a single page, just allocate
366 	 * the memory from the heap - there's no need for the complexity of
367 	 * page arrays to keep allocation down to order 0.
368 	 */
369 	size = BBTOB(bp->b_length);
370 	if (size < PAGE_SIZE) {
371 		bp->b_addr = kmem_alloc(size, KM_NOFS);
372 		if (!bp->b_addr) {
373 			/* low memory - use alloc_page loop instead */
374 			goto use_alloc_page;
375 		}
376 
377 		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
378 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
379 			/* b_addr spans two pages - use alloc_page instead */
380 			kmem_free(bp->b_addr);
381 			bp->b_addr = NULL;
382 			goto use_alloc_page;
383 		}
384 		bp->b_offset = offset_in_page(bp->b_addr);
385 		bp->b_pages = bp->b_page_array;
386 		bp->b_pages[0] = virt_to_page(bp->b_addr);
387 		bp->b_page_count = 1;
388 		bp->b_flags |= _XBF_KMEM;
389 		return 0;
390 	}
391 
392 use_alloc_page:
393 	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
394 	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
395 								>> PAGE_SHIFT;
396 	page_count = end - start;
397 	error = _xfs_buf_get_pages(bp, page_count);
398 	if (unlikely(error))
399 		return error;
400 
401 	offset = bp->b_offset;
402 	bp->b_flags |= _XBF_PAGES;
403 
404 	for (i = 0; i < bp->b_page_count; i++) {
405 		struct page	*page;
406 		uint		retries = 0;
407 retry:
408 		page = alloc_page(gfp_mask);
409 		if (unlikely(page == NULL)) {
410 			if (flags & XBF_READ_AHEAD) {
411 				bp->b_page_count = i;
412 				error = -ENOMEM;
413 				goto out_free_pages;
414 			}
415 
416 			/*
417 			 * This could deadlock.
418 			 *
419 			 * But until all the XFS lowlevel code is revamped to
420 			 * handle buffer allocation failures we can't do much.
421 			 */
422 			if (!(++retries % 100))
423 				xfs_err(NULL,
424 		"%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
425 					current->comm, current->pid,
426 					__func__, gfp_mask);
427 
428 			XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
429 			congestion_wait(BLK_RW_ASYNC, HZ/50);
430 			goto retry;
431 		}
432 
433 		XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
434 
435 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
436 		size -= nbytes;
437 		bp->b_pages[i] = page;
438 		offset = 0;
439 	}
440 	return 0;
441 
442 out_free_pages:
443 	for (i = 0; i < bp->b_page_count; i++)
444 		__free_page(bp->b_pages[i]);
445 	bp->b_flags &= ~_XBF_PAGES;
446 	return error;
447 }
448 
449 /*
450  *	Map buffer into kernel address-space if necessary.
451  */
452 STATIC int
453 _xfs_buf_map_pages(
454 	xfs_buf_t		*bp,
455 	uint			flags)
456 {
457 	ASSERT(bp->b_flags & _XBF_PAGES);
458 	if (bp->b_page_count == 1) {
459 		/* A single page buffer is always mappable */
460 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
461 	} else if (flags & XBF_UNMAPPED) {
462 		bp->b_addr = NULL;
463 	} else {
464 		int retried = 0;
465 		unsigned nofs_flag;
466 
467 		/*
468 		 * vm_map_ram() will allocate auxillary structures (e.g.
469 		 * pagetables) with GFP_KERNEL, yet we are likely to be under
470 		 * GFP_NOFS context here. Hence we need to tell memory reclaim
471 		 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
472 		 * memory reclaim re-entering the filesystem here and
473 		 * potentially deadlocking.
474 		 */
475 		nofs_flag = memalloc_nofs_save();
476 		do {
477 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
478 						-1, PAGE_KERNEL);
479 			if (bp->b_addr)
480 				break;
481 			vm_unmap_aliases();
482 		} while (retried++ <= 1);
483 		memalloc_nofs_restore(nofs_flag);
484 
485 		if (!bp->b_addr)
486 			return -ENOMEM;
487 		bp->b_addr += bp->b_offset;
488 	}
489 
490 	return 0;
491 }
492 
493 /*
494  *	Finding and Reading Buffers
495  */
496 static int
497 _xfs_buf_obj_cmp(
498 	struct rhashtable_compare_arg	*arg,
499 	const void			*obj)
500 {
501 	const struct xfs_buf_map	*map = arg->key;
502 	const struct xfs_buf		*bp = obj;
503 
504 	/*
505 	 * The key hashing in the lookup path depends on the key being the
506 	 * first element of the compare_arg, make sure to assert this.
507 	 */
508 	BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
509 
510 	if (bp->b_bn != map->bm_bn)
511 		return 1;
512 
513 	if (unlikely(bp->b_length != map->bm_len)) {
514 		/*
515 		 * found a block number match. If the range doesn't
516 		 * match, the only way this is allowed is if the buffer
517 		 * in the cache is stale and the transaction that made
518 		 * it stale has not yet committed. i.e. we are
519 		 * reallocating a busy extent. Skip this buffer and
520 		 * continue searching for an exact match.
521 		 */
522 		ASSERT(bp->b_flags & XBF_STALE);
523 		return 1;
524 	}
525 	return 0;
526 }
527 
528 static const struct rhashtable_params xfs_buf_hash_params = {
529 	.min_size		= 32,	/* empty AGs have minimal footprint */
530 	.nelem_hint		= 16,
531 	.key_len		= sizeof(xfs_daddr_t),
532 	.key_offset		= offsetof(struct xfs_buf, b_bn),
533 	.head_offset		= offsetof(struct xfs_buf, b_rhash_head),
534 	.automatic_shrinking	= true,
535 	.obj_cmpfn		= _xfs_buf_obj_cmp,
536 };
537 
538 int
539 xfs_buf_hash_init(
540 	struct xfs_perag	*pag)
541 {
542 	spin_lock_init(&pag->pag_buf_lock);
543 	return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
544 }
545 
546 void
547 xfs_buf_hash_destroy(
548 	struct xfs_perag	*pag)
549 {
550 	rhashtable_destroy(&pag->pag_buf_hash);
551 }
552 
553 /*
554  * Look up a buffer in the buffer cache and return it referenced and locked
555  * in @found_bp.
556  *
557  * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
558  * cache.
559  *
560  * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
561  * -EAGAIN if we fail to lock it.
562  *
563  * Return values are:
564  *	-EFSCORRUPTED if have been supplied with an invalid address
565  *	-EAGAIN on trylock failure
566  *	-ENOENT if we fail to find a match and @new_bp was NULL
567  *	0, with @found_bp:
568  *		- @new_bp if we inserted it into the cache
569  *		- the buffer we found and locked.
570  */
571 static int
572 xfs_buf_find(
573 	struct xfs_buftarg	*btp,
574 	struct xfs_buf_map	*map,
575 	int			nmaps,
576 	xfs_buf_flags_t		flags,
577 	struct xfs_buf		*new_bp,
578 	struct xfs_buf		**found_bp)
579 {
580 	struct xfs_perag	*pag;
581 	xfs_buf_t		*bp;
582 	struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn };
583 	xfs_daddr_t		eofs;
584 	int			i;
585 
586 	*found_bp = NULL;
587 
588 	for (i = 0; i < nmaps; i++)
589 		cmap.bm_len += map[i].bm_len;
590 
591 	/* Check for IOs smaller than the sector size / not sector aligned */
592 	ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
593 	ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
594 
595 	/*
596 	 * Corrupted block numbers can get through to here, unfortunately, so we
597 	 * have to check that the buffer falls within the filesystem bounds.
598 	 */
599 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
600 	if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
601 		xfs_alert(btp->bt_mount,
602 			  "%s: daddr 0x%llx out of range, EOFS 0x%llx",
603 			  __func__, cmap.bm_bn, eofs);
604 		WARN_ON(1);
605 		return -EFSCORRUPTED;
606 	}
607 
608 	pag = xfs_perag_get(btp->bt_mount,
609 			    xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
610 
611 	spin_lock(&pag->pag_buf_lock);
612 	bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
613 				    xfs_buf_hash_params);
614 	if (bp) {
615 		atomic_inc(&bp->b_hold);
616 		goto found;
617 	}
618 
619 	/* No match found */
620 	if (!new_bp) {
621 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
622 		spin_unlock(&pag->pag_buf_lock);
623 		xfs_perag_put(pag);
624 		return -ENOENT;
625 	}
626 
627 	/* the buffer keeps the perag reference until it is freed */
628 	new_bp->b_pag = pag;
629 	rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
630 			       xfs_buf_hash_params);
631 	spin_unlock(&pag->pag_buf_lock);
632 	*found_bp = new_bp;
633 	return 0;
634 
635 found:
636 	spin_unlock(&pag->pag_buf_lock);
637 	xfs_perag_put(pag);
638 
639 	if (!xfs_buf_trylock(bp)) {
640 		if (flags & XBF_TRYLOCK) {
641 			xfs_buf_rele(bp);
642 			XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
643 			return -EAGAIN;
644 		}
645 		xfs_buf_lock(bp);
646 		XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
647 	}
648 
649 	/*
650 	 * if the buffer is stale, clear all the external state associated with
651 	 * it. We need to keep flags such as how we allocated the buffer memory
652 	 * intact here.
653 	 */
654 	if (bp->b_flags & XBF_STALE) {
655 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
656 		ASSERT(bp->b_iodone == NULL);
657 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
658 		bp->b_ops = NULL;
659 	}
660 
661 	trace_xfs_buf_find(bp, flags, _RET_IP_);
662 	XFS_STATS_INC(btp->bt_mount, xb_get_locked);
663 	*found_bp = bp;
664 	return 0;
665 }
666 
667 struct xfs_buf *
668 xfs_buf_incore(
669 	struct xfs_buftarg	*target,
670 	xfs_daddr_t		blkno,
671 	size_t			numblks,
672 	xfs_buf_flags_t		flags)
673 {
674 	struct xfs_buf		*bp;
675 	int			error;
676 	DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
677 
678 	error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
679 	if (error)
680 		return NULL;
681 	return bp;
682 }
683 
684 /*
685  * Assembles a buffer covering the specified range. The code is optimised for
686  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
687  * more hits than misses.
688  */
689 struct xfs_buf *
690 xfs_buf_get_map(
691 	struct xfs_buftarg	*target,
692 	struct xfs_buf_map	*map,
693 	int			nmaps,
694 	xfs_buf_flags_t		flags)
695 {
696 	struct xfs_buf		*bp;
697 	struct xfs_buf		*new_bp;
698 	int			error = 0;
699 
700 	error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
701 
702 	switch (error) {
703 	case 0:
704 		/* cache hit */
705 		goto found;
706 	case -EAGAIN:
707 		/* cache hit, trylock failure, caller handles failure */
708 		ASSERT(flags & XBF_TRYLOCK);
709 		return NULL;
710 	case -ENOENT:
711 		/* cache miss, go for insert */
712 		break;
713 	case -EFSCORRUPTED:
714 	default:
715 		/*
716 		 * None of the higher layers understand failure types
717 		 * yet, so return NULL to signal a fatal lookup error.
718 		 */
719 		return NULL;
720 	}
721 
722 	new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
723 	if (unlikely(!new_bp))
724 		return NULL;
725 
726 	error = xfs_buf_allocate_memory(new_bp, flags);
727 	if (error) {
728 		xfs_buf_free(new_bp);
729 		return NULL;
730 	}
731 
732 	error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
733 	if (error) {
734 		xfs_buf_free(new_bp);
735 		return NULL;
736 	}
737 
738 	if (bp != new_bp)
739 		xfs_buf_free(new_bp);
740 
741 found:
742 	if (!bp->b_addr) {
743 		error = _xfs_buf_map_pages(bp, flags);
744 		if (unlikely(error)) {
745 			xfs_warn(target->bt_mount,
746 				"%s: failed to map pagesn", __func__);
747 			xfs_buf_relse(bp);
748 			return NULL;
749 		}
750 	}
751 
752 	/*
753 	 * Clear b_error if this is a lookup from a caller that doesn't expect
754 	 * valid data to be found in the buffer.
755 	 */
756 	if (!(flags & XBF_READ))
757 		xfs_buf_ioerror(bp, 0);
758 
759 	XFS_STATS_INC(target->bt_mount, xb_get);
760 	trace_xfs_buf_get(bp, flags, _RET_IP_);
761 	return bp;
762 }
763 
764 STATIC int
765 _xfs_buf_read(
766 	xfs_buf_t		*bp,
767 	xfs_buf_flags_t		flags)
768 {
769 	ASSERT(!(flags & XBF_WRITE));
770 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
771 
772 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
773 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
774 
775 	return xfs_buf_submit(bp);
776 }
777 
778 /*
779  * If the caller passed in an ops structure and the buffer doesn't have ops
780  * assigned, set the ops and use them to verify the contents.  If the contents
781  * cannot be verified, we'll clear XBF_DONE.  We assume the buffer has no
782  * recorded errors and is already in XBF_DONE state.
783  */
784 int
785 xfs_buf_ensure_ops(
786 	struct xfs_buf		*bp,
787 	const struct xfs_buf_ops *ops)
788 {
789 	ASSERT(bp->b_flags & XBF_DONE);
790 	ASSERT(bp->b_error == 0);
791 
792 	if (!ops || bp->b_ops)
793 		return 0;
794 
795 	bp->b_ops = ops;
796 	bp->b_ops->verify_read(bp);
797 	if (bp->b_error)
798 		bp->b_flags &= ~XBF_DONE;
799 	return bp->b_error;
800 }
801 
802 xfs_buf_t *
803 xfs_buf_read_map(
804 	struct xfs_buftarg	*target,
805 	struct xfs_buf_map	*map,
806 	int			nmaps,
807 	xfs_buf_flags_t		flags,
808 	const struct xfs_buf_ops *ops)
809 {
810 	struct xfs_buf		*bp;
811 
812 	flags |= XBF_READ;
813 
814 	bp = xfs_buf_get_map(target, map, nmaps, flags);
815 	if (!bp)
816 		return NULL;
817 
818 	trace_xfs_buf_read(bp, flags, _RET_IP_);
819 
820 	if (!(bp->b_flags & XBF_DONE)) {
821 		XFS_STATS_INC(target->bt_mount, xb_get_read);
822 		bp->b_ops = ops;
823 		_xfs_buf_read(bp, flags);
824 		return bp;
825 	}
826 
827 	xfs_buf_ensure_ops(bp, ops);
828 
829 	if (flags & XBF_ASYNC) {
830 		/*
831 		 * Read ahead call which is already satisfied,
832 		 * drop the buffer
833 		 */
834 		xfs_buf_relse(bp);
835 		return NULL;
836 	}
837 
838 	/* We do not want read in the flags */
839 	bp->b_flags &= ~XBF_READ;
840 	ASSERT(bp->b_ops != NULL || ops == NULL);
841 	return bp;
842 }
843 
844 /*
845  *	If we are not low on memory then do the readahead in a deadlock
846  *	safe manner.
847  */
848 void
849 xfs_buf_readahead_map(
850 	struct xfs_buftarg	*target,
851 	struct xfs_buf_map	*map,
852 	int			nmaps,
853 	const struct xfs_buf_ops *ops)
854 {
855 	if (bdi_read_congested(target->bt_bdev->bd_bdi))
856 		return;
857 
858 	xfs_buf_read_map(target, map, nmaps,
859 		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
860 }
861 
862 /*
863  * Read an uncached buffer from disk. Allocates and returns a locked
864  * buffer containing the disk contents or nothing.
865  */
866 int
867 xfs_buf_read_uncached(
868 	struct xfs_buftarg	*target,
869 	xfs_daddr_t		daddr,
870 	size_t			numblks,
871 	int			flags,
872 	struct xfs_buf		**bpp,
873 	const struct xfs_buf_ops *ops)
874 {
875 	struct xfs_buf		*bp;
876 
877 	*bpp = NULL;
878 
879 	bp = xfs_buf_get_uncached(target, numblks, flags);
880 	if (!bp)
881 		return -ENOMEM;
882 
883 	/* set up the buffer for a read IO */
884 	ASSERT(bp->b_map_count == 1);
885 	bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
886 	bp->b_maps[0].bm_bn = daddr;
887 	bp->b_flags |= XBF_READ;
888 	bp->b_ops = ops;
889 
890 	xfs_buf_submit(bp);
891 	if (bp->b_error) {
892 		int	error = bp->b_error;
893 		xfs_buf_relse(bp);
894 		return error;
895 	}
896 
897 	*bpp = bp;
898 	return 0;
899 }
900 
901 /*
902  * Return a buffer allocated as an empty buffer and associated to external
903  * memory via xfs_buf_associate_memory() back to it's empty state.
904  */
905 void
906 xfs_buf_set_empty(
907 	struct xfs_buf		*bp,
908 	size_t			numblks)
909 {
910 	if (bp->b_pages)
911 		_xfs_buf_free_pages(bp);
912 
913 	bp->b_pages = NULL;
914 	bp->b_page_count = 0;
915 	bp->b_addr = NULL;
916 	bp->b_length = numblks;
917 	bp->b_io_length = numblks;
918 
919 	ASSERT(bp->b_map_count == 1);
920 	bp->b_bn = XFS_BUF_DADDR_NULL;
921 	bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
922 	bp->b_maps[0].bm_len = bp->b_length;
923 }
924 
925 static inline struct page *
926 mem_to_page(
927 	void			*addr)
928 {
929 	if ((!is_vmalloc_addr(addr))) {
930 		return virt_to_page(addr);
931 	} else {
932 		return vmalloc_to_page(addr);
933 	}
934 }
935 
936 int
937 xfs_buf_associate_memory(
938 	xfs_buf_t		*bp,
939 	void			*mem,
940 	size_t			len)
941 {
942 	int			rval;
943 	int			i = 0;
944 	unsigned long		pageaddr;
945 	unsigned long		offset;
946 	size_t			buflen;
947 	int			page_count;
948 
949 	pageaddr = (unsigned long)mem & PAGE_MASK;
950 	offset = (unsigned long)mem - pageaddr;
951 	buflen = PAGE_ALIGN(len + offset);
952 	page_count = buflen >> PAGE_SHIFT;
953 
954 	/* Free any previous set of page pointers */
955 	if (bp->b_pages)
956 		_xfs_buf_free_pages(bp);
957 
958 	bp->b_pages = NULL;
959 	bp->b_addr = mem;
960 
961 	rval = _xfs_buf_get_pages(bp, page_count);
962 	if (rval)
963 		return rval;
964 
965 	bp->b_offset = offset;
966 
967 	for (i = 0; i < bp->b_page_count; i++) {
968 		bp->b_pages[i] = mem_to_page((void *)pageaddr);
969 		pageaddr += PAGE_SIZE;
970 	}
971 
972 	bp->b_io_length = BTOBB(len);
973 	bp->b_length = BTOBB(buflen);
974 
975 	return 0;
976 }
977 
978 xfs_buf_t *
979 xfs_buf_get_uncached(
980 	struct xfs_buftarg	*target,
981 	size_t			numblks,
982 	int			flags)
983 {
984 	unsigned long		page_count;
985 	int			error, i;
986 	struct xfs_buf		*bp;
987 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
988 
989 	/* flags might contain irrelevant bits, pass only what we care about */
990 	bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
991 	if (unlikely(bp == NULL))
992 		goto fail;
993 
994 	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
995 	error = _xfs_buf_get_pages(bp, page_count);
996 	if (error)
997 		goto fail_free_buf;
998 
999 	for (i = 0; i < page_count; i++) {
1000 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1001 		if (!bp->b_pages[i])
1002 			goto fail_free_mem;
1003 	}
1004 	bp->b_flags |= _XBF_PAGES;
1005 
1006 	error = _xfs_buf_map_pages(bp, 0);
1007 	if (unlikely(error)) {
1008 		xfs_warn(target->bt_mount,
1009 			"%s: failed to map pages", __func__);
1010 		goto fail_free_mem;
1011 	}
1012 
1013 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
1014 	return bp;
1015 
1016  fail_free_mem:
1017 	while (--i >= 0)
1018 		__free_page(bp->b_pages[i]);
1019 	_xfs_buf_free_pages(bp);
1020  fail_free_buf:
1021 	xfs_buf_free_maps(bp);
1022 	kmem_zone_free(xfs_buf_zone, bp);
1023  fail:
1024 	return NULL;
1025 }
1026 
1027 /*
1028  *	Increment reference count on buffer, to hold the buffer concurrently
1029  *	with another thread which may release (free) the buffer asynchronously.
1030  *	Must hold the buffer already to call this function.
1031  */
1032 void
1033 xfs_buf_hold(
1034 	xfs_buf_t		*bp)
1035 {
1036 	trace_xfs_buf_hold(bp, _RET_IP_);
1037 	atomic_inc(&bp->b_hold);
1038 }
1039 
1040 /*
1041  * Release a hold on the specified buffer. If the hold count is 1, the buffer is
1042  * placed on LRU or freed (depending on b_lru_ref).
1043  */
1044 void
1045 xfs_buf_rele(
1046 	xfs_buf_t		*bp)
1047 {
1048 	struct xfs_perag	*pag = bp->b_pag;
1049 	bool			release;
1050 	bool			freebuf = false;
1051 
1052 	trace_xfs_buf_rele(bp, _RET_IP_);
1053 
1054 	if (!pag) {
1055 		ASSERT(list_empty(&bp->b_lru));
1056 		if (atomic_dec_and_test(&bp->b_hold)) {
1057 			xfs_buf_ioacct_dec(bp);
1058 			xfs_buf_free(bp);
1059 		}
1060 		return;
1061 	}
1062 
1063 	ASSERT(atomic_read(&bp->b_hold) > 0);
1064 
1065 	/*
1066 	 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1067 	 * calls. The pag_buf_lock being taken on the last reference only
1068 	 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1069 	 * to last reference we drop here is not serialised against the last
1070 	 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1071 	 * first, the last "release" reference can win the race to the lock and
1072 	 * free the buffer before the second-to-last reference is processed,
1073 	 * leading to a use-after-free scenario.
1074 	 */
1075 	spin_lock(&bp->b_lock);
1076 	release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1077 	if (!release) {
1078 		/*
1079 		 * Drop the in-flight state if the buffer is already on the LRU
1080 		 * and it holds the only reference. This is racy because we
1081 		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1082 		 * ensures the decrement occurs only once per-buf.
1083 		 */
1084 		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1085 			__xfs_buf_ioacct_dec(bp);
1086 		goto out_unlock;
1087 	}
1088 
1089 	/* the last reference has been dropped ... */
1090 	__xfs_buf_ioacct_dec(bp);
1091 	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1092 		/*
1093 		 * If the buffer is added to the LRU take a new reference to the
1094 		 * buffer for the LRU and clear the (now stale) dispose list
1095 		 * state flag
1096 		 */
1097 		if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1098 			bp->b_state &= ~XFS_BSTATE_DISPOSE;
1099 			atomic_inc(&bp->b_hold);
1100 		}
1101 		spin_unlock(&pag->pag_buf_lock);
1102 	} else {
1103 		/*
1104 		 * most of the time buffers will already be removed from the
1105 		 * LRU, so optimise that case by checking for the
1106 		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1107 		 * was on was the disposal list
1108 		 */
1109 		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1110 			list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1111 		} else {
1112 			ASSERT(list_empty(&bp->b_lru));
1113 		}
1114 
1115 		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1116 		rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1117 				       xfs_buf_hash_params);
1118 		spin_unlock(&pag->pag_buf_lock);
1119 		xfs_perag_put(pag);
1120 		freebuf = true;
1121 	}
1122 
1123 out_unlock:
1124 	spin_unlock(&bp->b_lock);
1125 
1126 	if (freebuf)
1127 		xfs_buf_free(bp);
1128 }
1129 
1130 
1131 /*
1132  *	Lock a buffer object, if it is not already locked.
1133  *
1134  *	If we come across a stale, pinned, locked buffer, we know that we are
1135  *	being asked to lock a buffer that has been reallocated. Because it is
1136  *	pinned, we know that the log has not been pushed to disk and hence it
1137  *	will still be locked.  Rather than continuing to have trylock attempts
1138  *	fail until someone else pushes the log, push it ourselves before
1139  *	returning.  This means that the xfsaild will not get stuck trying
1140  *	to push on stale inode buffers.
1141  */
1142 int
1143 xfs_buf_trylock(
1144 	struct xfs_buf		*bp)
1145 {
1146 	int			locked;
1147 
1148 	locked = down_trylock(&bp->b_sema) == 0;
1149 	if (locked)
1150 		trace_xfs_buf_trylock(bp, _RET_IP_);
1151 	else
1152 		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1153 	return locked;
1154 }
1155 
1156 /*
1157  *	Lock a buffer object.
1158  *
1159  *	If we come across a stale, pinned, locked buffer, we know that we
1160  *	are being asked to lock a buffer that has been reallocated. Because
1161  *	it is pinned, we know that the log has not been pushed to disk and
1162  *	hence it will still be locked. Rather than sleeping until someone
1163  *	else pushes the log, push it ourselves before trying to get the lock.
1164  */
1165 void
1166 xfs_buf_lock(
1167 	struct xfs_buf		*bp)
1168 {
1169 	trace_xfs_buf_lock(bp, _RET_IP_);
1170 
1171 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1172 		xfs_log_force(bp->b_target->bt_mount, 0);
1173 	down(&bp->b_sema);
1174 
1175 	trace_xfs_buf_lock_done(bp, _RET_IP_);
1176 }
1177 
1178 void
1179 xfs_buf_unlock(
1180 	struct xfs_buf		*bp)
1181 {
1182 	ASSERT(xfs_buf_islocked(bp));
1183 
1184 	up(&bp->b_sema);
1185 	trace_xfs_buf_unlock(bp, _RET_IP_);
1186 }
1187 
1188 STATIC void
1189 xfs_buf_wait_unpin(
1190 	xfs_buf_t		*bp)
1191 {
1192 	DECLARE_WAITQUEUE	(wait, current);
1193 
1194 	if (atomic_read(&bp->b_pin_count) == 0)
1195 		return;
1196 
1197 	add_wait_queue(&bp->b_waiters, &wait);
1198 	for (;;) {
1199 		set_current_state(TASK_UNINTERRUPTIBLE);
1200 		if (atomic_read(&bp->b_pin_count) == 0)
1201 			break;
1202 		io_schedule();
1203 	}
1204 	remove_wait_queue(&bp->b_waiters, &wait);
1205 	set_current_state(TASK_RUNNING);
1206 }
1207 
1208 /*
1209  *	Buffer Utility Routines
1210  */
1211 
1212 void
1213 xfs_buf_ioend(
1214 	struct xfs_buf	*bp)
1215 {
1216 	bool		read = bp->b_flags & XBF_READ;
1217 
1218 	trace_xfs_buf_iodone(bp, _RET_IP_);
1219 
1220 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1221 
1222 	/*
1223 	 * Pull in IO completion errors now. We are guaranteed to be running
1224 	 * single threaded, so we don't need the lock to read b_io_error.
1225 	 */
1226 	if (!bp->b_error && bp->b_io_error)
1227 		xfs_buf_ioerror(bp, bp->b_io_error);
1228 
1229 	/* Only validate buffers that were read without errors */
1230 	if (read && !bp->b_error && bp->b_ops) {
1231 		ASSERT(!bp->b_iodone);
1232 		bp->b_ops->verify_read(bp);
1233 	}
1234 
1235 	if (!bp->b_error)
1236 		bp->b_flags |= XBF_DONE;
1237 
1238 	if (bp->b_iodone)
1239 		(*(bp->b_iodone))(bp);
1240 	else if (bp->b_flags & XBF_ASYNC)
1241 		xfs_buf_relse(bp);
1242 	else
1243 		complete(&bp->b_iowait);
1244 }
1245 
1246 static void
1247 xfs_buf_ioend_work(
1248 	struct work_struct	*work)
1249 {
1250 	struct xfs_buf		*bp =
1251 		container_of(work, xfs_buf_t, b_ioend_work);
1252 
1253 	xfs_buf_ioend(bp);
1254 }
1255 
1256 static void
1257 xfs_buf_ioend_async(
1258 	struct xfs_buf	*bp)
1259 {
1260 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1261 	queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1262 }
1263 
1264 void
1265 __xfs_buf_ioerror(
1266 	xfs_buf_t		*bp,
1267 	int			error,
1268 	xfs_failaddr_t		failaddr)
1269 {
1270 	ASSERT(error <= 0 && error >= -1000);
1271 	bp->b_error = error;
1272 	trace_xfs_buf_ioerror(bp, error, failaddr);
1273 }
1274 
1275 void
1276 xfs_buf_ioerror_alert(
1277 	struct xfs_buf		*bp,
1278 	const char		*func)
1279 {
1280 	xfs_alert(bp->b_target->bt_mount,
1281 "metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1282 			func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1283 			-bp->b_error);
1284 }
1285 
1286 int
1287 xfs_bwrite(
1288 	struct xfs_buf		*bp)
1289 {
1290 	int			error;
1291 
1292 	ASSERT(xfs_buf_islocked(bp));
1293 
1294 	bp->b_flags |= XBF_WRITE;
1295 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1296 			 XBF_WRITE_FAIL | XBF_DONE);
1297 
1298 	error = xfs_buf_submit(bp);
1299 	if (error) {
1300 		xfs_force_shutdown(bp->b_target->bt_mount,
1301 				   SHUTDOWN_META_IO_ERROR);
1302 	}
1303 	return error;
1304 }
1305 
1306 static void
1307 xfs_buf_bio_end_io(
1308 	struct bio		*bio)
1309 {
1310 	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
1311 
1312 	/*
1313 	 * don't overwrite existing errors - otherwise we can lose errors on
1314 	 * buffers that require multiple bios to complete.
1315 	 */
1316 	if (bio->bi_status) {
1317 		int error = blk_status_to_errno(bio->bi_status);
1318 
1319 		cmpxchg(&bp->b_io_error, 0, error);
1320 	}
1321 
1322 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1323 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1324 
1325 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1326 		xfs_buf_ioend_async(bp);
1327 	bio_put(bio);
1328 }
1329 
1330 static void
1331 xfs_buf_ioapply_map(
1332 	struct xfs_buf	*bp,
1333 	int		map,
1334 	int		*buf_offset,
1335 	int		*count,
1336 	int		op,
1337 	int		op_flags)
1338 {
1339 	int		page_index;
1340 	int		total_nr_pages = bp->b_page_count;
1341 	int		nr_pages;
1342 	struct bio	*bio;
1343 	sector_t	sector =  bp->b_maps[map].bm_bn;
1344 	int		size;
1345 	int		offset;
1346 
1347 	/* skip the pages in the buffer before the start offset */
1348 	page_index = 0;
1349 	offset = *buf_offset;
1350 	while (offset >= PAGE_SIZE) {
1351 		page_index++;
1352 		offset -= PAGE_SIZE;
1353 	}
1354 
1355 	/*
1356 	 * Limit the IO size to the length of the current vector, and update the
1357 	 * remaining IO count for the next time around.
1358 	 */
1359 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1360 	*count -= size;
1361 	*buf_offset += size;
1362 
1363 next_chunk:
1364 	atomic_inc(&bp->b_io_remaining);
1365 	nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1366 
1367 	bio = bio_alloc(GFP_NOIO, nr_pages);
1368 	bio_set_dev(bio, bp->b_target->bt_bdev);
1369 	bio->bi_iter.bi_sector = sector;
1370 	bio->bi_end_io = xfs_buf_bio_end_io;
1371 	bio->bi_private = bp;
1372 	bio_set_op_attrs(bio, op, op_flags);
1373 
1374 	for (; size && nr_pages; nr_pages--, page_index++) {
1375 		int	rbytes, nbytes = PAGE_SIZE - offset;
1376 
1377 		if (nbytes > size)
1378 			nbytes = size;
1379 
1380 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1381 				      offset);
1382 		if (rbytes < nbytes)
1383 			break;
1384 
1385 		offset = 0;
1386 		sector += BTOBB(nbytes);
1387 		size -= nbytes;
1388 		total_nr_pages--;
1389 	}
1390 
1391 	if (likely(bio->bi_iter.bi_size)) {
1392 		if (xfs_buf_is_vmapped(bp)) {
1393 			flush_kernel_vmap_range(bp->b_addr,
1394 						xfs_buf_vmap_len(bp));
1395 		}
1396 		submit_bio(bio);
1397 		if (size)
1398 			goto next_chunk;
1399 	} else {
1400 		/*
1401 		 * This is guaranteed not to be the last io reference count
1402 		 * because the caller (xfs_buf_submit) holds a count itself.
1403 		 */
1404 		atomic_dec(&bp->b_io_remaining);
1405 		xfs_buf_ioerror(bp, -EIO);
1406 		bio_put(bio);
1407 	}
1408 
1409 }
1410 
1411 STATIC void
1412 _xfs_buf_ioapply(
1413 	struct xfs_buf	*bp)
1414 {
1415 	struct blk_plug	plug;
1416 	int		op;
1417 	int		op_flags = 0;
1418 	int		offset;
1419 	int		size;
1420 	int		i;
1421 
1422 	/*
1423 	 * Make sure we capture only current IO errors rather than stale errors
1424 	 * left over from previous use of the buffer (e.g. failed readahead).
1425 	 */
1426 	bp->b_error = 0;
1427 
1428 	/*
1429 	 * Initialize the I/O completion workqueue if we haven't yet or the
1430 	 * submitter has not opted to specify a custom one.
1431 	 */
1432 	if (!bp->b_ioend_wq)
1433 		bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1434 
1435 	if (bp->b_flags & XBF_WRITE) {
1436 		op = REQ_OP_WRITE;
1437 		if (bp->b_flags & XBF_SYNCIO)
1438 			op_flags = REQ_SYNC;
1439 		if (bp->b_flags & XBF_FUA)
1440 			op_flags |= REQ_FUA;
1441 		if (bp->b_flags & XBF_FLUSH)
1442 			op_flags |= REQ_PREFLUSH;
1443 
1444 		/*
1445 		 * Run the write verifier callback function if it exists. If
1446 		 * this function fails it will mark the buffer with an error and
1447 		 * the IO should not be dispatched.
1448 		 */
1449 		if (bp->b_ops) {
1450 			bp->b_ops->verify_write(bp);
1451 			if (bp->b_error) {
1452 				xfs_force_shutdown(bp->b_target->bt_mount,
1453 						   SHUTDOWN_CORRUPT_INCORE);
1454 				return;
1455 			}
1456 		} else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1457 			struct xfs_mount *mp = bp->b_target->bt_mount;
1458 
1459 			/*
1460 			 * non-crc filesystems don't attach verifiers during
1461 			 * log recovery, so don't warn for such filesystems.
1462 			 */
1463 			if (xfs_sb_version_hascrc(&mp->m_sb)) {
1464 				xfs_warn(mp,
1465 					"%s: no buf ops on daddr 0x%llx len %d",
1466 					__func__, bp->b_bn, bp->b_length);
1467 				xfs_hex_dump(bp->b_addr,
1468 						XFS_CORRUPTION_DUMP_LEN);
1469 				dump_stack();
1470 			}
1471 		}
1472 	} else if (bp->b_flags & XBF_READ_AHEAD) {
1473 		op = REQ_OP_READ;
1474 		op_flags = REQ_RAHEAD;
1475 	} else {
1476 		op = REQ_OP_READ;
1477 	}
1478 
1479 	/* we only use the buffer cache for meta-data */
1480 	op_flags |= REQ_META;
1481 
1482 	/*
1483 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1484 	 * into the buffer and the desired IO size before we start -
1485 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1486 	 * subsequent call.
1487 	 */
1488 	offset = bp->b_offset;
1489 	size = BBTOB(bp->b_io_length);
1490 	blk_start_plug(&plug);
1491 	for (i = 0; i < bp->b_map_count; i++) {
1492 		xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1493 		if (bp->b_error)
1494 			break;
1495 		if (size <= 0)
1496 			break;	/* all done */
1497 	}
1498 	blk_finish_plug(&plug);
1499 }
1500 
1501 /*
1502  * Wait for I/O completion of a sync buffer and return the I/O error code.
1503  */
1504 static int
1505 xfs_buf_iowait(
1506 	struct xfs_buf	*bp)
1507 {
1508 	ASSERT(!(bp->b_flags & XBF_ASYNC));
1509 
1510 	trace_xfs_buf_iowait(bp, _RET_IP_);
1511 	wait_for_completion(&bp->b_iowait);
1512 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1513 
1514 	return bp->b_error;
1515 }
1516 
1517 /*
1518  * Buffer I/O submission path, read or write. Asynchronous submission transfers
1519  * the buffer lock ownership and the current reference to the IO. It is not
1520  * safe to reference the buffer after a call to this function unless the caller
1521  * holds an additional reference itself.
1522  */
1523 int
1524 __xfs_buf_submit(
1525 	struct xfs_buf	*bp,
1526 	bool		wait)
1527 {
1528 	int		error = 0;
1529 
1530 	trace_xfs_buf_submit(bp, _RET_IP_);
1531 
1532 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1533 
1534 	/* on shutdown we stale and complete the buffer immediately */
1535 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1536 		xfs_buf_ioerror(bp, -EIO);
1537 		bp->b_flags &= ~XBF_DONE;
1538 		xfs_buf_stale(bp);
1539 		if (bp->b_flags & XBF_ASYNC)
1540 			xfs_buf_ioend(bp);
1541 		return -EIO;
1542 	}
1543 
1544 	/*
1545 	 * Grab a reference so the buffer does not go away underneath us. For
1546 	 * async buffers, I/O completion drops the callers reference, which
1547 	 * could occur before submission returns.
1548 	 */
1549 	xfs_buf_hold(bp);
1550 
1551 	if (bp->b_flags & XBF_WRITE)
1552 		xfs_buf_wait_unpin(bp);
1553 
1554 	/* clear the internal error state to avoid spurious errors */
1555 	bp->b_io_error = 0;
1556 
1557 	/*
1558 	 * Set the count to 1 initially, this will stop an I/O completion
1559 	 * callout which happens before we have started all the I/O from calling
1560 	 * xfs_buf_ioend too early.
1561 	 */
1562 	atomic_set(&bp->b_io_remaining, 1);
1563 	if (bp->b_flags & XBF_ASYNC)
1564 		xfs_buf_ioacct_inc(bp);
1565 	_xfs_buf_ioapply(bp);
1566 
1567 	/*
1568 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1569 	 * reference we took above. If we drop it to zero, run completion so
1570 	 * that we don't return to the caller with completion still pending.
1571 	 */
1572 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1573 		if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1574 			xfs_buf_ioend(bp);
1575 		else
1576 			xfs_buf_ioend_async(bp);
1577 	}
1578 
1579 	if (wait)
1580 		error = xfs_buf_iowait(bp);
1581 
1582 	/*
1583 	 * Release the hold that keeps the buffer referenced for the entire
1584 	 * I/O. Note that if the buffer is async, it is not safe to reference
1585 	 * after this release.
1586 	 */
1587 	xfs_buf_rele(bp);
1588 	return error;
1589 }
1590 
1591 void *
1592 xfs_buf_offset(
1593 	struct xfs_buf		*bp,
1594 	size_t			offset)
1595 {
1596 	struct page		*page;
1597 
1598 	if (bp->b_addr)
1599 		return bp->b_addr + offset;
1600 
1601 	offset += bp->b_offset;
1602 	page = bp->b_pages[offset >> PAGE_SHIFT];
1603 	return page_address(page) + (offset & (PAGE_SIZE-1));
1604 }
1605 
1606 /*
1607  *	Move data into or out of a buffer.
1608  */
1609 void
1610 xfs_buf_iomove(
1611 	xfs_buf_t		*bp,	/* buffer to process		*/
1612 	size_t			boff,	/* starting buffer offset	*/
1613 	size_t			bsize,	/* length to copy		*/
1614 	void			*data,	/* data address			*/
1615 	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
1616 {
1617 	size_t			bend;
1618 
1619 	bend = boff + bsize;
1620 	while (boff < bend) {
1621 		struct page	*page;
1622 		int		page_index, page_offset, csize;
1623 
1624 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1625 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1626 		page = bp->b_pages[page_index];
1627 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1628 				      BBTOB(bp->b_io_length) - boff);
1629 
1630 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1631 
1632 		switch (mode) {
1633 		case XBRW_ZERO:
1634 			memset(page_address(page) + page_offset, 0, csize);
1635 			break;
1636 		case XBRW_READ:
1637 			memcpy(data, page_address(page) + page_offset, csize);
1638 			break;
1639 		case XBRW_WRITE:
1640 			memcpy(page_address(page) + page_offset, data, csize);
1641 		}
1642 
1643 		boff += csize;
1644 		data += csize;
1645 	}
1646 }
1647 
1648 /*
1649  *	Handling of buffer targets (buftargs).
1650  */
1651 
1652 /*
1653  * Wait for any bufs with callbacks that have been submitted but have not yet
1654  * returned. These buffers will have an elevated hold count, so wait on those
1655  * while freeing all the buffers only held by the LRU.
1656  */
1657 static enum lru_status
1658 xfs_buftarg_wait_rele(
1659 	struct list_head	*item,
1660 	struct list_lru_one	*lru,
1661 	spinlock_t		*lru_lock,
1662 	void			*arg)
1663 
1664 {
1665 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1666 	struct list_head	*dispose = arg;
1667 
1668 	if (atomic_read(&bp->b_hold) > 1) {
1669 		/* need to wait, so skip it this pass */
1670 		trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1671 		return LRU_SKIP;
1672 	}
1673 	if (!spin_trylock(&bp->b_lock))
1674 		return LRU_SKIP;
1675 
1676 	/*
1677 	 * clear the LRU reference count so the buffer doesn't get
1678 	 * ignored in xfs_buf_rele().
1679 	 */
1680 	atomic_set(&bp->b_lru_ref, 0);
1681 	bp->b_state |= XFS_BSTATE_DISPOSE;
1682 	list_lru_isolate_move(lru, item, dispose);
1683 	spin_unlock(&bp->b_lock);
1684 	return LRU_REMOVED;
1685 }
1686 
1687 void
1688 xfs_wait_buftarg(
1689 	struct xfs_buftarg	*btp)
1690 {
1691 	LIST_HEAD(dispose);
1692 	int loop = 0;
1693 
1694 	/*
1695 	 * First wait on the buftarg I/O count for all in-flight buffers to be
1696 	 * released. This is critical as new buffers do not make the LRU until
1697 	 * they are released.
1698 	 *
1699 	 * Next, flush the buffer workqueue to ensure all completion processing
1700 	 * has finished. Just waiting on buffer locks is not sufficient for
1701 	 * async IO as the reference count held over IO is not released until
1702 	 * after the buffer lock is dropped. Hence we need to ensure here that
1703 	 * all reference counts have been dropped before we start walking the
1704 	 * LRU list.
1705 	 */
1706 	while (percpu_counter_sum(&btp->bt_io_count))
1707 		delay(100);
1708 	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1709 
1710 	/* loop until there is nothing left on the lru list. */
1711 	while (list_lru_count(&btp->bt_lru)) {
1712 		list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1713 			      &dispose, LONG_MAX);
1714 
1715 		while (!list_empty(&dispose)) {
1716 			struct xfs_buf *bp;
1717 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1718 			list_del_init(&bp->b_lru);
1719 			if (bp->b_flags & XBF_WRITE_FAIL) {
1720 				xfs_alert(btp->bt_mount,
1721 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1722 					(long long)bp->b_bn);
1723 				xfs_alert(btp->bt_mount,
1724 "Please run xfs_repair to determine the extent of the problem.");
1725 			}
1726 			xfs_buf_rele(bp);
1727 		}
1728 		if (loop++ != 0)
1729 			delay(100);
1730 	}
1731 }
1732 
1733 static enum lru_status
1734 xfs_buftarg_isolate(
1735 	struct list_head	*item,
1736 	struct list_lru_one	*lru,
1737 	spinlock_t		*lru_lock,
1738 	void			*arg)
1739 {
1740 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1741 	struct list_head	*dispose = arg;
1742 
1743 	/*
1744 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1745 	 * If we fail to get the lock, just skip it.
1746 	 */
1747 	if (!spin_trylock(&bp->b_lock))
1748 		return LRU_SKIP;
1749 	/*
1750 	 * Decrement the b_lru_ref count unless the value is already
1751 	 * zero. If the value is already zero, we need to reclaim the
1752 	 * buffer, otherwise it gets another trip through the LRU.
1753 	 */
1754 	if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1755 		spin_unlock(&bp->b_lock);
1756 		return LRU_ROTATE;
1757 	}
1758 
1759 	bp->b_state |= XFS_BSTATE_DISPOSE;
1760 	list_lru_isolate_move(lru, item, dispose);
1761 	spin_unlock(&bp->b_lock);
1762 	return LRU_REMOVED;
1763 }
1764 
1765 static unsigned long
1766 xfs_buftarg_shrink_scan(
1767 	struct shrinker		*shrink,
1768 	struct shrink_control	*sc)
1769 {
1770 	struct xfs_buftarg	*btp = container_of(shrink,
1771 					struct xfs_buftarg, bt_shrinker);
1772 	LIST_HEAD(dispose);
1773 	unsigned long		freed;
1774 
1775 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1776 				     xfs_buftarg_isolate, &dispose);
1777 
1778 	while (!list_empty(&dispose)) {
1779 		struct xfs_buf *bp;
1780 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1781 		list_del_init(&bp->b_lru);
1782 		xfs_buf_rele(bp);
1783 	}
1784 
1785 	return freed;
1786 }
1787 
1788 static unsigned long
1789 xfs_buftarg_shrink_count(
1790 	struct shrinker		*shrink,
1791 	struct shrink_control	*sc)
1792 {
1793 	struct xfs_buftarg	*btp = container_of(shrink,
1794 					struct xfs_buftarg, bt_shrinker);
1795 	return list_lru_shrink_count(&btp->bt_lru, sc);
1796 }
1797 
1798 void
1799 xfs_free_buftarg(
1800 	struct xfs_buftarg	*btp)
1801 {
1802 	unregister_shrinker(&btp->bt_shrinker);
1803 	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1804 	percpu_counter_destroy(&btp->bt_io_count);
1805 	list_lru_destroy(&btp->bt_lru);
1806 
1807 	xfs_blkdev_issue_flush(btp);
1808 
1809 	kmem_free(btp);
1810 }
1811 
1812 int
1813 xfs_setsize_buftarg(
1814 	xfs_buftarg_t		*btp,
1815 	unsigned int		sectorsize)
1816 {
1817 	/* Set up metadata sector size info */
1818 	btp->bt_meta_sectorsize = sectorsize;
1819 	btp->bt_meta_sectormask = sectorsize - 1;
1820 
1821 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1822 		xfs_warn(btp->bt_mount,
1823 			"Cannot set_blocksize to %u on device %pg",
1824 			sectorsize, btp->bt_bdev);
1825 		return -EINVAL;
1826 	}
1827 
1828 	/* Set up device logical sector size mask */
1829 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1830 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1831 
1832 	return 0;
1833 }
1834 
1835 /*
1836  * When allocating the initial buffer target we have not yet
1837  * read in the superblock, so don't know what sized sectors
1838  * are being used at this early stage.  Play safe.
1839  */
1840 STATIC int
1841 xfs_setsize_buftarg_early(
1842 	xfs_buftarg_t		*btp,
1843 	struct block_device	*bdev)
1844 {
1845 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1846 }
1847 
1848 xfs_buftarg_t *
1849 xfs_alloc_buftarg(
1850 	struct xfs_mount	*mp,
1851 	struct block_device	*bdev,
1852 	struct dax_device	*dax_dev)
1853 {
1854 	xfs_buftarg_t		*btp;
1855 
1856 	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1857 
1858 	btp->bt_mount = mp;
1859 	btp->bt_dev =  bdev->bd_dev;
1860 	btp->bt_bdev = bdev;
1861 	btp->bt_daxdev = dax_dev;
1862 
1863 	if (xfs_setsize_buftarg_early(btp, bdev))
1864 		goto error_free;
1865 
1866 	if (list_lru_init(&btp->bt_lru))
1867 		goto error_free;
1868 
1869 	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1870 		goto error_lru;
1871 
1872 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1873 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1874 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1875 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1876 	if (register_shrinker(&btp->bt_shrinker))
1877 		goto error_pcpu;
1878 	return btp;
1879 
1880 error_pcpu:
1881 	percpu_counter_destroy(&btp->bt_io_count);
1882 error_lru:
1883 	list_lru_destroy(&btp->bt_lru);
1884 error_free:
1885 	kmem_free(btp);
1886 	return NULL;
1887 }
1888 
1889 /*
1890  * Cancel a delayed write list.
1891  *
1892  * Remove each buffer from the list, clear the delwri queue flag and drop the
1893  * associated buffer reference.
1894  */
1895 void
1896 xfs_buf_delwri_cancel(
1897 	struct list_head	*list)
1898 {
1899 	struct xfs_buf		*bp;
1900 
1901 	while (!list_empty(list)) {
1902 		bp = list_first_entry(list, struct xfs_buf, b_list);
1903 
1904 		xfs_buf_lock(bp);
1905 		bp->b_flags &= ~_XBF_DELWRI_Q;
1906 		list_del_init(&bp->b_list);
1907 		xfs_buf_relse(bp);
1908 	}
1909 }
1910 
1911 /*
1912  * Add a buffer to the delayed write list.
1913  *
1914  * This queues a buffer for writeout if it hasn't already been.  Note that
1915  * neither this routine nor the buffer list submission functions perform
1916  * any internal synchronization.  It is expected that the lists are thread-local
1917  * to the callers.
1918  *
1919  * Returns true if we queued up the buffer, or false if it already had
1920  * been on the buffer list.
1921  */
1922 bool
1923 xfs_buf_delwri_queue(
1924 	struct xfs_buf		*bp,
1925 	struct list_head	*list)
1926 {
1927 	ASSERT(xfs_buf_islocked(bp));
1928 	ASSERT(!(bp->b_flags & XBF_READ));
1929 
1930 	/*
1931 	 * If the buffer is already marked delwri it already is queued up
1932 	 * by someone else for imediate writeout.  Just ignore it in that
1933 	 * case.
1934 	 */
1935 	if (bp->b_flags & _XBF_DELWRI_Q) {
1936 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1937 		return false;
1938 	}
1939 
1940 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1941 
1942 	/*
1943 	 * If a buffer gets written out synchronously or marked stale while it
1944 	 * is on a delwri list we lazily remove it. To do this, the other party
1945 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1946 	 * It remains referenced and on the list.  In a rare corner case it
1947 	 * might get readded to a delwri list after the synchronous writeout, in
1948 	 * which case we need just need to re-add the flag here.
1949 	 */
1950 	bp->b_flags |= _XBF_DELWRI_Q;
1951 	if (list_empty(&bp->b_list)) {
1952 		atomic_inc(&bp->b_hold);
1953 		list_add_tail(&bp->b_list, list);
1954 	}
1955 
1956 	return true;
1957 }
1958 
1959 /*
1960  * Compare function is more complex than it needs to be because
1961  * the return value is only 32 bits and we are doing comparisons
1962  * on 64 bit values
1963  */
1964 static int
1965 xfs_buf_cmp(
1966 	void		*priv,
1967 	struct list_head *a,
1968 	struct list_head *b)
1969 {
1970 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1971 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1972 	xfs_daddr_t		diff;
1973 
1974 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1975 	if (diff < 0)
1976 		return -1;
1977 	if (diff > 0)
1978 		return 1;
1979 	return 0;
1980 }
1981 
1982 /*
1983  * Submit buffers for write. If wait_list is specified, the buffers are
1984  * submitted using sync I/O and placed on the wait list such that the caller can
1985  * iowait each buffer. Otherwise async I/O is used and the buffers are released
1986  * at I/O completion time. In either case, buffers remain locked until I/O
1987  * completes and the buffer is released from the queue.
1988  */
1989 static int
1990 xfs_buf_delwri_submit_buffers(
1991 	struct list_head	*buffer_list,
1992 	struct list_head	*wait_list)
1993 {
1994 	struct xfs_buf		*bp, *n;
1995 	LIST_HEAD		(submit_list);
1996 	int			pinned = 0;
1997 	struct blk_plug		plug;
1998 
1999 	list_sort(NULL, buffer_list, xfs_buf_cmp);
2000 
2001 	blk_start_plug(&plug);
2002 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2003 		if (!wait_list) {
2004 			if (xfs_buf_ispinned(bp)) {
2005 				pinned++;
2006 				continue;
2007 			}
2008 			if (!xfs_buf_trylock(bp))
2009 				continue;
2010 		} else {
2011 			xfs_buf_lock(bp);
2012 		}
2013 
2014 		/*
2015 		 * Someone else might have written the buffer synchronously or
2016 		 * marked it stale in the meantime.  In that case only the
2017 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2018 		 * reference and remove it from the list here.
2019 		 */
2020 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2021 			list_del_init(&bp->b_list);
2022 			xfs_buf_relse(bp);
2023 			continue;
2024 		}
2025 
2026 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
2027 
2028 		/*
2029 		 * If we have a wait list, each buffer (and associated delwri
2030 		 * queue reference) transfers to it and is submitted
2031 		 * synchronously. Otherwise, drop the buffer from the delwri
2032 		 * queue and submit async.
2033 		 */
2034 		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
2035 		bp->b_flags |= XBF_WRITE;
2036 		if (wait_list) {
2037 			bp->b_flags &= ~XBF_ASYNC;
2038 			list_move_tail(&bp->b_list, wait_list);
2039 		} else {
2040 			bp->b_flags |= XBF_ASYNC;
2041 			list_del_init(&bp->b_list);
2042 		}
2043 		__xfs_buf_submit(bp, false);
2044 	}
2045 	blk_finish_plug(&plug);
2046 
2047 	return pinned;
2048 }
2049 
2050 /*
2051  * Write out a buffer list asynchronously.
2052  *
2053  * This will take the @buffer_list, write all non-locked and non-pinned buffers
2054  * out and not wait for I/O completion on any of the buffers.  This interface
2055  * is only safely useable for callers that can track I/O completion by higher
2056  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2057  * function.
2058  *
2059  * Note: this function will skip buffers it would block on, and in doing so
2060  * leaves them on @buffer_list so they can be retried on a later pass. As such,
2061  * it is up to the caller to ensure that the buffer list is fully submitted or
2062  * cancelled appropriately when they are finished with the list. Failure to
2063  * cancel or resubmit the list until it is empty will result in leaked buffers
2064  * at unmount time.
2065  */
2066 int
2067 xfs_buf_delwri_submit_nowait(
2068 	struct list_head	*buffer_list)
2069 {
2070 	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2071 }
2072 
2073 /*
2074  * Write out a buffer list synchronously.
2075  *
2076  * This will take the @buffer_list, write all buffers out and wait for I/O
2077  * completion on all of the buffers. @buffer_list is consumed by the function,
2078  * so callers must have some other way of tracking buffers if they require such
2079  * functionality.
2080  */
2081 int
2082 xfs_buf_delwri_submit(
2083 	struct list_head	*buffer_list)
2084 {
2085 	LIST_HEAD		(wait_list);
2086 	int			error = 0, error2;
2087 	struct xfs_buf		*bp;
2088 
2089 	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2090 
2091 	/* Wait for IO to complete. */
2092 	while (!list_empty(&wait_list)) {
2093 		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2094 
2095 		list_del_init(&bp->b_list);
2096 
2097 		/*
2098 		 * Wait on the locked buffer, check for errors and unlock and
2099 		 * release the delwri queue reference.
2100 		 */
2101 		error2 = xfs_buf_iowait(bp);
2102 		xfs_buf_relse(bp);
2103 		if (!error)
2104 			error = error2;
2105 	}
2106 
2107 	return error;
2108 }
2109 
2110 /*
2111  * Push a single buffer on a delwri queue.
2112  *
2113  * The purpose of this function is to submit a single buffer of a delwri queue
2114  * and return with the buffer still on the original queue. The waiting delwri
2115  * buffer submission infrastructure guarantees transfer of the delwri queue
2116  * buffer reference to a temporary wait list. We reuse this infrastructure to
2117  * transfer the buffer back to the original queue.
2118  *
2119  * Note the buffer transitions from the queued state, to the submitted and wait
2120  * listed state and back to the queued state during this call. The buffer
2121  * locking and queue management logic between _delwri_pushbuf() and
2122  * _delwri_queue() guarantee that the buffer cannot be queued to another list
2123  * before returning.
2124  */
2125 int
2126 xfs_buf_delwri_pushbuf(
2127 	struct xfs_buf		*bp,
2128 	struct list_head	*buffer_list)
2129 {
2130 	LIST_HEAD		(submit_list);
2131 	int			error;
2132 
2133 	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2134 
2135 	trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2136 
2137 	/*
2138 	 * Isolate the buffer to a new local list so we can submit it for I/O
2139 	 * independently from the rest of the original list.
2140 	 */
2141 	xfs_buf_lock(bp);
2142 	list_move(&bp->b_list, &submit_list);
2143 	xfs_buf_unlock(bp);
2144 
2145 	/*
2146 	 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2147 	 * the buffer on the wait list with the original reference. Rather than
2148 	 * bounce the buffer from a local wait list back to the original list
2149 	 * after I/O completion, reuse the original list as the wait list.
2150 	 */
2151 	xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2152 
2153 	/*
2154 	 * The buffer is now locked, under I/O and wait listed on the original
2155 	 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2156 	 * return with the buffer unlocked and on the original queue.
2157 	 */
2158 	error = xfs_buf_iowait(bp);
2159 	bp->b_flags |= _XBF_DELWRI_Q;
2160 	xfs_buf_unlock(bp);
2161 
2162 	return error;
2163 }
2164 
2165 int __init
2166 xfs_buf_init(void)
2167 {
2168 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2169 						KM_ZONE_HWALIGN, NULL);
2170 	if (!xfs_buf_zone)
2171 		goto out;
2172 
2173 	return 0;
2174 
2175  out:
2176 	return -ENOMEM;
2177 }
2178 
2179 void
2180 xfs_buf_terminate(void)
2181 {
2182 	kmem_zone_destroy(xfs_buf_zone);
2183 }
2184 
2185 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2186 {
2187 	/*
2188 	 * Set the lru reference count to 0 based on the error injection tag.
2189 	 * This allows userspace to disrupt buffer caching for debug/testing
2190 	 * purposes.
2191 	 */
2192 	if (XFS_TEST_ERROR(false, bp->b_target->bt_mount,
2193 			   XFS_ERRTAG_BUF_LRU_REF))
2194 		lru_ref = 0;
2195 
2196 	atomic_set(&bp->b_lru_ref, lru_ref);
2197 }
2198